## Active Disjunctive Constraint Acquisition

Grégoire Menguy, CEA LIST, France
Sébastien Bardin, CEA LIST, France
Nadjib Lazaar, Unversity of Montpellier, France Arnaud Gotlieb, Simula, Norway


## Solving problems with constraints



- Find a solution
- Find an optimal solution
- Prove the model

4

## Modeling is hard


( Modeling needs expertise
( How to assist the stakeholder?

## Constraints Acquisition



Different approaches:

- Inductive Logic Programming based [Lallouet et.al., ICTAlIO]
- ModelSeeker [Beldiceanu and Simonis et.al., CP12]
- Conacq based on Version space learning [Bessiere et al. 2017]
(,
Formal foundations
(,
Passive and active learning

Conacq guarantees:
( Termination
(, Queries are informative
C Correctness

## Problem: CA is conjunctive only ...

Hypothesis:
The target concept $C_{T} \subset B$

$$
\neg \quad B=\left\{c_{1}, \ldots, c_{k}\right\}
$$

Conjunctions of constraints from B


## But Most Problems Need Disjunctions

For example

- Program analysis applications like Precondition acquisition (Menguy et al. 2022)

```
int sum(int *arr, uint size) {
    int res = 0;
    for (uint i = 0; i < size; i++)
        res = res + arr[i];
    return res;
}
```

- Biology application with the ultra-metric constraint (Moore and Prosser 2008)

$$
(X>Y=Z) \vee(Y>X=Z) \vee(Z>X=Y) \vee(X=Y=Z)
$$

- and many more


## So how to handle it?

- Rely on expert knowledge
( Adds exactly the good disjunctions
But we do not have such expertise - otherwise, why using CA?

```
```

int sum(int *arr, uint size) {

```
```

int sum(int *arr, uint size) {
int res = 0;
int res = 0;
for (uint i = 0; i < size; i++)
for (uint i = 0; i < size; i++)
res = res + arr[i];
res = res + arr[i];
return res;
return res;
}

```
```

}

```
```

- Add all disjunctions with size up to some threshold ( Which threshold?
( Combinatorial explosion leads to the bias size explosion


## So how to handle it?



## Contributions

- First extension of CA to the disjunctive case
( Extension of representabilty to $V$-representability
- Show how MSS can be used for concept learning
- Propose DCA and show its guarantees
( ) Same as usual $C$
$\longrightarrow$ Outperforms CA based inference (faster and handle more complex concepts)
( Applied on program analysis - handle complex functions like mbedtls


## New Expressiveness Hypothesis

$C_{T}$ is a conjunctions of constraints from B, i.e.,

$$
C_{T} \subset B
$$

$C_{T}$ is a conjunction of disjunctions of B's constraints, i.e.,

$$
C_{T}=\left\{d_{i}\right\}_{i \in I}
$$

$$
d_{i}=\bigvee_{j} a_{j} \quad \text { with } a_{j} \in B
$$

We say that $C_{T}$ is $\bigvee$-representable by B

## Maximal Satisfiable Set (MSS)

( 1
Definition: Let $B$ an unsat bias, then $M \subset B$ is an MSS of $B$ iff $M$ is sat but for all $c \in B \backslash M, M \cup\{c\}$ is unsat.

## Example:

| $c_{1}$ |
| :--- |
| $c_{2}$ |
|  |
| $c_{3} \neg c_{3}$ |



$$
\begin{aligned}
& M_{1}=\left\{c_{1}, c_{2}, c_{3}\right\} \\
& M_{2}=\left\{c_{1}, c_{2}, \neg c_{3}\right\}
\end{aligned}
$$

## Maximal Satisfiable Set (MSS)

(1)
Definition: Let $B$ an unsat bias, then $M \subset B$ is an MSS of $B$ ff $M$ is sat but for all $c \in B \backslash M, M \cup\{c\}$ is unsat.

