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Context - Formal Program Analysis and Safety

❏ Formal methods

❏ Worst case → all possible behaviors are studied

❏ Verification specifications

❏ Bug finding or absence of bugs

❏ Industrial success

2

CBMC



Adversarial Reachability for Program-level Security Analysis - ESOP 2023

What About Security ?

Reuse standard safety analyzers:
❏ Useful (e.g., buffer overflows) and worst case
❏ Weak attacker model → can only craft smart inputs → still plays the rule
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What About Security ?

Reuse standard safety analyzers:
❏ Useful (e.g., buffer overflows) and worst case
❏ Weak attacker model → can only craft smart inputs → still plays the rule

Real-world attackers are more powerful:
❏ Side channels
❏ Fault injection

Target crypto. primitives, but also bootloaders, firmware update
modules, enclaves, ...
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Historical Example - Hardware Fault Injection Attacks

❏ Security critical components (e.g. smartcards)
❏ Attack technique to trigger other system behaviors → fault injection
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Bukasa et al. When fault injection collides with hardware complexity. FPS 2018Credit: https://eshard.com
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Fault Injection Attacks Everywhere
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Electromagnetic pulses

Laser beam

Power glitch

Clock glitch

Hardware attacks

Rowhammer

DVFS

Faultline

Load Value InjectionRace condition

Spectre Binary rewriting

Halt and modify execution

Man-At-The-End attacks

Software-implemented hardware attacks

Link with data-only attacks

Micro-architectural attacks
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Motivating Example - VerifyPIN
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Motivating Example - Without Faults
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Motivating Example - Data Fault
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Faults at Program-Level

Fault Models:
❏ Data faults
❏ Control-flow
❏ Instruction modifications

Protections:
❏ Control-flow integrity
❏ Redundancy

Hard to reason about (multi-faults)
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Our Goal

Our goal is to devise a technique to automatically and efficiently reason about the 
impact of an advanced attacker* onto a program security properties.

Challenges:

*attacker able to perform multi-fault injections
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C1: Formal framework

Impact of advanced 
attacker

C2: Efficient and 
generic algorithm

Multi-fault without path 
explosion
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Christofi 2013, Rauzy 2014, Given-Wilson 2017, Carré 2018
Mutant Generation  
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Fault

…

Reuse existing 
analyzers

CBMC

Scale for multi-fault?
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Potet, Mounier, Puys and Dureuil: Lazart, 2014
Forking Technique
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Potential fault injections

Reuse existing 
analyzers

CBMC

Scale for multi-fault?
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Contributions

❏ Formalize of the Adversarial Reachability problem

❏ Adversarial Symbolic Execution to answer adversarial reachability 

❏ a novel forkless fault encodings preventing path explosion

❏ 2 optimizations reducing query complexity

❏ Implementation and evaluation of our technique

❏ Security analysis of the WooKey bootloader
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Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion
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Attacker model

Advanced attacker: 
❏ various different attack vectors = various effects
❏ multiple actions

Attacker model: 

1) A set of attacker actions (equivalent to fault models)
2) A maximum number of actions
3) A goal expressed as a reachability query
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Adversarial reachability

Adversarial reachability: A location l is adversarially reachable in a program P for 
an attacker model A if S0 ↦* l,
where ↦* is a succession of normal transitions interleaved with faulty transitions

Definition of correctness and completeness of an analysis w.r.t an attacker model
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input s0

state at location l faulted transition

Faults on data Faults on control-flow
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Forkless Adversarial Symbolic Execution (FASE)
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Design guideline Technical solution

Correct and k-complete for 
adversarial reachability

Based on Symbolic Execution

Prevent path explosion Forkless fault encoding

Reduce complexity of created 
formulas

Avoid introducing extra faults with 
2 optimizations

Faults on data Faults on control-flow
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Reminder - Symbolic Execution

❏ Symbolic inputs
❏ Follow each path, compute its 

path predicate
❏ Assess reachability with an SMT 

solver
❏ Get model for symbolic inputs

❏ Properties: correct and 
k-complete
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a := …

b := …

if cdt

c := …

if ¬cdt

Location to reach

SMT query: (a = …)∧(b = …)∧(¬cdt)∧(c = …) SAT ?

