Active Disjunctive Constraint Acquisition

Grégoire Menguy, CEA LIST, France Sébastien Bardin, CEA LIST, France Nadjib Lazaar, Unversity of Montpellier, France Arnaud Gotlieb, Simula, Norway

Solving problems with constraints

But where does the model come from ?

Modeling is hard

Modeling needs expertise

-> How to assist the stakeholder ?

Constraints Acquisition

Different approaches:

- Inductive Logic Programming based [Lallouet et.al., ICTAI10]
- ModelSeeker [Beldiceanu and Simonis et.al., CP12]
- Conacq based on Version space learning [Bessiere et al. 2017]
 - \hookrightarrow Formal foundations \hookrightarrow Passive and active learning

```
Conacq guarantees:

Termination

Queries are informative

Correctness
```

08 september 2023

Problem: CA is conjunctive only ...

08 september 2023

But Most Problems Need Disjunctions

For example

- Program analysis applications like Precondition acquisition (Menguy et al. 2022)

To execute without crashing the function input should be s.t.,

 $size = 0 \lor valid(arr)$

- Biology application with the ultra-metric constraint (Moore and Prosser 2008) $(X > Y = Z) \lor (Y > X = Z) \lor (Z > X = Y) \lor (X = Y = Z)$

– and many more

So how to handle it?

We need

 $size = 0 \lor valid(arr)$

- Rely on expert knowledge
 - Adds exactly the good disjunctions

But we do not have such expertise - otherwise, why using CA?

int sum(int *arr, uint size) { **int** res = 0; for (uint i = 0; i < size; i++)</pre> res = res + arr[i]; return res;

- Add all disjunctions with size up to some threshold
 - ♦ Which threshold ?

 \bigcirc Combinatorial explosion leads to the bias size explosion

So how to handle it?

Contributions

First extension of CA to the disjunctive case
 Extension of representability to V-representability

- Show how MSS can be used for concept learning

– Propose DCA and show its guarantees

 \bigcirc Same as usual CA: Termination, informativeness of the queries, correctness

– Evaluation DCA

 \checkmark Outperforms CA based inference (faster and handle more complex concepts)

 \checkmark Applied on program analysis – handle complex functions like mbedtls

New Expressiveness Hypothesis

 C_{T} is a conjunctions of constraints from B, i.e.,

 $C_T \subset B$

 C_{T} is a conjunction of disjunctions of B's constraints, i.e., $C_{T} = \{d_i\}_{i \in I}$ $d_i = \bigvee_j a_j$ with $a_j \in B$

We say that
$$C_T$$
 is \bigvee -representable by B

08 september 2023

Maximal Satisfiable Set (MSS)

Definition : Let B an unsat bias, then $M \subset B$ is an MSS of B iff M is sat but for all $c \in B \setminus M$, $M \cup \{c\}$ is unsat.

Example:

$$M_1 = \{c_1, c_2, c_3\}$$
$$M_2 = \{c_1, c_2, \neg c_3\}$$

08 september 2023

Maximal Satisfiable Set (MSS)

Definition : Let B an unsat bias, then $M \subset B$ is an MSS of B iff M is sat but for all $c \in B \setminus M$, $M \cup \{c\}$ is unsat.

We have a partition of the domain

Example:

 $M_1 = \{c_1, c_2, c_3\}$ $M_2 = \{c_1, c_2, \neg c_3\}$...

$$M_6 = \{\neg c_1, \neg c_2, c_3\}$$

08 september 2023

Maximal Satisfiable Set (MSS)

08 september 2023

Classification of MSS

Property : If C_T is \bigvee -representable by the complete bias BThen all the solutions of an MSS share the same classification

Classification of MSS

Property : If C_T is \bigvee -representable by the complete bias BThen all the solutions of an MSS share the same classification

