
Fine-Grained
Coverage-Based Fuzzing
Wei-Cheng Wu 1,2 Bernard Nongpoh 1 Marwan Nour 1

Michaël Marcozzi 1 Sébastien Bardin 1 Christophe Hauser 2

1

2

to appear in
ACM Transactions On Software Engineering and Methodology

This work has been mainly carried out by...

30/05/2023 Fine-Grained Coverage-Based Fuzzing 2/51

Wei-Cheng Wu
Ph.D. student

(also @ USC in Los Angeles)

Marwan Nour
M.Sc. Intern

(from Ecole Polytechnique)

Dr. Benard Nongpoh
Postdoc

(now @ Qualcomm)

About me // Dr. Michaël Marcozzi

30/05/2023 Fine-Grained Coverage-Based Fuzzing 3/51

• Permanent researcher @ CEA LIST, Université Paris-Saclay

• My research group focus on software analysis for security

• Invited lecturer @ ENSTA, Institut Polytechnique de Paris

Outline

1. Context: coverage-based fuzzing

2. Problem: branch coverage is shallow

3. Goal: enable and evaluate fuzzer guidance with fine-grained metrics

4. Proposal: finer-grained objectives as new branches in fuzzed code

5. Experimental evaluation of impact

6. Conclusions

30/05/2023 Fine-Grained Coverage-Based Fuzzing 4/51

Fuzzing [1/2]

Fuzzing a program (for security) is…

1. Feed program with massive number of

automatically generated inputs

2. Trigger so observable failures (e.g. crashes)

3. Analyse failures to reveal program

vulnerabilities to fix or exploit

Fine-Grained Coverage-Based Fuzzing 5/5130/05/2023

buffer-overflow.c

buffer-overflow.c

Fuzzing [1/2]

Fuzzing a program (for security) is…

1. Feed program with massive number of

automatically generated inputs

2. Trigger so observable failures (e.g. crashes)

3. Analyse failures to reveal program

vulnerabilities to fix or exploit

Fine-Grained Coverage-Based Fuzzing 6/5130/05/2023

Fuzzing [1/2]

Fuzzing a program (for security) is…

1. Feed program with massive number of

automatically generated inputs

2. Trigger so observable failures (e.g. crashes)

3. Analyse failures to reveal program

vulnerabilities to fix or exploit

Fine-Grained Coverage-Based Fuzzing 7/5130/05/2023

buffer-overflow.c

Fuzzing [2/2]
Fuzzing is popular (why? easy to understand/use, scalable, effective?)…

• Many recent research papers on improving fuzzers

• “At Google, fuzzing has uncovered tens of thousands of bugs” [Metzman et al., 2021]

• Fuzzers have found many CVE vulnerabilities in real programs

Fine-Grained Coverage-Based Fuzzing 8/5130/05/2023

Number of fuzzing papers/year [Liang et al., 2018] Some 2019 CVEs found by AFL++ fuzzer [AFL++ website]

Coverage-based fuzzing [1/3]

Many fuzzers use branch coverage to guide input generation…

• New inputs are generated by mutating the former inputs that improved branch coverage

• The rationale of this heuristic is…

• The inputs that improved branch coverage uncovered new interesting program behaviours

• Mutating these inputs should explore these new behaviours even more

Fine-Grained Coverage-Based Fuzzing 9/5130/05/2023

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop…

Fine-Grained Coverage-Based Fuzzing 10/5130/05/2023

PUT

Monitor

Seed
inputs
database

Test
input

Seed
input

Mutations

Branch coverage
improved?

Failure
observed?

Yes

Yes Analyse possible
vulnerability!

(User-provided)
Initial inputs

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop…

Fine-Grained Coverage-Based Fuzzing 11/5130/05/2023

Seed
inputs
database

(User-provided)
Initial inputs

More precisely, coverage-based fuzzers implement the following loop…

Coverage-based fuzzing [2/3]

Fine-Grained Coverage-Based Fuzzing 12/5130/05/2023

Seed
inputs
database

Test
input

Seed
input

Mutations

(User-provided)
Initial inputs

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop…

Fine-Grained Coverage-Based Fuzzing 13/5130/05/2023

PUT

Monitor

Seed
inputs
database

Test
input

Seed
input

Mutations

(User-provided)
Initial inputs

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop…

Fine-Grained Coverage-Based Fuzzing 14/5130/05/2023

PUT

Monitor

Seed
inputs
database

Test
input

Seed
input

Mutations

Failure
observed?

Yes Analyse possible
vulnerability!

(User-provided)
Initial inputs

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop…

Fine-Grained Coverage-Based Fuzzing 15/5130/05/2023

PUT

Monitor

Seed
inputs
database

Test
input

Seed
input

Mutations

Branch coverage
improved?

