
Inference of Robust Reachability Constraints
Yanis Sellami1,2, Guillaume Girol2, Frédéric Recoules2, Damien Couroussé1, Sébastien Bardin2

1 Univ. Grenoble Alpes, CEA List, France
2 Université Paris-Saclay, CEA List, France

Programs have bugs

Bugs can be exploited → Vulnerabilities

We need automated methods to detect bugs

Automatic Bug Detection

19/01/2024Inference of Robust Reachability Constraints 2

Programs have bugs

Bugs can be exploited → Vulnerabilities

We need automated methods to detect bugs

Example: Symbolic Execution

• Explore the program paths

• Finds program input that exhibits the bug

• Sound: no false positives

Automatic Bug Detection

19/01/2024Inference of Robust Reachability Constraints 2

Programs have bugs

Bugs can be exploited → Vulnerabilities

We need automated methods to detect bugs

Example: Symbolic Execution

• Explore the program paths

• Finds program input that exhibits the bug

• Sound: no false positives

Automatic Bug Detection

19/01/2024Inference of Robust Reachability Constraints 2

a = 0, b = 0

False Positive in Practice

19/01/2024Inference of Robust Reachability Constraints 3

Example

False Positive in Practice

19/01/2024Inference of Robust Reachability Constraints 3

Example

Symbolic Execution?

• Very easy: a = 0, b = 0

False Positive in Practice

19/01/2024Inference of Robust Reachability Constraints 3

Example

Symbolic Execution?

• Very easy: a = 0, b = 0

The Issue

• Depends on uncontrolled initial value (b)

• The formal result is not reliably reproducible

False Positive in Practice

19/01/2024Inference of Robust Reachability Constraints 3

Example

Symbolic Execution?

• Very easy: a = 0, b = 0

The Issue

• Depends on uncontrolled initial value (b)

• The formal result is not reliably reproducible

Practical Causes of Unreliable Assignments

• Interaction with the environment

• Stack canaries

• Uninitialized memory/register dependency

• Choice of undefined behaviors

We need to characterize the replicability of bugs

Robust Reachability [Girol et. al., CAV 2020]

19/01/2024Inference of Robust Reachability Constraints 4

Idea

• Partition of the input space
• What is controlled
• What is uncontrolled

controlled uncontrolled

a b

Robust Reachability [Girol et. al., CAV 2020]

19/01/2024Inference of Robust Reachability Constraints 4

Idea

• Partition of the input space
• What is controlled
• What is uncontrolled

Focus: Reliable Bugs

• Controlled input that triggers the bug independently of
the value of the uncontrolled inputs

∃ a ∀ b error

controlled uncontrolled

Robust Reachability [Girol et. al., CAV 2020]

19/01/2024Inference of Robust Reachability Constraints 4

Idea

• Partition of the input space
• What is controlled
• What is uncontrolled

Focus: Reliable Bugs

• Controlled input that triggers the bug independently of
the value of the uncontrolled inputs

Not Robustly Reachable

∃ a ∀ b error

controlled uncontrolled

Robust Reachability [Girol et. al., CAV 2020]

19/01/2024Inference of Robust Reachability Constraints 4

Idea

• Partition of the input space
• What is controlled
• What is uncontrolled

Focus: Reliable Bugs

• Controlled input that triggers the bug independently of
the value of the uncontrolled inputs

