Quantitative Robustness and QRSE

Reduction to *f-e-majsat* 0000

Experimental Results

Conclusion Bonus

Quantitative Robustness for Vulnerability Assessment

Guillaume Girol - Guilhem Lacombe - Sébastien Bardin

Introduction	Quantitative Robustness and QRSE	Reduction to f-e-majsat
●00000000	0000	0000

Experimental Results

Conclusion Bonus

Introduction

Quantitative Robustness and QRSE

Reduction to *f-e-majsat*

Experimental Results

Conclusion

Bonus

Conclusion Bonus

Bug-finding techniques are really good at finding bugs!

Fuzzing

Other successful techniques

- symbolic execution (Klee, Angr, Binsec)
- abstract interpretation (Frama-C, Infer)

151

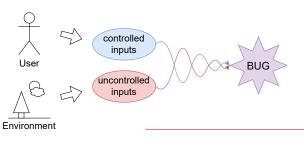
Quantitative Robustness and QRSE

Reduction to *f-e-majsat* 0000

Experimental Results

Conclusion Bonus

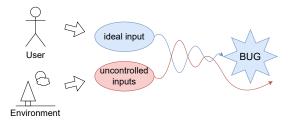
Not all bugs are created equal


Bug impacts

infinite loop, memory corruption...

Bug reproducibility

dependency on uncontrolled inputs \Rightarrow randomness, stack canaries, scheduling, undefined behaviour, uninitialized memory...


Experimental Results

Conclusion Bonus

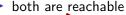
Evaluating bug reproducibility with robust reachability Girol et al., CAV 2021, FMSD 2022

Robust reachability

 \exists a controlled input triggering the bug \forall uncontrolled input

in the real-world: CVE-2019-20839, CVE-2019-15900, CVE-2019-19307...

Quantitative Robustness and QRSE

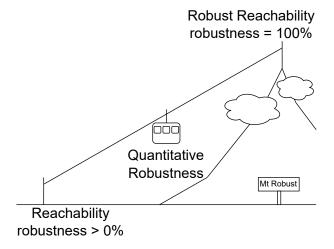

Reduction to *f-e-majsat* 0000

Experimental Results

Conclusion Bonus

What about mostly-robust bugs?

Two different bugs **int** controlled = INPUT: **int** uncontrolled = NONDET: if (uncontrolled - controlled == 1) //bug 1 if (uncontrolled & controlled == 1) //bug 2 **bug 1:** extremely unlikely $\left(\frac{1}{2^{31}}\right)$ **bug 2:** very likely with controlled = 1 $\left(\frac{1}{2}\right)$


none are robustly reachable

Conclusion Bonus

We need a quantitative measure of robustness

Experimental Results

Conclusion

Bonus

Goals and challenges

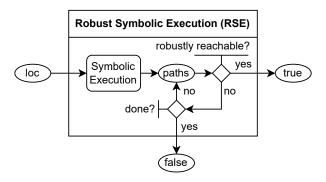
Goals

- formally define quantitative robustness
- design algorithms to measure it
- automation + scalability

Challenges

- scalability of quantitative analysis (ex: model counting)
- improve performance over robust symbolic execution (RSE)

Introduction	Quantitative Robustness and QRSE	Reduction to <i>f-e-majsat</i>
000000000	0000	0000

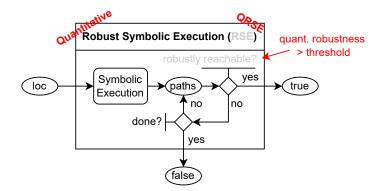

Experimental Results

s Conclusion

Bonus

Our approach

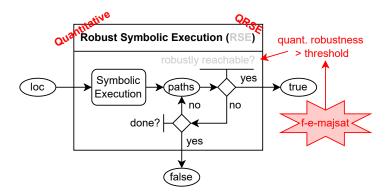
robust reachability



Introduction	Quantitative Robustness and QRSE	Reduction to <i>f-e-majsat</i>	Experimental Results	Conclusion	Bonus
0000000●0		0000	00000	000	000

