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Programs have bugs

Bugs can be exploited → Vulnerabilities

We need automated methods to detect bugs

Automatic Bug Detection
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False Positive in Practice
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Example

Symbolic Execution?

• Very easy: a = 0, b = 0

The Issue

• Depends on uncontrolled initial value (b)

• The formal result is not reliably reproducible

Practical Causes of Unreliable Assignments

• Interaction with the environment

• Stack canaries

• Uninitialized memory/register dependency

• Choice of undefined behaviors

We need to characterize the replicability of bugs



Robust Reachability [Girol et. al., CAV 2020]
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Idea

• Partition of the input space
• What is controlled
• What is uncontrolled

Focus: Reliable Bugs

• Controlled input that triggers the bug independently of 
the value of the uncontrolled inputs

Extension of Reachability and Symbolic Execution

∃ a         ∀ b error

controlled uncontrolled

Not Robustly Reachable



Example 3

• Memcopy with slow and fast path

• Fast path is buggy but slow path is not

The Remaining Problem
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Example 3

• Memcopy with slow and fast path

• Fast path is buggy but slow path is not

• Reachability: Vulnerable

• Robust Reachability: Not reliably triggerable
• Taking the fast path depends on uncontrolled initial values

The bug is serious but not robustly reachable – The concept is too strong

The Remaining Problem
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∃ ∗ 𝑠𝑟𝑐, ∀𝑠𝑟𝑐,𝑑𝑠𝑡, overflow?

Not Robustly Reachable

safe

buggy

memory alignment constraint



Robust Reachability Constraints

Definition

• Predicate on program input sufficient to have 
Robust Reachability
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Definition

• Predicate on program input sufficient to have 
Robust Reachability

Advantages

• Part of the Robust Reachability framework

• Allows precise characterization
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Robust Reachability Constraints

Definition

• Predicate on program input sufficient to have 
Robust Reachability

Advantages

• Part of the Robust Reachability framework

• Allows precise characterization

How to Automatically Generate Such Constraints?
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Contributions
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• New program-level abduction algorithm for Robust Reachability Constraints Inference
• Extends and generalizes Robustness, made more practical
• Adapts and generalizes theory-agnostic logical abduction algorithm
• Efficient optimization strategies for solving practical problems

• Implementation of a restriction to Reachability and Robust Reachability
• First evaluation of software verification and security benchmarks
• Detailed vulnerability characterization analysis in a fault injection security scenario

Target: Computation of 𝝓 such that ∃ 𝑪 𝒄𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒅 𝒗𝒂𝒍𝒖𝒆,∀ 𝑼 𝒖𝒏𝒄𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒅 𝒗𝒂𝒍𝒖𝒆,𝝓 𝑪,𝑼 ⟹ 𝒓𝒆𝒂𝒄𝒉(𝑪,𝑼)



Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

• Find missing precondition of unexplained goal

• Compute 𝜙𝑀 in 𝜙𝐻 ∧ 𝜙𝑀 ⊨ 𝜙𝐺
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Abductive Reasoning
[Josephson and Josephson, 1994]

• Find missing precondition of unexplained goal

• Compute 𝜙𝑀 in 𝜙𝐻 ∧ 𝜙𝑀 ⊨ 𝜙𝐺

Theory-Specific Abduction 
[Bienvenu 2007, Tourret et. al. 2017]

• Handle a single theory

Specification Synthesis
[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

• White-box program analysis

Theory-Agnostic First-order Abduction 
[Echenim et al. 2018, Reynolds et al. 2020]

• Efficient procedures

• Genericity

Our Proposal: Adapt Theory-Agnostic Abduction 
Algorithm to Compute Program-level Robust
Reachability Constraints

• Program-level

• Generic
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Our Solution (Framework)
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Oracles on Trace Properties

• Robust property queries

• Non-robust property queries

• Can accomodate various tools
(SE, BMC, Incorrectness, …)



Our Solution (Baseline Algorithm)

Theorem:

• Termination when the oracles terminate

• Correction at any step when the oracles are 
correct

• Completeness w.r.t. the inference language
when the oracles are complete
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Our Solution (Baseline Algorithm)

Theorem:

• Termination when the oracles terminate

• Correction at any step when the oracles are 
correct

• Completeness w.r.t. the inference language
when the oracles are complete

• Under correction and completeness of the 
oracles
• Minimality w.r.t. the inference language
• Weakest constraint generation when

expressible
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Making it Work

The Issue

• Exhaustive exploration of the inference language is inefficient

Key Strategies for Efficient Exploration

• Necessary constraints

• Counter-examples for Robust Reachability

• Ordering candidates
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Making it Work: Necessary Constraints

The Idea

• Find and store Necessary Constraints
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Making it Work: Necessary Constraints

The Idea

• Find and store Necessary Constraints

Usage

• Build a candidate solution faster

• Additional information on the bug

• Emulate unsat core usage in the context of oracles

19/01/2024Inference of Robust Reachability Constraints 12

candidate1 not sufficient

necessary

∧ candidate2 …candidate1



Making it Work: Counter-Examples

The Idea

• Reuse information from failed candidate checks

The Issue

• Non Robustness (∀∃ quantification) does not give
us counter-examples
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Making it Work: Counter-Examples

The Idea

• Reuse information from failed candidate checks

The Issue

• Non Robustness (∀∃ quantification) does not give
us counter-examples

Proposal

• Use a second trace property that ensures the bug 
does not arise

• Prune using these counter-examples
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candidate1 not sufficient

counter-example෠𝜓

candidate2 SAT?
yes skip

…

no



Experimental Evaluation

Implementation

• (Robust) Reachability on binaries

• Tool: BINSEC [Djoudi and Bardin 2015]

• Tool: BINSEC/RSE [Girol at. al. 2020]

Prototype

• PyAbd, Python implementation of the procedure

• Candidates: Conjunctions of equalities and 
disequalities on memory bytes

Research Questions

1) Can we compute non-trivial constraints?

2) Can we compute weakest constraints?

3) What are the algorithmic performances?

4) Are the optimization effective?

Benchmarks

• Software verification (SVComp extract + compile)

• Security evaluation (FISSC, fault injection)
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Results: Generating Constraints (RQ1, RQ2)

Inference languages

• (dis-)Equality between memory bytes 

• + Inequality between memory bytes                 → More expressivity but more candidates

We can find more reliable bugs than Robust Symbolic Execution
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Significantly improves the 
capabilities of the method

Each strategy matters

Results: Influence of the ‘Efficient Strategies’ (RQ4)
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Results: Vulnerability Characterization on a Fault-
Injection Benchmark

Our Solution:

• Finds and characterize vulnerabilities
in-between Reachability and Robust
Reachability
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Conclusion

Conclusion

• We propose a precondition inference technique to 
improve the capabilities of Robust Reachability

• We adapt theory-agnostic abduction algorithm to ∃∀
formulas and apply it at program-level through oracles

• We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii
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Questions?


