
1

Adversarial Reachability
for Program-level Security Analysis

Soline Ducousso1, Sébastien Bardin1, Marie-Laure Potet2

1 Univ. Paris-Saclay, CEA, List, Saclay, France
2 Univ. Grenoble Alpes, VERIMAG, Grenoble, France

soline.ducousso@cea.fr, sebastien.bardin@cea.fr, marie-laure.potet@univ-grenoble-alpes.fr

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Context - Formal Program Analysis and Safety

❏ Formal methods

❏ Worst case → all possible behaviors are studied

❏ Verification specifications

❏ Bug finding or absence of bugs

❏ Industrial success

2

CBMC

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

What About Security ?

Reuse standard safety analyzers:
❏ Useful (e.g., buffer overflows) and worst case
❏ Weak attacker model → can only craft smart inputs → still plays the rule

3

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

What About Security ?

Reuse standard safety analyzers:
❏ Useful (e.g., buffer overflows) and worst case
❏ Weak attacker model → can only craft smart inputs → still plays the rule

Real-world attackers are more powerful:
❏ Side channels
❏ Fault injection

Target crypto. primitives, but also bootloaders, firmware update
modules, enclaves, ...

4

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Historical Example - Hardware Fault Injection Attacks

❏ Security critical components (e.g. smartcards)
❏ Attack technique to trigger other system behaviors → fault injection

5

Bukasa et al. When fault injection collides with hardware complexity. FPS 2018Credit: https://eshard.com

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Fault Injection Attacks Everywhere

6

Electromagnetic pulses

Laser beam

Power glitch

Clock glitch

Hardware attacks

Rowhammer

DVFS

Faultline

Load Value InjectionRace condition

Spectre Binary rewriting

Halt and modify execution

Man-At-The-End attacks

Software-implemented hardware attacks

Link with data-only attacks

Micro-architectural attacks

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Motivating Example - VerifyPIN

7

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Motivating Example - Without Faults

8

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Motivating Example - Data Fault

9

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Faults at Program-Level

Fault Models:
❏ Data faults
❏ Control-flow
❏ Instruction modifications

Protections:
❏ Control-flow integrity
❏ Redundancy

Hard to reason about (multi-faults)

10

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Our Goal

Our goal is to devise a technique to automatically and efficiently reason about the
impact of an advanced attacker* onto a program security properties.

Challenges:

*attacker able to perform multi-fault injections

11

C1: Formal framework

Impact of advanced
attacker

C2: Efficient and
generic algorithm

Multi-fault without path
explosion

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Christofi 2013, Rauzy 2014, Given-Wilson 2017, Carré 2018
Mutant Generation

12

Fault

…

Reuse existing
analyzers

CBMC

Scale for multi-fault?

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Potet, Mounier, Puys and Dureuil: Lazart, 2014
Forking Technique

13

Potential fault injections

Reuse existing
analyzers

CBMC

Scale for multi-fault?

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Contributions

❏ Formalize of the Adversarial Reachability problem

❏ Adversarial Symbolic Execution to answer adversarial reachability

❏ a novel forkless fault encodings preventing path explosion

❏ 2 optimizations reducing query complexity

❏ Implementation and evaluation of our technique

❏ Security analysis of the WooKey bootloader

14

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 15

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Attacker model

Advanced attacker:
❏ various different attack vectors = various effects
❏ multiple actions

Attacker model:

1) A set of attacker actions (equivalent to fault models)
2) A maximum number of actions
3) A goal expressed as a reachability query

16

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Adversarial reachability

Adversarial reachability: A location l is adversarially reachable in a program P for
an attacker model A if S0 ↦* l,
where ↦* is a succession of normal transitions interleaved with faulty transitions

Definition of correctness and completeness of an analysis w.r.t an attacker model

17

input s0

state at location l faulted transition

Faults on data Faults on control-flow

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 18

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Forkless Adversarial Symbolic Execution (FASE)

19

Design guideline Technical solution

Correct and k-complete for
adversarial reachability

Based on Symbolic Execution

Prevent path explosion Forkless fault encoding

Reduce complexity of created
formulas

Avoid introducing extra faults with
2 optimizations

Faults on data Faults on control-flow

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Reminder - Symbolic Execution

❏ Symbolic inputs
❏ Follow each path, compute its

path predicate
❏ Assess reachability with an SMT

solver
❏ Get model for symbolic inputs

❏ Properties: correct and
k-complete

20

a := …

b := …

if cdt

c := …

if ¬cdt

Location to reach

SMT query: (a = …)∧(b = …)∧(¬cdt)∧(c = …) SAT ?