## Example:

$\checkmark$ We have a partition of the domain

| $c_{1}$ | $\neg c_{1}$ |
| :---: | :---: |
| $c_{2}$ |  |
| $\neg c_{2}$ |  |
| $\neg c_{3}$ |  |


| $M_{1}$ | $M_{2}$ |
| :---: | :---: |
| $M_{6}$ | $M_{5}$ |

$$
\begin{aligned}
& M_{1}=\left\{c_{1}, c_{2}, c_{3}\right\} \\
& M_{2}=\left\{c_{1}, c_{2}, \neg c_{3}\right\} \\
& \quad \cdots \\
& M_{6}=\left\{\neg c_{1}, \neg c_{2}, c_{3}\right\}
\end{aligned}
$$

## Maximal Satisfiable Set (MSS)



## Property

Let B be a complete bias.
Then the set of MSS induces a partition of the domain

## $M_{6}$ <br> $M_{4}$

$M_{5}$

$$
M_{6}=\left\{\neg c_{1}, \neg c_{2}, c_{3}\right\}
$$

## Classification of MSS

Property : If $C_{T}$ is $\bigvee$-representable by the complete bias $B$
Then all the solutions of an MSS share the same classification

## Classification of MSS

Property : If $C_{T}$ is $\bigvee$-representable by the complete bias $B$ Then all the solutions of an MSS share the same classification

Example: Target concept is $c_{1} \vee \neg c_{2}$

| $c_{1} \neg c_{1}$ | $M_{2}$ | $M_{3}$ | $M_{1}=\left\{c_{1}, c_{2}, c_{3}\right\}$ |
| :---: | :---: | :---: | :---: |
| $c_{2}$ | $M_{1}$ |  | $M_{2}=\left\{c_{1}, c_{2}, \neg c_{3}\right\}$ |
| $\neg c_{2}$ | , | $M_{4}$ |  |
| $c_{3} \neg c_{3}$ | $M_{6}$ | $M_{5}$ | $M_{6}=\left\{\neg c_{1}, \neg c_{2}, c_{3}\right\}$ |

## Classification of MSS

Property : If $C_{T}$ is $\bigvee$-representable by the complete bias $B$ Then all the solutions of an MSS share the same classification

Example: Target concept is $c_{1} \vee \neg c_{2}$

| $c_{1}$ | $\neg c_{1}$ |
| :---: | :---: |
| $c_{2}$ |  |
| $\neg c_{2}$ |  |
| $\neg c_{3}$ |  |



$$
\begin{aligned}
& M_{1}=\left\{c_{1}, c_{2}, c_{3}\right\} \\
& M_{2}=\left\{c_{1}, c_{2}, \neg c_{3}\right\} \\
& \quad \cdots \\
& M_{6}=\left\{\neg c_{1}, \neg c_{2}, c_{3}\right\}
\end{aligned}
$$

## Disjunctive Constraint Acquisition

Key points :
( MSSes induce a partition
( Check classification of one element per MSS

Deduce the classification of all the domain

```
Algorithm 1: DCA
    In : A nonempty complete bias \(B\)
    Out : A conjunction of disjunctions of constraints
                from B
1 begin
\(2 \mid L \leftarrow \top\)
foreach \(M \in \operatorname{Mss}_{B}\) do
    pick \(e \in \operatorname{sol}(M)\)
    if ask \((e) \neq\) yes then
\(L \leftarrow L \wedge \neg M\)
    return \(L\)
```


## Theoretical analysis

## Proposition : DCA generates informative queries only

Remark: Informativeness must be extended because of disjunctive behaviors. Some queries which were not informative in CA is informative now.