Example: Target concept is $c_1 \vee \neg c_2$

08 september 2023

Classification of MSS

Property : If C_T is \bigvee -representable by the complete bias BThen all the solutions of an MSS share the same classification

Example: Target concept is $c_1 \vee \neg c_2$

$$M_1 = \{c_1, c_2, c_3\}$$
$$M_2 = \{c_1, c_2, \neg c_3\}$$
...

$$M_6 = \{\neg c_1, \neg c_2, c_3\}$$

08 september 2023

Disjunctive Constraint Acquisition

2

5

6

Key points :

- MSSes induce a partition
- Check classification of one element per MSS

Deduce the classification of all the domain

Algorithm 1: DCA : A nonempty complete bias BIn : A conjunction of disjunctions of constraints Out from B 1 begin $L \leftarrow \top$

foreach
$$M \in MSS_B$$
 do
 $pick \ e \in sol(M)$
if $ask(e) \neq yes$ then
 $L \leftarrow L \land \neg M$

return L

Theoretical analysis

Proposition : DCA generates informative queries only

Remark: Informativeness must be extended because of disjunctive behaviors. Some queries which were not informative in CA is informative now.

Theorem : If C_T is \bigvee -representable by B then DCA infers a constraint network L s.t., $L \equiv C_T$

Terminates, result agrees with all tested queries

08 september 2023

Theoretical analysis

Implementation

Sextension of the Conacq.2 framework

📮 lirmm	Public		
<> Code	Issues	រ៉ា Pull requests	Action

Constraint acquisition [☆]

Christian Bessiere^{a,*}, Frédéric Koriche^b, Nadjib Lazaar^a, Barry O'Sullivan^c

✓ MSS enumeration algorithm: DAA vs MARCO

Enumerating Infeasibility: Finding Multiple MUSes Quickly

Mark H. Liffiton and Ammar Malik

Evaluation: Datasets

Senchmark 1

- Random e.g., $(X1 = X2 \lor X0 = X2) \land (X1 \le X2 \lor X0 > X2) \land (X1 > X2 \lor X0 \ge X2)$
- Domain e.g., $(X = 1 \land X_1 = 1 \land X_2 = 0 \land X_3 = 0)$ $\lor (X = 2 \land X_1 = 0 \land X_2 = 1 \land X_3 = 0) \lor (X = 3 \land X_1 = 0 \land X_2 = 0 \land X_3 = 1)$
- Ultra-metric e.g., $X > Y = Z \lor Y > X = Z \lor Z > X = Y \lor X = Y = Z$

Benchmarck 2 Automated Program Analysis: Revisiting Precondition Inference through Constraint Acquisition Grégoire Menguy¹, Sébastien Bardin¹, Nadjib Lazaar² and Arnaud Gottieb³ ¹University of Montpellier, CNRS, Montpellier, France ³Simula Research Laboratory, Oslo, Norway {gregoire.menguy, sebastien.bardin}@cea.fr, nadjib.lazaar@lirmm.fr, arnaud@simula.no

08 september 2023

Alternative approaches

Benchmark 1

Conacq: includes in B all disjunctions of size up to the maximal needed

Conacq_{Omniscient}: includes only disjunction size needed Benchmark 2 (precondition inference)

-> PreCA: as presented in the paper

→ PreCA |disj| ≤ t : includes disj. of size up to a threshold "t"

PreCA_{Omniscient}: includes only disjunction size needed

Remark: Queries are answered using an oracle (the code under analysis itself for precond. inference)

Results Bench 1

→ DCA is faster for Disj > 1

\rightarrow DCA is not impacted by disjunction size

- But Conacq bias size explodes

> DCA handles more complex cases (e.g., UM₅)

Notations:

- |B| is the number of constraints in the bias (for Conacq it includes disjunctions but not for DCA)
- |E| is the number of queries submitted