Failure
observed?

Yes

Yes Analyse possible
vulnerability!

(User-provided)
Initial inputs

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop…

Fine-Grained Coverage-Based Fuzzing 16/5130/05/2023

PUT

Monitor

Seed
inputs
database

Test
input

Seed
input

Mutations

Branch coverage
improved?

Failure
observed?

Yes

Yes Analyse possible
vulnerability!

(User-provided)
Initial inputs

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop…

Fine-Grained Coverage-Based Fuzzing 17/5130/05/2023

PUT

Monitor

Seed
inputs
database

Test
input

Seed
input

Mutations

Branch coverage
improved?

Failure
observed?

Yes

Yes Analyse possible
vulnerability!

(User-provided)
Initial inputs

The loop terminates when the fuzzing budget is over!

Yet, the fuzzing loop alone requires a high budget to find bugs in “difficult” branches…

• A branch in fuzzed code is “difficult” when only activated by tiny fraction of inputs

• Code analyses enable fuzzers to be faster at finding inputs entering difficult branches…

• (Taint tracking) Track comparisons between inputs and constants in fuzzed code (e.g. AFL++ fuzzer)

• (Symbolic execution) Derive and solve path constraints to enter barely covered branches (e.g. Qsym fuzzer)

Fine-Grained Coverage-Based Fuzzing 18/5130/05/2023

Coverage-based fuzzing [3/3]

Outline

1. Context: coverage-based fuzzing

2. Problem: branch coverage is shallow

3. Goal: enable and evaluate fuzzer guidance with fine-grained metrics

4. Proposal: finer-grained objectives as new branches in fuzzed code

5. Experimental evaluation of impact

6. Conclusions

30/05/2023 Fine-Grained Coverage-Based Fuzzing 19/51

Fine-grained coverage metrics [1/2]

• Branch coverage is a shallow metric of interesting program behaviours

• Fuzzers may thus ignore inputs that were interesting to find and mutate

• Software testing researchers have for long proposed finer-grained metrics

• Idea: guide fuzzers using these control-flow, data-flow or mutation metrics

Fine-Grained Coverage-Based Fuzzing 20/5130/05/2023

Fine-grained coverage metrics [2/2]

For example, MCC metric considers subtler variations of program logic…

Fine-Grained Coverage-Based Fuzzing 21/5130/05/2023

if (engine_speed > 0 || wheels_speed > 0) {
// Lock door

} else { … }

program

Branch Coverage
cover both branches

Coverage objective Satisfying input

Take THEN branch
engine_speed = 5
wheels_speed = 0

Take ELSE branch
engine_speed = 0
wheels_speed = 0

Multiple Condition Coverage (MCC)
cover whole truth table

Coverage objective Satisfying input

true || true
engine_speed = 5
wheels_speed = 5

true || false
engine_speed = 5
wheels_speed = 0

false || true
engine_speed = 0
wheels_speed = 5

false || false
engine_speed = 0
wheels_speed = 0

State of the art

• Early research exists for a specific fine-grained metric in a specific fuzzer

• Yet, no clear and general idea of what practical impact is

• Huge effort needed to support all fine-grained metrics in all legacy fuzzers

Fine-Grained Coverage-Based Fuzzing 22/5130/05/2023

Outline

1. Context: coverage-based fuzzing

2. Problem: branch coverage is shallow

3. Goal: enable and evaluate fuzzer guidance with fine-grained metrics

4. Proposal: finer-grained objectives as new branches in fuzzed code

5. Experimental evaluation of impact

6. Conclusions

30/05/2023 Fine-Grained Coverage-Based Fuzzing 23/51

Challenges of guiding fuzzers with finer-grained metrics

1. Harness the wild variety of legacy fuzzers and fine-grained metrics…

Provide a runtime guidance mechanism that works without modifying legacy fuzzers:

• Activate coverage objectives from most fine-grained metrics for seed selection

• Trigger search for inputs that satisfy difficult fine-grained coverage objectives

2. Evaluate impact of fine-grained metrics over legacy fuzzers performance

Fine-Grained Coverage-Based Fuzzing 24/5130/05/2023

Outline

1. Context: coverage-based fuzzing

2. Problem: branch coverage is shallow

3. Goal: enable and evaluate fuzzer guidance with fine-grained metrics

4. Proposal: finer-grained objectives as new branches in fuzzed code

5. Experimental evaluation of impact

6. Conclusions

30/05/2023 Fine-Grained Coverage-Based Fuzzing 25/51

Principle [1/3]

We guide legacy (branch) fuzzers by transforming the fuzzed program…

• Objectives from most metrics can be made explicit as assertions in the fuzzed code