Our approach

robust reachability \Rightarrow quantitative robustness



Introduction	Quantitative Robustness and QRSE	Reduction to <i>f-e-majsat</i>	Experimental Results	Conclusion	Bonus
0000000●0		0000	00000	000	000

Our approach

robust reachability \Rightarrow quantitative robustness

f-e-majsat: counting + optimization problem related to Al \sim unknown in security

Experimental Results

Conclusion

Bonus

Contributions

Quantitative robustness formal definition + theorems

QRSE

- quantitative version of RSE
- path-wise quantitative robustness reduced to *f-e-majsat* security application of *f-e-majsat*
- Relax, a new approximate f-e-majsat solving algorithm

Implementation

- BINSEC/QRSE: binary-level QRSE
- Popcon: front-end for f-e-majsat solvers (bitvectors)
- experiments with realistic security-related case studies

Quantitative Robustness and QRSE $_{\rm \odot OOO}$

Reduction to *f-e-majsat* 0000

Experimental Results

Conclusion Bonus

Introduction

$\label{eq:Quantitative Robustness and QRSE} \end{tabular}$

Reduction to *f-e-majsat*

Experimental Results

Conclusion

Bonus

Experimental Results

Conclusion Bonus

Defining Quantitative robustness

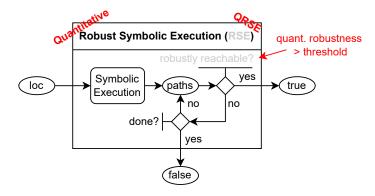
Threat model (Girol et al., CAV 2021)

program $\mathcal{P}\textsc{,}$ targeted location loc

- controlled inputs $\in \mathcal{A}$ countable
- uncontrolled inputs $\in \mathcal{X}$ countable, uniformly distributed

Quantitative robustness (finite input space)

max proportion of x reaching loc for a fixed a


$$q_{loc} \triangleq \frac{\max_{a \in \mathcal{A}} |\{x \in \mathcal{X} \text{ s.t. } \mathcal{P}(a,x) \text{ reaches } loc\}|}{|\mathcal{X}|}$$

(read the paper for the infinite input space definition)

Introduction	Quantitative Robustness and QRSE	Reduction to <i>f-e-majsat</i>	Experimental Results	Conclusion	Bonus
000000000		0000	00000	000	000

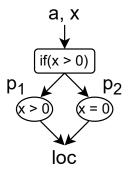
From RSE to QRSE

QRSE+: QRSE with path merging

🕨 correctness: 🗸

list

▶ k-completeness (path lengths $\leq k$): QRSE+ ✓

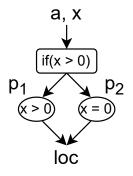

Experimental Results

Conclusion Bonus

Path merging and deduction power

Path merging

- multi-path constraint
- \blacktriangleright $p_1 \lor p_2 \sim true$
- ▶ added complexity ⇒ scalability issues


Experimental Results

Conclusion Bonus

Path merging and deduction power

Path merging

- multi-path constraint
- ▶ $p_1 \lor p_2 \sim true$
- ► added complexity ⇒ scalability issues
- SE: deduction power = reach(p₁), reach(p₂), reach(p₁ ∨ p₂)
- ▶ **RSE:** deduction power $\nearrow \nearrow \nearrow$ $\neg RSE(p_1), \neg RSE(p_2), RSE(p_1 \lor p_2)$
- ▶ QRSE: deduction power QRSE(p₁) > 99% ⇒ q_{loc} > 99% + guarantees on robustness lower bound after branches

Experimental Results

Conclusion 000

on Bonus

Introduction

Quantitative Robustness and QRSE

Reduction to *f-e-majsat*

Experimental Results

Conclusion

Bonus

What quantitative robustness is not

context: binary analysis \Rightarrow bitvectors \Rightarrow finite input space

Model counting (#sat)

- > application: probabilistic reachability
- here: # reaching inputs
- issue: controlled inputs are not random