Theorem : If $C_{T}$ is $\bigvee$-representable by B then DCA infers a constraint network $L$ s.t., $L \equiv C_{T}$
$\oplus$ Terminates, result agrees with all tested queries

## Theoretical analysis



## Implementation

## ( Extension of the Conacq. 2 framework

田 lirmm/ConstraintAcquisition

Constraint acquisition
Christian Bessiere ${ }^{\text {a,* },}$, Frédéric Koriche ${ }^{\text {b }}$, Nadjib Lazaar ${ }^{\text {a }}$, Barry O’Sullivan ${ }^{\text {c }}$
( MSS enumeration algorithm: DAA vs MARCO

# Enumerating Infeasibility: <br> Finding Multiple MUSes Quickly 

Mark H. Liffiton and Ammar Malik

## Evaluation: Datasets

## ( Benchmark 1

- Random - e.g., $(X 1=X 2 \vee X 0=X 2) \wedge(X 1 \leq X 2 \vee X 0>X 2) \wedge(X 1>X 2 \vee X 0 \geq X 2)$
- Domain - e.g., $\quad\left(X=1 \wedge X_{1}=1 \wedge X_{2}=0 \wedge X_{3}=0\right)$

$$
\vee\left(X=2 \wedge X_{1}=0 \wedge X_{2}=1 \wedge X_{3}=0\right) \vee\left(X=3 \wedge X_{1}=0 \wedge X_{2}=0 \wedge X_{3}=1\right)
$$

- Ultra-metric - e.g., $X>Y=Z \vee Y>X=Z \vee Z>X=Y \vee X=Y=Z$
( Benchmarck 2
Automated Program Analysis:
Revisiting Precondition Inference through Constraint Acquisition
Grégoire Menguy ${ }^{1}$, Sébastien Bardin ${ }^{1}$, Nadjib Lazaar ${ }^{2}$ and Arnaud Gotlieb ${ }^{3}$
${ }^{1}$ Université Paris-Saclay, CEA, List, Palaiseau, France
${ }^{2}$ LIRMM, University of Montpellier, CNRS, Montpellier, France
${ }^{3}$ Simula Research Laboratory, Oslo, Norway
\{gregoire.menguy, sebastien.bardin\}@cea.fr, nadjib.lazaar@lirmm.fr, arnaud@simula.no


More complex

## Alternative approaches

## Benchmark 1

Conacq: includes in B all disjunctions of size up to the maximal needed
( Conaca ${ }_{\text {Omiscient: }}$ includes only disjunction size needed

L.

## Benchmark 2 (precondition inference)

Remark: Queries are answered using an oracle (the code under analysis itself for precond. inference)

## Results Bench 1

## DCA is faster for Disj > 1

DCA is not impacted by disjunction size

- But Conacq bias size explodes
( DCA handles more complex cases (e.g., UM 5 )

Notations:

- $|B|$ is the number of constraints in the bias (for Conacq it includes disjunctions but not for DCA)
- $|E|$ is the number of queries submitted