• Thus, we add a no-op branch (if guarded by the assertion predicate) for each assertion

Fine-Grained Coverage-Based Fuzzing 26/5130/05/2023

[Bardin et al., 2021]

Principle [2/3]

Fine-Grained Coverage-Based Fuzzing 27/5130/05/2023

Multiple Condition Coverage (MCC)
cover whole truth table

Coverage objective Satisfying input

true || true
engine_speed = 5
wheels_speed = 5

true || false
engine_speed = 5
wheels_speed = 0

false || true
engine_speed = 0
wheels_speed = 5

false || false
engine_speed = 0
wheels_speed = 0

+
if (engine_speed > 0 || wheels_speed > 0) {

// Lock door
} else { … }

program

if (engine_speed > 0 && wheels_speed > 0) {}
if (engine_speed > 0 && wheels_speed <= 0) {}
if (engine_speed <= 0 && wheels_speed > 0) {}
if (engine_speed <= 0 && wheels_speed <= 0) {}

if (engine_speed > 0 || wheels_speed > 0) {
// Lock door

} else { … }

transformed program

Principle [3/3]

When fuzzing the transformed program with a legacy (branch) fuzzer…

• …inputs covering the fine-grained objectives will effortlessly be saved as seeds

• …code analyses for difficult branches will help with difficult fine-grained objectives

Fine-Grained Coverage-Based Fuzzing 28/5130/05/2023

We propose a careful no-op branch insertion tool for fine-grained metrics…

• …which avoids corrupting the program semantics (side-effects, spurious crashes)

• …which avoids branches being tampered by compiler or fuzzing harness

Practical contributions

Fine-Grained Coverage-Based Fuzzing30/05/2023 29/51

Simple example of corruption avoidance

Fine-Grained Coverage-Based Fuzzing30/05/2023 30/51

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

program

Simple example of corruption avoidance

Fine-Grained Coverage-Based Fuzzing30/05/2023 31/51

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

program

if (print(“a”) && graph_ok) {}
if (print(“a”) && !graph_ok) {}
if (!print(“a”) && graph_ok) {}
if (!print(“a”) && !graph_ok) {}

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

transformed program for MCC

Simple example of corruption avoidance

Fine-Grained Coverage-Based Fuzzing30/05/2023 32/51

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

program

if (print(“a”) && graph_ok) {}
if (print(“a”) && !graph_ok) {}
if (!print(“a”) && graph_ok) {}
if (!print(“a”) && !graph_ok) {}

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

transformed program for MCC

Prints “a” 4x more!
(semantic change)

Simple example of corruption avoidance

Fine-Grained Coverage-Based Fuzzing30/05/2023 33/51

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

program

if (print(“a”) && graph_ok) {}
if (print(“a”) && !graph_ok) {}
if (!print(“a”) && graph_ok) {}
if (!print(“a”) && !graph_ok) {}

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

transformed program for MCC

Prints “a” 4x more!
(semantic change)

int temp = print(“a”);
if (temp || graph_ok) {

// Proceed
} else { /* Error */ }

pre-processed program

Simple example of corruption avoidance

Fine-Grained Coverage-Based Fuzzing30/05/2023 34/51

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

program

if (print(“a”) && graph_ok) {}
if (print(“a”) && !graph_ok) {}
if (!print(“a”) && graph_ok) {}
if (!print(“a”) && !graph_ok) {}

if (print(“a”) || graph_ok) {
// Proceed

} else { /* Error */ }

transformed program for MCC

Prints “a” 4x more!
(semantic change)

int temp = print(“a”);
if (temp || graph_ok) {

// Proceed
} else { /* Error */ }

pre-processed program

int temp = print(“a”);

if (temp && graph_ok) {}
if (temp && !graph_ok) {}
if (!temp && graph_ok) {}
if (!temp && !graph_ok) {}

if (temp || graph_ok) {
// Proceed

} else { /* Error */ }

transformed pre-processed program for MCC

Possible extensions

No-op branches could be used as a more general guidance mechanism...

• They could also be guarded by predicates written by human developers…

• …or by predicates computed by static analysers (like fault preconditions)