Projected model counting

- > application: quantitative information flow, channel capacity...
- **here:** # reaching uncontrolled inputs (any controlled inputs)
- issue: choice of best controlled input

(also not weighted maxSMT)

Bonus

Introduction Quantitative Robustness and QRSE

Reduction to *f-e-majsat* 0000

Experimental Results Conclusion Bonus

What quantitative robustness is

f-e-majsat (Littman et al., JAIR 1998)

f: propositional formula

$$femajsat_{\mathcal{A}}(f) \triangleq max_{a \in \mathcal{A}} \#(f|_{a})$$

known applications: probabilistic planning, Bayesian networks...

Introduction Quantitative Robustness and QRSE

Reduction to *f-e-majsat* 0000

Experimental Results Conclusion Bonus

What quantitative robustness is

f-e-majsat (Littman et al., JAIR 1998)

f: propositional formula

$$\textit{femajsat}_{\mathcal{A}}(f) \triangleq \textit{max}_{a \in \mathcal{A}} \#(f|_a)$$

known applications: probabilistic planning, Bayesian networks...

Existing algorithms

Algorithm	Author(s)	Conference
DC-SSAT	Majercik et al.	AAAI 2005
Constrained	Huang	ICAPS 2006
Complan	Huang	ICAPS 2006
Complan+	Pipatsrisawat et al.	IJCAI 2009
MaxCount	Fremont et al.	AAAI 2017
SsatABC	Lee et al.	IJCAI 2018

 \Rightarrow untested on quantitative robustness (-like) instances

Efficient approximation of *f-e-majsat*

Basic exact approach

- compile constraints to decision-DNNF form
- additional constraint: $(\mathcal{A}, \mathcal{X})$ -layering
- model counting in linear time (Darwiche, 2001)
- issue: compilation is hard ($|\mathcal{X}| \nearrow \Rightarrow$ speed \searrow)

Our Relax algorithm

- relaxation: $(\mathcal{A} \cup \mathcal{R}, \mathcal{X} \setminus \mathcal{R})$ -layering
- interval
- $\blacktriangleright \ \textit{Relax}_{-}(f) \leq \textit{femajsat}_{\mathcal{A}}(f) \leq \textit{Relax}_{+}(f) \leq 2^{|\mathcal{R}|} \ \textit{Relax}_{-}(f)$

Introduction	Quantitative	Robustness	and	QRSE
000000000	0000			

Experimental Results

Conclusion Bonus

Introduction

- Quantitative Robustness and QRSE
- Reduction to *f-e-majsat*
- Experimental Results
- Conclusion
- Bonus

Experimental Results

Conclusion Bonus

Research questions

- Is QRSE more precise than RSE in practice?
- Can we avoid path merging?
- What are the best f-e-majsat solvers for quantitative robustness?

Quantitative Robustness and QRSE

Reduction to *f-e-majsat* 0000

Experimental Results

Conclusion Bonus

Is QRSE more precise than RSE in practice?

RSE benchmark (> 20%?)

Method	OK	FN	Т
RSE	37	9	2
RSE+	40	6	2
QRSE	47	0	1
QRSE+	46	0	2

Fault analysis benchmark

q _{loc}	SE	RSE	QRSE
100%	-	0/0	0/0
>20%	-	-	2/2
[10 ⁻⁶ ; 20%]	-	-	10/10
$< 10^{-6}$	-	-	27/27
> 0%	39/39	-	39/39

no more false negatives!

 distinguishes nearly robust from nearly unreproducible

Experimental Results

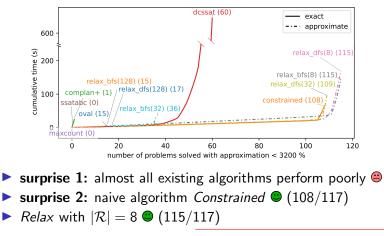
Conclusion Bonus

Can we avoid path merging?