|  | Disj | Conace |  |  | CONACQ omiscient $^{\text {a }}$ |  |  | DCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\|B\|$ | $\|E\|$ | Time | $\|B\|$ | \|E| | Time | $\|B\|$ | $\|E\|$ | Time |
| $\mathrm{RAND}_{2,1}$ | 1 | 6 | 3 | 0.2s | 6 | - | 0.3 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{2,2}$ | 2 | 18 | 3 | 0.4s | 18 | 3 | 0.3 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{2,3}$ |  | 26 | 3 | 0.4s | 14 | 3 | 0.2 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{2,4}$ | 4 | 26 | 3 | 0.4s | 6 | 3 | 0.2 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{3,1}$ | 1 | 18 | 7 | 0.5s | 18 | 6 | 0.3 s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{3,2}$ | 2 | 162 | 13 | 5s | 162 | 13 | 3.7s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{3,3}$ | 3 | 834 | 13 | 154s | 690 | 13 | 43 s | 18 | 13 | 1s |
| $\mathrm{RAND}_{3,4}$ | 4 | 2850 | 13 | 817s | 2034 | 13 | 140s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{4,1}$ | 1 | 36 | 14 | 1s | 36 | 15 | 1 s | 36 | 75 | 38s |
| $\mathrm{RAND}_{4,2}$ | 2 | 648 | 54 | 286s | 648 | 37 | 47s | 36 | 75 | 39s |
| $\mathrm{RAND}_{4,3}$ | 3 | 7176 | - | TO | 6564 | - | TO | 36 | 75 | 36s |
| $\mathrm{RAND}_{4,4}$ | 4 | 56136 | - | TO | 48996 | - | TO | 36 | 75 | 37s |
| $\mathrm{DOM}_{3}$ | 3 | 834 | 24 | 297s | 690 | 24 | 217s | 18 | 24 | 0.65 |
| $\mathrm{DOM}_{4}$ | 4 | 9968 | - | TO | 7944 | - | TO | 24 | 64 | 1.2s |
| DOM ${ }_{5}$ | 5 | 122026 | - | TO | 96126 | - | TO | 30 | 160 | 3.3s |
| $\mathrm{DOM}_{6}$ | 6 | - | - | TO | - | - | TO | 36 | 384 | 9.7s |
| $\mathrm{DOM}_{7}$ | 7 | - | - | ME | - | - | ME | 42 | 896 | 44s |
| DOM ${ }_{8}$ | 8 | - | - | ME | - | - | ME | 48 | 2048 | 233s |
| DOM9 | 9 | - | - | ME | - | - | ME | 54 | 4608 | 1690s |
| D $\mathrm{MM}_{10}$ | 10 | - | - | ME | - | - | ME | 60 | - | TO |
| $\mathrm{UM}_{3}$ | 4 | 472 | 13 | 50s | 252 | 13 | 13s | 12 | 13 | 0.5s |
| $\mathrm{UM}_{4}$ | 4 | 9968 | - | TO | 7944 | - | TO | 24 | 75 | 3s |
| $\mathrm{UM}_{5}$ | 4 | 87440 | - |  | 77560 | - | TO | 40 | 541 | 200s |
| $\mathrm{UM}_{6}$ | 4 | - | - | TO | - | - | TO | 60 | - | TO |

## Results Bench 1

## C DCA is faster for Disj > 1

C DCA is not impacted by disjunction size

- But Conacq bias size explodes


## C DCA handles more complex cases (e.g., UM ${ }_{5}$ )

## Notations:

- $|B|$ is the number of constraints in the bias (for Conacq it includes disjunctions but not for DCA)
- $|E|$ is the number of queries submitted

|  | Disj | CONACQ |  |  | $\mathrm{CONACQ}_{\text {omiscient }}$ |  |  | DCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\|B\|$ |  | Time | $\|B\|$ | $\|E\|$ | Time | $\|B\|$ | $\|E\|$ | Time |
| $\mathrm{RAND}_{2,1}$ | 1 | 6 | 3 | 0.2s | 6 | 3 | 0.3s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{2,2}$ | 2 | 18 | 3 | 0.4s | 18 | 3 | 0.3 s | 6 | 3 | 0.2s |
| $\mathrm{RAND}_{2,3}$ | 3 | 26 | 3 | 0.4s | 14 | 3 | 0.2 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{2,4}$ | 4 | 26 | 3 | 0.4s | 6 | 3 | 0.2 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{3,1}$ | 1 | 18 | 7 | 0.5s | 18 | 6 | 0.3s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{3,2}$ | 2 | 162 | 13 | 5s | 162 | 13 | 3.7s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{3,3}$ | 3 | 834 | 13 | 154s | 690 | 13 | 43s | 18 | 13 | 1s |
| $\mathrm{RAND}_{3,4}$ | 4 | 2850 | 13 | 817s | 2034 | 13 | 140s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{4,1}$ | 1 | 36 | 14 | 1s | 36 | 15 | 1 s | 36 | 75 | 38s |
| RAND $_{4,2}$ | 2 | 648 | 54 | 286s | 648 | 37 | 47s | 36 | 75 | 39s |
| $\mathrm{RAND}_{4,3}$ | 3 | 7176 | - | TO | 6564 | - | TO | 36 | 75 | 36s |
| $\mathrm{RAND}_{4,4}$ | 4 | 56136 | - | TO | 48996 | - | TO | 36 | 75 | 37s |
| $\mathrm{DOM}_{3}$ | 3 | 834 | 24 | 297s | 690 | 24 | 217s | 18 | 24 | 0.6s |
| $\mathrm{DOM}_{4}$ | 4 | 9968 | - | TO | 7944 | - | TO | 24 | 64 | 1.2s |
| $\mathrm{DOM}_{5}$ | 5 | 122026 | - | TO | 96126 | - | TO | 30 | 160 | 3.3s |
| $\mathrm{DOM}_{6}$ | 6 | - | - | TO | - | - | TO | 36 | 384 | 9.7s |
| $\mathrm{DOM}_{7}$ | 7 | - | - | ME | - | - | ME | 42 | 896 | 44s |
| $\mathrm{DOM}_{8}$ | 8 | - | - | ME | - | - | ME | 48 | 2048 | 233s |
| $\mathrm{DOM}_{9}$ | 9 | - | - | ME | - | - | ME | 54 | 4608 | 1690s |
| $\mathrm{DOM}_{10}$ | 10 | - | - | ME | - | - | ME | 60 | - | TO |
| $\mathrm{UM}_{3}$ | 4 | 472 | 13 | 50s | 252 | 13 | 13s | 12 | 13 | 0.5s |
| $\mathrm{UM}_{4}$ | 4 | 9968 | - | TO | 7944 | - | TO | 24 | 75 | 3s |
| $\mathrm{UM}_{5}$ | 4 | 87440 | - | TO | 77560 | - | TO | 40 | 541 | 200s |
| $\mathrm{UM}_{6}$ | 4 | - | - | TO | - | - | TO | 60 | - | TO |