		Co	CONACQ			CONACQ _{omiscient}				DCA			
	Disj	B	E	Time	B	E	Time	B	E	Time			
RAND _{2.1}	1	6	3	0.2s	6	3	0.3s	6	3	0.2s			
RAND _{2,2}	2	18	3	0.4s	18	3	0.3s	6	3	0.2s			
RAND _{2,3}	3	26	3	0.4s	14	3	0.2s	6	3	0.2s			
RAND _{2.4}	4	26	3	0.4s	6	3	0.2s	6	3	0.2s			
RAND _{3,1}	1	18	7	0.5s	18	6	0.3s	18	13	0.9s			
RAND _{3,2}	2	162	13	5s	162	13	3.7s	18	13	0.9s			
RAND _{3.3}	3	834	13	154s	690	13	43s	18	13	1s			
RAND _{3,4}	4	2850	13	817s	2034	13	140s	18	13	0.9s			
RAND _{4.1}	1	36	14	1s	36	15	1s	36	75	38s			
RAND4,2	2	648	54	286s	648	37	47s	36	75	39s			
RAND4.3	3	7176	-	ТО	6564	-	TO	36	75	36s			
RAND4,4	4	56136	-	то	48996	-	TO	36	75	37s			
DOM ₃	3	834	24	297s	690	24	217s	18	24	0.6s			
DOM ₄	4	9968	-	TO	7944	-	TO	24	64	1.2s			
DOM ₅	5	122026	-	то	96126	-	TO	30	160	3.3s			
DOM ₆	6	-	-	TO	-	-	TO	36	384	9.7s			
DOM ₇	7	-	-	ME	-	-	ME	42	896	44s			
DOM ₈	8	-	-	ME	-	-	ME	48	2048	233s			
DOM ₉	9	-	-	ME	-	-	ME	54	4608	1690s			
DOM ₁₀	10	-	-	ME	-	-	ME	60	-	ТО			
UM ₃	4	472	13	50s	252	13	13s	12	13	0.5s			
UM_4	4	9968	-	TO	7944	-	TO	24	75	3s			
UM ₅	4	87440	-	то	77560	-	TO	40	541	200s			
UM6	4	-	-	TO	-	-	TO	60	-	TO			

Results Bench 1

→ DCA is faster for Disj > 1

> DCA is not impacted by disjunction size

- But Conacq bias size explodes

DCA handles more complex cases (e.g., UM₅)

Notations:

- |B| is the number of constraints in the bias (for Conacq it includes disjunctions but not for DCA)

- |E| is the number of queries submitted

		Cor	CONACQ			CONACQomiscient				DCA			
	Disj	B $ E $ Time		Time	B $ E $		Time	$ \overline{B} $	E	Time			
RAND _{2,1}	1	6	3	0.2s	6	3	0.3s	6	3	0.2s			
RAND _{2,2}	2	18	3	0.4s	18	3	0.3s	6	3	0.2s			
RAND _{2,3}	3	26	3	0.4s	14	3	0.2s	6	3	0.2s			
RAND _{2,4}	4	26	3	0.4s	6	3	0.2s	6	3	0.2s			
RAND _{3,1}	1	18	7	0.5s	18	6	0.3s	18	13	0.9s			
RAND _{3,2}	2	162	13	5s	162	13	3.7s	18	13	0.9s			
RAND _{3,3}	3	834	13	154s	690	13	43s	18	13	1s			
RAND _{3,4}	4	2850	13	817s	2034	13	140s	18	13	0.9s			
RAND _{4,1}	1	36	14	1s	36	15	1s	36	75	38s			
RAND4,2	2	648	54	286s	648	37	47s	36	75	39s			
RAND4,3	3	7176	-	ТО	6564	-	TO	36	75	36s			
RAND4,4	4	56136	-	TO	48996	-	TO	36	75	37s			
DOM ₃	3	834	24	297s	690	24	217s	18	24	0.6s			
DOM ₄	4	9968	-	TO	7944	-	TO	24	64	1.2s			
DOM ₅	5	122026	-	TO	96126	-	TO	30	160	3.3s			
DOM ₆	6	-	-	TO	-	-	TO	36	384	9.7s			
DOM ₇	7	-	-	ME	-	-	ME	42	896	44s			
DOM ₈	8	-	-	ME	-	-	ME	48	2048	233s			
DOM ₉	9	-	-	ME	-	-	ME	54	4608	1690s			
DOM ₁₀	10	-	-	ME	-	-	ME	60	-	TO			
UM ₃	4	472	13	50s	252	13	13s	12	13	0.5s			
UM_4	4	9968	-	то	7944	-	TO	24	75	3s			
UM ₅	4	87440	-	TO	77560	-	TO	40	541	200s			
UM6	4	-	-	TO	-	-	TO	60	-	TO			