Problem n°1: path explosion Problem n°2: constraint solving

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 21

x := y x := y x := faulti
nbf ++

Non deterministic choice

❏ Covers all adversarial behaviors
❏ Number of path exponential with

fault injection points

Symbolic Execution Forking technique

Problem n°1: path explosion Problem n°2: constraint solving

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Forkless encodings and FASE

22

x := y

❏ Covers all adversarial behaviors
❏ No extra path explosion
❏ More complex formulas

x := ForklessEncoding(y)

herei ∈ [0,1], Σ herei ≤ maxf

FASE x := ite herei ? faulti : ySymbolic Execution

x := y + herei * faulti

Problem n°1: path explosion Problem n°2: constraint solving

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 23

➔ Forking explodes in explored paths while FASE doesn’t
➔ Translates to improved analysis time overall

Experimental Evaluation - Path explosion

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Forkless encodings and FASE

24

Problem n°1: path explosion Problem n°2: constraint solving

Forking 0 ite /query on average (1 fault)

FASE 5,745 ite /query on average (1 fault)

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Optimizations Overview

Main Goal:
❏ Reduce #injection points to simplify formulas
❏ Some injection points are not accessible to the attacker model

25

Early Detection of Fault
Saturation (EDS)

Stop injection as soon as
possible

Injection On Demand
(IOD)

Add faults only when
necessary

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Early Detection of fault Saturation (EDS)

26

❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections along a path

❏ SAT with a fault margin (nbf < maxf)
❏ SAT with exactly the fault budget

(nbf == maxf)
❏ infeasible

FASE FASE-EDS

We need maxf faults
to go beyond that
point on that path.

Potentially faulted
instruction (with ite)

No more fault injection

Problem n°1: path explosion Problem n°2: constraint solving

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Injection On Demand (IOD)

27

FASE FASE-IOD

Faulted instruction

❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections in SMT queries

We can’t go beyond
that point on that path
without more faults.

Start without any faults

Problem n°1: path explosion Problem n°2: constraint solving

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Injection On Demand (IOD)

28

FASE

We can’t go beyond
that point on that path
without more faults.

Faulted instruction

FASE-IOD

Path predicate switched
for the faulted one

Problem n°1: path explosion Problem n°2: constraint solving

❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections in SMT queries

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Injection On Demand (IOD)

29

FASE

Faulted instruction

FASE-IOD

We can’t go beyond
that point on that path
without more faults.

Bonus:
under-approximation
of nbf

Problem n°1: path explosion Problem n°2: constraint solving

❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections in SMT queries

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 30

Experimental Evaluation - Optimizations’ Impact

➔ EDS has a moderate impact
➔ IOD halves solving time per query (5745 →3050 avg ite /query) + most efficient
➔ IOD+EDS is slightly more expensive

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

[Rowhammer]

Other Forkless Fault Models

31

[LVI]

[CFI Hijack]

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 32

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Evaluation

Implementation inside BINSEC for x86-32 architecture with SMT solver Bitwuzla

Benchmarks (RQ1 to 3) from [1, 2]

❏ RQ1: is our tool correct and k-complete? In particular, can we find attacks on
vulnerable programs and prove secure resistant programs?

❏ RQ2: can we scale in number of faults?
❏ RQ3: what is the impact of our optimizations?
❏ Different security scenarios using different fault models
❏ Larger case study of the WooKey bootloader [ANSSI security challenge]

33

[1] Dureuil et al. FISSC: A fault injection and simulation secure collection. 2016.
[2] Le et al. Resilience evaluation via symbolic fault injection on intermediate code. 2018

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Security scenarios using different fault models

34

Application Version Attacker model Expected Result

CRT-RSA [1]

basic

1 reset

vulnerable vulnerable
(BellCore attack)

Shamir vulnerable time-out

Aumuller resistant time-out

Secret keeping
machine [2]

linked-list 1 bitflip in memory vulnerable vulnerable

array 1 bitflip in memory resistant resistant

array 1 bitflip anywhere ??? vulnerable

SecSwift protection
[3] (ST Micro.)

[4] version
applied to
VerifyPIN_0

1 arbitrary data
(same effect than
test inversion)

??? vulnerable
(early loop exit,
valid in CFG)

[1] Puys et al.
High-level simulation for
multiple fault injection
evaluation. 2014
[2] Dullien Weird
machines, exploitability,
and provable
unexploitability. 2017
[3] de Ferrière Software
countermeasures in the
llvm risc-v compiler.
2021
[4] Lacombe et al.
Combining static
analysis and dynamic
symbolic execution in a
toolchain to detect fault
injection vulnerabilities.
2021

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Case study

WooKey bootloader [security challenge]: secure data storage by ANSSI, 3.2k loc

Attacker model: 1 arbitrary data — or test inversion with equivalent effect

1. Find known attacks (from source-level analysis)
a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. An incorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate recent countermeasures [1]
a. Evaluate original code → We found an attack not mentioned before
b. Evaluate existing protection scheme [1]
c. Propose and evaluate our own protection scheme

35

[1] Lacombe et al. Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection
vulnerabilities. 2021
[2] Martin et al. Verifying redundant-check based countermeasures: a case study. 2022

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 36

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Discussions

Fault models limitations:
❏ Instruction corruption
❏ Spectre attack → speculative rollback vs. max fault

Other analysis techniques:
❏ BMC, CEGAR, … (based on path unrolling) could benefit
❏ Possibility of code instrumentation for reuse of analyzers [Forkless - Optims]
❏ Over-approximation analysis

Other properties:
❏ We consider location reachability for the sake of simplicity
❏ Direct extension to local assertions (buffer-overflow) and finite traces

(use-after-free)
❏ Possible extension to liveness, hyperproperties, …

37

?

Adversarial Reachability for Program-level Security Analysis - ESOP 2023 38

C1: Formal Framework Adversarial Reachability

C2: Efficient Algorithm
Forkless Adversarial Symbolic Execution

(+ 2 optimizations)

Implementation

Evaluation Security Scenarios
Use Case: WooKey

Bootloader