## Results Bench 1

## DCA is faster for Disj > 1

C DCA is not impacted by disjunction size

- But Conacq bias size explodes
( $\rightarrow$ DCA handles more complex cases (e.g., $\mathrm{UM}_{5}$ )

Notations:

- $|B|$ is the number of constraints in the bias (for Conacq it includes disjunctions but not for DCA)
- $|E|$ is the number of queries submitted

|  | Disj | Conace |  |  | CONACQ omiscient $^{\text {a }}$ |  |  | DCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \|B| | $\|E\|$ | Time | \|B| | $\|E\|$ | Time | $\|B\|$ | $\|E\|$ | Time |
| $\mathrm{RAND}_{2,1}$ | 1 | 6 | 3 | 0.2s | 6 | 3 | 0.3 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{2,2}$ | 2 | 18 | 3 | 0.4s | 18 | 3 | 0.3 s | 6 | 3 | 0.2 s |
| $\mathrm{RAND}_{2,3}$ | 3 | 26 | 3 | 0.4s | 14 | 3 | 0.2 s | 6 |  | 0.2 s |
| $\mathrm{RAND}_{2,4}$ | 4 | 26 | 3 | 0.4s | 6 | 3 | 0.2 s | 6 | 3 | 0.2s |
| RAND $_{3,1}$ | 1 | 18 | 7 | 0.5s | 18 | 6 | 0.3 s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{3,2}$ | 2 | 162 | 13 | 5s | 162 | 13 | 3.7s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{3,3}$ | 3 | 834 | 13 | 154s | 690 | 13 | 43 s | 18 | 13 | 1s |
| $\mathrm{RAND}_{3,4}$ | 4 | 2850 | 13 | 817s | 2034 | 13 | 140s | 18 | 13 | 0.9s |
| $\mathrm{RAND}_{4,1}$ | 1 | 36 | 14 | 1s | 36 | 15 | 1 s | 36 | 75 | 38s |
| RAND $_{4,2}$ | 2 | 648 | 54 | 286s | 648 | 37 | 47s | 36 | 75 | 39s |
| $\mathrm{RAND}_{4,3}$ | 3 | 7176 | - | TO | 6564 | - | TO | 36 | 75 | 36s |
| $\mathrm{RAND}_{4,4}$ | 4 | 56136 | - | TO | 48996 | - | TO | 36 | 75 | 37s |
| $\mathrm{DOM}_{3}$ | 3 | 834 | 24 | 297s | 690 | 24 | 217s | 18 | 24 | 0.6s |
| $\mathrm{DOM}_{4}$ | 4 | 9968 | - | TO | 7944 | - | TO | 24 | 64 | 1.2s |
| DOM ${ }_{5}$ | 5 | 122026 | - | TO | 96126 | - | TO | 30 | 160 | 3.3s |
| $\mathrm{DOM}_{6}$ | 6 | - | - | TO | - | - | TO | 36 | 384 | 9.7s |
| $\mathrm{DOM}_{7}$ | 7 | - | - | ME | - | - | ME | 42 | 896 | 44s |
| $\mathrm{DOM}_{8}$ | 8 | - | - | ME | - | - | ME | 48 | 2048 | 233s |
| $\mathrm{DOM}_{9}$ | 9 | - | - | ME | - | - | ME | 54 | 4608 | 1690s |
| $\mathrm{DOM}_{10}$ | 10 | - | - | ME | - | - | ME | 60 | - | TO |
| $\mathrm{UM}_{3}$ | 4 | 472 | 13 | 50s | 252 | 13 | 13s | 12 | 13 | 0.5 s |
| $\mathrm{UM}_{4}$ | 4 | 9968 | - | TO | 7944 | - | TO | 24 | 75 | 3s |
| $\mathrm{UM}_{5}$ | 4 | 87440 | - | TO | 77560 | - | TO | 40 | 541 | 200s |
| $\mathrm{UM}_{6}$ | 4 | - | - | TO | - | - | TO | 60 | - | TO |