Results Bench 1

♦ DCA is faster for Disj > 1

> DCA is not impacted by disjunction size

- But Conacq bias size explodes

→ DCA handles more complex cases (e.g., UM₅)

Notations:

- |B| is the number of constraints in the bias (for Conacq it includes disjunctions but not for DCA)

- |E| is the number of queries submitted

		Co	CONACQ			CONACQomiscient				DCA			
	Disj	B	E	Time	B	E	Time	B	E	Time			
$RAND_{2,1}$	1	6	3	0.2s	6	3	0.3s	6	3	0.2s			
RAND _{2,2}	2	18	3	0.4s	18	3	0.3s	6	3	0.2s			
RAND _{2,3}	3	26	3	0.4s	14	3	0.2s	6	3	0.2s			
$RAND_{2,4}$	4	26	3	0.4s	6	3	0.2s	6	3	0.2s			
RAND _{3,1}	1	18	7	0.5s	18	6	0.3s	18	13	0.9s			
RAND _{3,2}	2	162	13	5s	162	13	3.7s	18	13	0.9s			
RAND _{3,3}	3	834	13	154s	690	13	43s	18	13	1s			
RAND _{3,4}	4	2850	13	817s	2034	13	140s	18	13	0.9s			
$RAND_{4,1}$	1	36	14	1s	36	15	1s	36	75	38s			
RAND4,2	2	648	54	286s	648	37	47s	36	75	39s			
$RAND_{4,3}$	3	7176	-	TO	6564	-	TO	36	75	36s			
$RAND_{4,4}$	4	56136	-	TO	48996	-	TO	36	75	37s			
DOM ₃	3	834	24	297s	690	24	217s	18	24	0.6s			
DOM ₄	4	9968	-	TO	7944	-	TO	24	64	1.2s			
DOM_5	5	122026	-	TO	96126	-	TO	30	160	3.3s			
DOM ₆	6	-	-	TO	-	-	TO	36	384	9.7s			
DOM ₇	7	-	-	ME	-	-	ME	42	896	44s			
DOM ₈	8	-	-	ME	-	-	ME	48	2048	233s			
DOM_9	9	-	-	ME	-	-	ME	54	4608	1690s			
DOM_{10}	10	-	-	ME	-	-	ME	60	-	ТО			
UM ₃	4	472	13	50s	252	13	13s	12	13	0.5s			
UM_4	4	9968	-	ТО	7944	-	TO	24	75	3s			
UM_5	4	87440	-	TO	77560	-	TO	40	541	200s			
UM6	4		-	TO	-	-	TO	60	-	TO			

Results Bench 2 (precond. inference)