Fine-Grained Coverage-Based Fuzzing 35/5130/05/2023

Outline

1. Context: coverage-based fuzzing

2. Problem: branch coverage is shallow

3. Goal: enable and evaluate fuzzer guidance with fine-grained metrics

4. Proposal: finer-grained objectives as new branches in fuzzed code

5. Experimental evaluation of impact

6. Conclusions

30/05/2023 Fine-Grained Coverage-Based Fuzzing 36/51

We evaluate the impact of fine-grained metrics over fuzzing…

• …by running legacy fuzzers over original programs and transformed versions

• …and comparing throughput, seeds number, covered branches and found bugs

Main evaluation plan

Fine-Grained Coverage-Based Fuzzing30/05/2023 37/51

Main experimental setup

Fine-Grained Coverage-Based Fuzzing 38/5130/05/2023

Original programs

LAVA-M and MAGMA
standard benchmarks

16 C programs
700k LOC with planted bugs

Main experimental setup

Fine-Grained Coverage-Based Fuzzing 39/5130/05/2023

Original programs

LAVA-M and MAGMA
standard benchmarks

16 C programs
700k LOC with planted bugs

Transformed programs
for WM metric

Transformed programs
for MCC metric

We use Multiple Condition Coverage (MCC) and Weak Mutations coverage (WM)
two common fine-grained metrics, notoriously denser than branch coverage

Transformed programs for
WM+MCC metrics

Main experimental setup

Fine-Grained Coverage-Based Fuzzing 40/5130/05/2023

Original programs

LAVA-M and MAGMA
standard benchmarks

16 C programs
700k LOC with planted bugs

Transformed programs
for WM metric

Transformed programs
for MCC metric

AFL++

5 x (24h fuzzing campaign)
per program

to improve statistical significance

Transformed programs for
WM+MCC metrics

Main experimental setup

Fine-Grained Coverage-Based Fuzzing 41/5130/05/2023

Original programs

LAVA-M and MAGMA
standard benchmarks

16 C programs
700k LOC with planted bugs

Transformed programs
for WM metric

Transformed programs
for MCC metric

Transformed programs for
WM+MCC metrics

AFL++

5 x (24h fuzzing campaign)
per program

to improve statistical significance

fuzzer’s throughput

saved seeds

covered branches

planted bugs that were detected

Averaged…

2.5 years of CPU computation happen here

Fine-Grained Coverage-Based Fuzzing 42/5130/05/2023

Consolidated results for AFL++

Fine-Grained Coverage-Based Fuzzing 43/5130/05/2023

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Consolidated results for AFL++

Fine-Grained Coverage-Based Fuzzing 44/5130/05/2023

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Fuzzer quickly saturates on smaller and simpler programs…

Consolidated results for AFL++

Fine-Grained Coverage-Based Fuzzing 45/5130/05/2023

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Fine-grained metrics slow down the fuzzer
(instrumented program is slower and produces more coverage data)

Consolidated results for AFL++

Fine-Grained Coverage-Based Fuzzing 46/5130/05/2023

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Fine-grained metrics improve performance when fuzzer slowdown is low enough
and bug density is high enough (favour local exploration vs. new branch discovery)

Consolidated results for AFL++

Fine-Grained Coverage-Based Fuzzing 47/5130/05/2023

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Hard to know if these conditions
are met before fuzzing
(most of the time, no)… :-(

Fine-grained metrics improve performance when fuzzer slowdown is low enough
and bug density is high enough (favour local exploration vs. new branch discovery)

Outline

1. Context: coverage-based fuzzing

2. Problem: branch coverage is shallow

3. Goal: enable and evaluate fuzzer guidance with fine-grained metrics

4. Proposal: finer-grained objectives as new branches in fuzzed code

5. Experimental evaluation of impact

6. Conclusions

30/05/2023 Fine-Grained Coverage-Based Fuzzing 48/51

Conclusions [1/2]

Adding no-op branches to fuzzed code…

• Can provide runtime guidance to legacy (branch) fuzzers out of the box

• Can encode guidance from most fine-grained coverage metrics

• Requires careful transformation for not breaking semantics (beware of corner cases)

Future work involves…

• Study tighter integration with fuzzer harness and configuration

• Use to encode human directives or bug preconditions from static analysers

30/05/2023 Fine-Grained Coverage-Based Fuzzing 49/51

Conclusions [2/2]

Fine-grained metrics should not replace branch coverage to guide fuzzers…

• Impact is hard to predict before fuzzing and usually neutral or negative

• Other studies (with tight fuzzer/metric integration) tend to confirm this trend

• Yet, they might be useful in small doses, to improve local exploration where needed

Future work involves…

• Investigate favourable circumstances that could make fine-grained metrics profitable

• Notably, use them only in fragile or sensitive parts of the code…

30/05/2023 Fine-Grained Coverage-Based Fuzzing 50/51

Key takeaways

> Carefully adding branches to fuzzed code provides guidance to fuzzers

> Fine-grained metrics slow down fuzzers but favour local exploration

Fine-Grained Coverage-Based Fuzzing

@michaelmarcozzi

www.marcozzi.net

Dr. Michaël Marcozzi
Permanent Researcher

Postdocs, Ph.D. students and interns
Software security and program analysis

30/05/2023 Fine-Grained Coverage-Based Fuzzing 51/51

www.marcozzi.net