Extension of Reachability and Symbolic Execution

∃ a ∀ b error

controlled uncontrolled

Not Robustly Reachable

Example 3

• Memcopy with slow and fast path

• Fast path is buggy but slow path is not

The Remaining Problem

19/01/2024Inference of Robust Reachability Constraints 5

Example 3

• Memcopy with slow and fast path

• Fast path is buggy but slow path is not

The Remaining Problem

19/01/2024Inference of Robust Reachability Constraints 5

safe

buggy

Example 3

• Memcopy with slow and fast path

• Fast path is buggy but slow path is not

• Reachability: Vulnerable

The Remaining Problem

19/01/2024Inference of Robust Reachability Constraints 5

safe

buggy

Example 3

• Memcopy with slow and fast path

• Fast path is buggy but slow path is not

• Reachability: Vulnerable

The Remaining Problem

19/01/2024Inference of Robust Reachability Constraints 5

safe

buggy

memory alignment constraint

Example 3

• Memcopy with slow and fast path

• Fast path is buggy but slow path is not

• Reachability: Vulnerable

• Robust Reachability: Not reliably triggerable
• Taking the fast path depends on uncontrolled initial values

The bug is serious but not robustly reachable – The concept is too strong

The Remaining Problem

19/01/2024Inference of Robust Reachability Constraints 5

∃ ∗ 𝑠𝑟𝑐, ∀𝑠𝑟𝑐,𝑑𝑠𝑡, overflow?

Not Robustly Reachable

safe

buggy

memory alignment constraint

Robust Reachability Constraints

Definition

• Predicate on program input sufficient to have
Robust Reachability

19/01/2024Inference of Robust Reachability Constraints 6

Robust Reachability Constraints

Definition

• Predicate on program input sufficient to have
Robust Reachability

19/01/2024Inference of Robust Reachability Constraints 6

∃ ∗ 𝑠𝑟𝑐, ∀𝑠𝑟𝑐,𝑑𝑠𝑡, 𝑠𝑟𝑐% 32 = 0 ∧ 𝑑𝑠𝑡% 32 = 0 ⇒ overflow

(src and dst aligned on 32bits)

Robust Reachability Constraints

Definition

• Predicate on program input sufficient to have
Robust Reachability

Advantages

• Part of the Robust Reachability framework

• Allows precise characterization

19/01/2024Inference of Robust Reachability Constraints 6

∃ ∗ 𝑠𝑟𝑐, ∀𝑠𝑟𝑐,𝑑𝑠𝑡, 𝑠𝑟𝑐% 32 = 0 ∧ 𝑑𝑠𝑡% 32 = 0 ⇒ overflow

(src and dst aligned on 32bits)

Robust Reachability Constraints

Definition

• Predicate on program input sufficient to have
Robust Reachability

Advantages

• Part of the Robust Reachability framework

• Allows precise characterization

How to Automatically Generate Such Constraints?

19/01/2024Inference of Robust Reachability Constraints 6

∃ ∗ 𝑠𝑟𝑐, ∀𝑠𝑟𝑐,𝑑𝑠𝑡, 𝑠𝑟𝑐% 32 = 0 ∧ 𝑑𝑠𝑡% 32 = 0 ⇒ overflow

(src and dst aligned on 32bits)

Contributions

19/01/2024Inference of Robust Reachability Constraints 7

• New program-level abduction algorithm for Robust Reachability Constraints Inference
• Extends and generalizes Robustness, made more practical
• Adapts and generalizes theory-agnostic logical abduction algorithm
• Efficient optimization strategies for solving practical problems

• Implementation of a restriction to Reachability and Robust Reachability
• First evaluation of software verification and security benchmarks
• Detailed vulnerability characterization analysis in a fault injection security scenario

Target: Computation of 𝝓 such that ∃ 𝑪 𝒄𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒅 𝒗𝒂𝒍𝒖𝒆,∀ 𝑼 𝒖𝒏𝒄𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒅 𝒗𝒂𝒍𝒖𝒆,𝝓 𝑪,𝑼 ⟹ 𝒓𝒆𝒂𝒄𝒉(𝑪,𝑼)

Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

• Find missing precondition of unexplained goal

• Compute 𝜙𝑀 in 𝜙𝐻 ∧ 𝜙𝑀 ⊨ 𝜙𝐺

19/01/2024Inference of Robust Reachability Constraints 8

Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

• Find missing precondition of unexplained goal

• Compute 𝜙𝑀 in 𝜙𝐻 ∧ 𝜙𝑀 ⊨ 𝜙𝐺

Theory-Specific Abduction
[Bienvenu 2007, Tourret et. al. 2017]