Case study: stack buffer overflow in libvncserver (CVE-2019-20839)

canary	SE	RSE	RSE+	QRSE	QRSE+
no	> 0%	×	1	1 path $>$ 20% 🗸	> 20% 🗸
yes	> 0%	ō 🗡	ō 🗙	all paths $<$ 20% 🗸	Ö 🗡

\Rightarrow useful results without path merging!



15

Conclusion Bonus

What are the best f-e-majsat solvers for quantitative robustness?

Benchmark with 117 formulas from previous experiments

Introduction	Quantitative	Robustness	and	QRSE
000000000	0000			

Experimental Results

Conclusion Bonus

Introduction

- Quantitative Robustness and QRSE
- Reduction to *f-e-majsat*
- **Experimental Results**

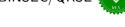
Conclusion

Bonus

Conclusion

Introduction

Bug replicability is important!


Quantitative Robustness and QRSE

• Quantitative robustness \Rightarrow precise indicator of replicability

Reduction to f-e-majsat

- Measured with QRSE, reduction to *f-e-majsat*
- best algorithms: Constrained and Relax

► BINSEC/QRSE

Experimental Results

Conclusion 000 Bonus

Experimental Results

Conclusion

Bonus

Conclusion

Introduction

- Bug replicability is important!
- Quantitative robustness \Rightarrow precise indicator of replicability
- Measured with QRSE, reduction to f-e-majsat
- best algorithms: Constrained and Relax

Possible improvements

concept to handle	Definitions	SE	Solver
non-uniform input distrib.	easy	hard	hard
hyper-safety properties	easy	easy	easy
hyperproperties, liveness	hard	hard	hard
string & LIA theories	ok	medium	hard
dense input spaces	easy	hard	hard

Introduction Quanti

Quantitative Robustness and QRSE

Reduction to *f-e-majsat*

Experimental Results

Conclusion

Bonus

The end

Thank you for your attention. Any questions?

Experimental Results

Conclusion 000 Bonus

k-completeness of QRSE+

k-completeness

- $P|^{\leq k}$ = restriction of P to traces of length $\leq k$ k-complete for $P \iff$ complete for $P|^{\leq k}$
 - ▶ 0 or 1 path of length ≤ k per input ⇒ finite number of finite paths
 - QRSE+ can explore and merge them all
 ⇒ constraint for reaching *loc* in P|^{≤k} ⊂ final constraint

►
$$q_{P|\leq^k,loc} \geq Q \Rightarrow QRSE+(P, loc) \geq Q$$

(assuming no timeouts or errors)

Introduction	Quantitative Robustness and QRSE	Reduction to <i>f-e-majsat</i>	Experimental Results	Conclusion	Bonus
000000000	0000	0000	00000	000	000

Branching theorem

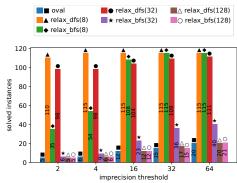
Quantitative robustness pseudo-conservation $p_1, ..., p_n$ paths in $P, P|_{p_1,...,p_n} = \text{restriction of } P \text{ to } p_1, ..., p_n$ $\exists i \text{ s.t. } q_{P|_{p_i,loc}} \geq \frac{1}{n} q_{P|_{p_1,...,p_n,loc}}$

idea of the proof:

large show
$$q_{P|^{p,p'}, \mathit{loc}} \leq q_{P|^p, \mathit{loc}} + q_{P|^{p'}, \mathit{loc}}$$

► contradiction:
$$q_{P|^{p_i},loc} < \frac{1}{n}q_{P|^{p_1,...,p_n},loc} \forall i$$

 $\Rightarrow q_{P|^{p_1,...,p_n},loc} < n \times \frac{1}{n}q_{P|^{p_1,...,p_n},loc}$



Experimental Results

Conclusion Bonus

Practical precision of approximate solvers

Solved problems function of imprecision threshold

• Relax: $|\mathcal{R}| = 8$ with 4x imprecision $\Rightarrow \bigcirc$

 better than theoretical bounds!