## Results Bench 2 (precond. inference)

|  | Min bias |  |  |  | Avg bias |  |  |  | Max bias |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1s | 5s | 5 mins | 1h | 1 s | 5s | 5 mins | 1h | 1s | 5 s | 5 mins | 1h |
| Preca | 34/60 | 45/60 | 48/60 | 48/60 | 32/60 | 44/60 | 46/60 | 46/60 | 24/60 | 36/60 | 44/60 | 45/60 |
| $\longrightarrow$ No disj | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 20/60 | 21/60 | 21/60 | 21/60 |
| $\longrightarrow \mid$ disj $\mid \leq 2$ | 38/60 | 43/60 | 44/60 | 44/60 | 35/60 | 42/60 | 44/60 | 44/60 | 21/60 | 38/60 | 44/60 | 44/60 |
| $\rightarrow \mid$ disj $\mid \leq 3$ | 30/60 | 44/60 | 48/60 | 48/60 | 26/60 | 43/60 | 46/60 | 46/60 | 18/60 | 31/60 | 42/60 | 44/60 |
| $\longrightarrow \mid$ disj $\mid \leq 4$ | 30/60 | 43/60 | 48/60 | 48/60 | 26/60 | 42/60 | 45/60 | 46/60 | 18/60 | 29/60 | 35/60 | 40/60 |
| $\longrightarrow \mid$ disj $\mid \leq 7$ | 30/60 | 43/60 | 48/60 | 48/60 | 27/60 | 42/60 | 45/60 | 45/60 | 18/60 | 28/60 | 35/60 | 35/60 |
| $\rightarrow \mid$ disj $\mid \leq 10$ | 30/60 | 43/60 | 48/60 | 48/60 | 27/60 | 42/60 | 45/60 | 45/60 | 17/60 | 27/60 | 35/60 | 35/60 |
| $\llcorner$ Omniscient | 38/60 | 45/60 | 48/60 | 48/60 | 34/60 | 44/60 | 46/60 | 46/60 | 26/60 | 40/60 | 43/60 | 45/60 |
| DCA | 40/60 | 45/60 | 51/60 | 54/60 | 38/60 | 45/60 | 49/60 | 51/60 | 31/60 | 42/60 | 47/60 | 51/60 |

( Over each bias DCA infers in 5 mins more preconditions than PreCA in ih
$C_{\text {DCA }}$ is even more efficient than PreCA Omniscient