• Handle a single theory

Specification Synthesis
[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

• White-box program analysis

19/01/2024Inference of Robust Reachability Constraints 8

Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

• Find missing precondition of unexplained goal

• Compute 𝜙𝑀 in 𝜙𝐻 ∧ 𝜙𝑀 ⊨ 𝜙𝐺

Theory-Specific Abduction
[Bienvenu 2007, Tourret et. al. 2017]

• Handle a single theory

Specification Synthesis
[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

• White-box program analysis

Theory-Agnostic First-order Abduction
[Echenim et al. 2018, Reynolds et al. 2020]

• Efficient procedures

• Genericity

19/01/2024Inference of Robust Reachability Constraints 8

Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

• Find missing precondition of unexplained goal

• Compute 𝜙𝑀 in 𝜙𝐻 ∧ 𝜙𝑀 ⊨ 𝜙𝐺

Theory-Specific Abduction
[Bienvenu 2007, Tourret et. al. 2017]

• Handle a single theory

Specification Synthesis
[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

• White-box program analysis

Theory-Agnostic First-order Abduction
[Echenim et al. 2018, Reynolds et al. 2020]

• Efficient procedures

• Genericity

Our Proposal: Adapt Theory-Agnostic Abduction
Algorithm to Compute Program-level Robust
Reachability Constraints

• Program-level

• Generic

19/01/2024Inference of Robust Reachability Constraints 8

Our Solution (Framework)

19/01/2024Inference of Robust Reachability Constraints 9

Inference Language
(Set of Candidates)

Program

Target Trace Predicate

Memory Partition

Abduction Procedure

Our Solution (Framework)

19/01/2024Inference of Robust Reachability Constraints 9

Inference Language
(Set of Candidates)

Program

Target Trace Predicate

Memory Partition

Abduction Procedure

Our Solution (Framework)

19/01/2024Inference of Robust Reachability Constraints 9

Inference Language
(Set of Candidates)

Program

Target Trace Predicate

Memory Partition

Abduction Procedure

select candidate

Our Solution (Framework)

19/01/2024Inference of Robust Reachability Constraints 9

Inference Language
(Set of Candidates)

Program

Target Trace Predicate

Memory Partition

Abduction Procedure

select candidate

test candidate

solution

not solution

Robust Reachability Constraints

Our Solution (Framework)

19/01/2024Inference of Robust Reachability Constraints 9

Inference Language
(Set of Candidates)

Program

Target Trace Predicate

Memory Partition

Abduction Procedure

select candidate

test candidate

solution

not solution

Robust Reachability Constraints
ad

di
tio

na
lin

fo

Our Solution (Framework)

19/01/2024Inference of Robust Reachability Constraints 9

Inference Language
(Set of Candidates)

Program

Target Trace Predicate

Memory Partition

Abduction Procedure

select candidate

test candidate

solution

not solution

Robust Reachability Constraints
ad

di
tio

na
lin

fo

Oracles on Trace Properties

• Robust property queries

• Non-robust property queries

• Can accomodate various tools
(SE, BMC, Incorrectness, …)

Our Solution (Baseline Algorithm)

Theorem:

• Termination when the oracles terminate

• Correction at any step when the oracles are
correct

• Completeness w.r.t. the inference language
when the oracles are complete

19/01/2024Inference of Robust Reachability Constraints 10

Our Solution (Baseline Algorithm)

Theorem:

• Termination when the oracles terminate

• Correction at any step when the oracles are
correct

• Completeness w.r.t. the inference language
when the oracles are complete

• Under correction and completeness of the
oracles
• Minimality w.r.t. the inference language
• Weakest constraint generation when

expressible

19/01/2024Inference of Robust Reachability Constraints 10

Making it Work

The Issue

• Exhaustive exploration of the inference language is inefficient

Key Strategies for Efficient Exploration

• Necessary constraints

• Counter-examples for Robust Reachability

• Ordering candidates

19/01/2024Inference of Robust Reachability Constraints 11

Making it Work: Necessary Constraints

The Idea

• Find and store Necessary Constraints

19/01/2024Inference of Robust Reachability Constraints 12

candidate1 not sufficient

necessary

Making it Work: Necessary Constraints

The Idea

• Find and store Necessary Constraints

Usage

• Build a candidate solution faster

• Additional information on the bug

• Emulate unsat core usage in the context of oracles

19/01/2024Inference of Robust Reachability Constraints 12

candidate1 not sufficient

necessary

∧ candidate2 …candidate1

Making it Work: Counter-Examples

The Idea

• Reuse information from failed candidate checks

The Issue

• Non Robustness (∀∃ quantification) does not give
us counter-examples

19/01/2024Inference of Robust Reachability Constraints 13

candidate1 not sufficient

Making it Work: Counter-Examples

The Idea

• Reuse information from failed candidate checks

The Issue

• Non Robustness (∀∃ quantification) does not give
us counter-examples

Proposal

• Use a second trace property that ensures the bug
does not arise

• Prune using these counter-examples

19/01/2024Inference of Robust Reachability Constraints 13

candidate1 not sufficient

counter-example෠𝜓

candidate2 SAT?
yes skip

…

no

Experimental Evaluation

Implementation

• (Robust) Reachability on binaries

• Tool: BINSEC [Djoudi and Bardin 2015]

• Tool: BINSEC/RSE [Girol at. al. 2020]

Prototype

• PyAbd, Python implementation of the procedure

• Candidates: Conjunctions of equalities and
disequalities on memory bytes

Research Questions

1) Can we compute non-trivial constraints?

2) Can we compute weakest constraints?

3) What are the algorithmic performances?

4) Are the optimization effective?

Benchmarks

• Software verification (SVComp extract + compile)

• Security evaluation (FISSC, fault injection)

19/01/2024Inference of Robust Reachability Constraints 14

Results: Generating Constraints (RQ1, RQ2)

Inference languages

• (dis-)Equality between memory bytes

• + Inequality between memory bytes → More expressivity but more candidates

We can find more reliable bugs than Robust Symbolic Execution

19/01/2024Inference of Robust Reachability Constraints 15

Significantly improves the
capabilities of the method

Each strategy matters

Results: Influence of the ‘Efficient Strategies’ (RQ4)

19/01/2024Inference of Robust Reachability Constraints 16

Results: Vulnerability Characterization on a Fault-
Injection Benchmark

Our Solution:

• Finds and characterize vulnerabilities
in-between Reachability and Robust
Reachability

19/01/2024Inference of Robust Reachability Constraints 17

Conclusion

Conclusion

• We propose a precondition inference technique to
improve the capabilities of Robust Reachability

• We adapt theory-agnostic abduction algorithm to ∃∀
formulas and apply it at program-level through oracles

• We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

19/01/2024Inference of Robust Reachability Constraints 18

(hiring)

Conclusion

Conclusion

• We propose a precondition inference technique to
improve the capabilities of Robust Reachability

• We adapt theory-agnostic abduction algorithm to ∃∀
formulas and apply it at program-level through oracles

• We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

Preconditions explain the vulnerability
Can be reused for understanding, counting, comparing

19/01/2024Inference of Robust Reachability Constraints 18

(hiring)

Conclusion

Conclusion

• We propose a precondition inference technique to
improve the capabilities of Robust Reachability

• We adapt theory-agnostic abduction algorithm to ∃∀
formulas and apply it at program-level through oracles

• We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

Preconditions explain the vulnerability
Can be reused for understanding, counting, comparing

19/01/2024Inference of Robust Reachability Constraints 18

(hiring)

Questions?