		Min	bias			Avg	, bias		Max bias			
	1s	5s	5 mins	1h	1s	5s	5 mins	1h	1s	5s	5 mins	1h
PRECA	34/60	45/60	48/60	48/60	32/60	44/60	46/60	46/60	24/60	36/60	44/60	45/60
↓ No disj	21/60	21/60	21/60	21/60	21/60	21/60	21/60	21/60	20/60	21/60	21/60	21/60
$ disj \leq 2$	38/60	43/60	44/60	44/60	35/60	42/60	44/60	44/60	21/60	38/60	44/60	44/60
$ disj \leq 3$	30/60	44/60	48/60	48/60	26/60	43/60	46/60	46/60	18/60	31/60	42/60	44/60
$ disj \le 4$	30/60	43/60	48/60	48/60	26/60	42/60	45/60	46/60	18/60	29/60	35/60	40/60
$ disj \leq 7$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	18/60	28/60	35/60	35/60
$ disj \leq 10$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	17/60	27/60	35/60	35/60
$\downarrow Omniscient$	38/60	45/60	48/60	48/60	34/60	44/60	46/60	46/60	26/60	40/60	43/60	45/60
DCA	40/60	45/60	51/60	54/60	38/60	45/60	49/60	51/60	31/60	42/60	47/60	51/60

 \checkmark Over each bias DCA infers in 5mins more preconditions than PreCA in 1h

C> DCA is even more efficient than PreCA

Results Bench 2 (precond. inference)

		Mir	ı bias		Avg bias				Max bias			
	1s	5s	5 mins	1h	1s	5s	5 mins	1h	1s	5s	5 mins	1h
PRECA	34/60	45/60	48/60	48/60	32/60	44/60	46/60	46/60	24/60	36/60	44/60	45/60
↓ No disj	21/60	21/60	21/60	21/60	21/60	21/60	21/60	21/60	20/60	21/60	21/60	21/60
$ disj \leq 2$	38/60	43/60	44/60	44/60	35/60	42/60	44/60	44/60	21/60	38/60	44/60	44/60
$ disj \leq 3$	30/60	44/60	48/60	48/60	26/60	43/60	46/60	46/60	18/60	31/60	42/60	44/60
$ disj \leq 4$	30/60	43/60	48/60	48/60	26/60	42/60	45/60	46/60	18/60	29/60	35/60	40/60
$ disj \leq 7$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	18/60	28/60	35/60	35/60
$ disj \leq 10$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	17/60	27/60	35/60	35/60
$\downarrow Omniscient$	38/60	45/60	48/60	48/60	34/60	44/60	46/60	46/60	26/60	40/60	43/60	45/60
DCA	40/60	45/60	51/60	54/60	38/60	45/60	49/60	51/60	31/60	42/60	47/60	51/60

 \checkmark Over each bias DCA infers in 5mins more preconditions than PreCA in 1h

↓ DCA is even more efficient than PreCA_{Omniscie}

An example from MbedTLS

Description: Delete structures of selected MD Postcondition: Q = "ret = 0"

DCA result:

- #queries: 416
- convergence time: 401s
- Solution (simplified):

 $\begin{aligned} valid(ctx) \wedge valid(md_info) \wedge \\ \neg alias(ctx, md_info) \wedge valid(md_ctx) \wedge \\ \left(\begin{aligned} type = 1 \lor type = 2 \lor type = 3 \lor \\ type = 4 \lor type = 5 \lor type = 6 \lor type = 7 \end{aligned} \right) \\ \wedge \ valid(output) \end{aligned}$

Discussion

- Why DCA is faster than Conacq ?
 - -> DCA only relies on SAT and CP solving
 - -> Conacq also relies on Pseudo boolean solving
- Including a background knowledge
 - DCA can integrate a Background knowledge as a set of MUS
 - ightarrow But experiments showed no impact
- DCA returns hard to understand results
 Needs to simplify the results

Conclusion

First extension of constraint acquisition to the disjunctive cases
 New acquisition hypothesis : extension to \/-representability

✓ MSS enumeration for concept learning

- MSSes induce a partition
- A partition share the same classification
- DCA shows promising results on real-world instances and standard academic problems

Leads to DCA

Same guarantees than best /-approches (, termination , queries informativeness , correctness

- e.g., application to precondition inference in program analysis

Thank you for your attention