## Results Bench 2 (precond. inference)

|  | Min bias |  |  |  | Avg bias |  |  |  | Max bias |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1s | 5s | 5 mins | 1h | 1s | 5s | 5 mins | 1h | 1s | 5s | 5 mins | 1h |
| PrecA | 34/60 | 45/60 | 48/60 | 48/60 | 32/60 | 44/60 | 46/60 | 46/60 | 24/60 | 36/60 | 44/60 | 45/60 |
| $\longrightarrow$ No disj | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 21/60 | 20/60 | 21/60 | 21/60 | 21/60 |
| $\longrightarrow \mid$ disj $\mid \leq 2$ | 38/60 | 43/60 | 44/60 | 44/60 | 35/60 | 42/60 | 44/60 | 44/60 | 21/60 | 38/60 | 44/60 | 44/60 |
| $\longrightarrow \mid$ disj $\mid \leq 3$ | 30/60 | 44/60 | 48/60 | 48/60 | 26/60 | 43/60 | 46/60 | 46/60 | 18/60 | 31/60 | 42/60 | 44/60 |
| $\longrightarrow \mid$ disj $\mid \leq 4$ | 30/60 | 43/60 | 48/60 | 48/60 | 26/60 | 42/60 | 45/60 | 46/60 | 18/60 | 29/60 | 35/60 | 40/60 |
| $\longrightarrow \mid$ disj $\mid \leq 7$ | 30/60 | 43/60 | 48/60 | 48/60 | 27/60 | 42/60 | 45/60 | 45/60 | 18/60 | 28/60 | 35/60 | 35/60 |
| $\longrightarrow \mid$ disj $\mid \leq 10$ | 30/60 | 43/60 | 48/60 | 48/60 | 27/60 | 42/60 | 45/60 | 45/60 | 17/60 | 27/60 | 35/60 | 35/60 |
| $\rightarrow$ Omniscient | 38/60 | 45/60 | 48/60 | 48/60 | 34/60 | 44/60 | 46/60 | 46/60 | 26/60 | 40/60 | 43/60 | 45/60 |
| DCA | 40/60 | 45/60 | 51/60 | 54/60 | 38/60 | 45/60 | 49/60 | 51/60 | 31/60 | 42/60 | 47/60 | 51/60 |

Over each bias DCA infers in 5mins more preconditions than PreCA in 1 h
( DCA is even more efficient than PreCA Omniscient

## An example from MbedTLS

int mbedtls_md_finish(mbedtls_md_context_t *ctx, unsigned char *output);

Description: Delete structures of selected MD
Postcondition: $Q=$ "ret $=0$ "

## DCA result:

- \#queries: 416
- convergence time: 401s
- Solution (simplified):

$$
\begin{gathered}
\text { valid }(\text { ct } x) \wedge \text { valid }(\text { md_in } f o) \wedge \\
\neg a l i a s\left(c t x, m d \_i n f o\right) \wedge \text { valid }\left(m d \_c t x\right) \wedge \\
\binom{\text { type }=1 \vee \text { type }=2 \vee \text { type }=3 \vee}{\text { type }=4 \vee \text { type }=5 \vee \text { type }=6 \vee \text { type }=7}
\end{gathered}
$$

$\wedge \operatorname{valid}($ output $)$

## Discussion

- Why DCA is faster than Conacq?
( DCA only relies on SAT and CP solving
( Conacq also relies on Pseudo boolean solving
- Including a background knowledge
( DCA can integrate a Background knowledge as a set of MUS
( But experiments showed no impact
- DCA returns hard to understand results
( Needs to simplify the results


## Conclusion

( $>$ First extension of constraint acquisition to the disjunctive cases

- New acquisition hypothesis : extension to $\bigvee$-representability
( MSS enumeration for concept learning
- MSSes induce a partition
- A partition share the same classification
(, DCA shows promising results on real-world $\} \quad \begin{aligned} & \quad \begin{array}{l}\text { Leads to DCA } \\ \text { Same guarantees than } \\ \text { best } \Lambda \text {-approches } \\ C \text { termination }\end{array} \\ & C_{y} \text { queries informativeness } \\ & C \text { correctness }\end{aligned}$ instances and standard academic problems
- e.g., application to precondition inference in program analysis


## End

## Thank you for your attention