Problem n°1: path explosion Problem n°2: constraint solving
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x := y x := y x := faulti 
nbf ++

Non deterministic choice 

❏ Covers all adversarial behaviors
❏ Number of path exponential with 

# fault injection points

Symbolic Execution Forking technique

Problem n°1: path explosion Problem n°2: constraint solving
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Forkless encodings and FASE
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x := y

❏ Covers all adversarial behaviors
❏ No extra path explosion
❏ More complex formulas

x := ForklessEncoding(y)

herei ∈ [0,1], Σ herei ≤ maxf

FASE x := ite herei ? faulti : ySymbolic Execution

x := y + herei * faulti

Problem n°1: path explosion Problem n°2: constraint solving
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➔ Forking explodes in explored paths while FASE doesn’t
➔ Translates to improved analysis time overall

Experimental Evaluation - Path explosion
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Forkless encodings and FASE
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Problem n°1: path explosion Problem n°2: constraint solving

Forking 0 ite /query on average (1 fault)

FASE 5,745 ite /query on average (1 fault)
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Optimizations Overview

Main Goal:
❏ Reduce #injection points to simplify formulas
❏ Some injection points are not accessible to the attacker model
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Early Detection of Fault 
Saturation (EDS)

Stop injection as soon as 
possible

Injection On Demand 
(IOD)

Add faults only when 
necessary
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Early Detection of fault Saturation (EDS)
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❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections along a path

❏ SAT with a fault margin (nbf < maxf)
❏ SAT with exactly the fault budget 

(nbf == maxf)
❏ infeasible

FASE FASE-EDS

We need maxf faults 
to go beyond that 
point on that path.

Potentially faulted 
instruction (with ite)

No more fault injection

Problem n°1: path explosion Problem n°2: constraint solving



Adversarial Reachability for Program-level Security Analysis - ESOP 2023

Injection On Demand (IOD)
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FASE FASE-IOD

Faulted instruction

❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections in SMT queries

We can’t go beyond 
that point on that path 
without more faults.

Start without any faults

Problem n°1: path explosion Problem n°2: constraint solving
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Injection On Demand (IOD)
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FASE

We can’t go beyond 
that point on that path 
without more faults.

Faulted instruction

FASE-IOD

Path predicate switched 
for the faulted one

Problem n°1: path explosion Problem n°2: constraint solving

❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections in SMT queries
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Injection On Demand (IOD)
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FASE

Faulted instruction

FASE-IOD

We can’t go beyond 
that point on that path 
without more faults.

Bonus: 
under-approximation 
of nbf 

Problem n°1: path explosion Problem n°2: constraint solving

❏ Covers all adversarial behaviors, as complete as FASE
❏ Reduce number of fault injections in SMT queries
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Experimental Evaluation - Optimizations’ Impact

➔ EDS has a moderate impact
➔ IOD halves solving time per query (5745 →3050 avg ite /query) + most efficient 
➔ IOD+EDS is slightly more expensive
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[Rowhammer]

Other Forkless Fault Models
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[LVI]

[CFI Hijack]
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Evaluation

Implementation inside BINSEC for x86-32 architecture with SMT solver Bitwuzla

Benchmarks (RQ1 to 3) from [1, 2]

❏ RQ1: is our tool correct and k-complete? In particular, can we find attacks on 
vulnerable programs and prove secure resistant programs?

❏ RQ2: can we scale in number of faults?
❏ RQ3: what is the impact of our optimizations?
❏ Different security scenarios using different fault models
❏ Larger case study of the WooKey bootloader [ANSSI security challenge]
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[1] Dureuil et al. FISSC: A fault injection and simulation secure collection. 2016.
[2] Le et al. Resilience evaluation via symbolic fault injection on intermediate code. 2018
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Security scenarios using different fault models

34

Application Version Attacker model Expected Result

CRT-RSA [1]

basic

1 reset

vulnerable vulnerable 
(BellCore attack)

Shamir vulnerable time-out

Aumuller resistant time-out

Secret keeping 
machine [2]

linked-list 1 bitflip in memory vulnerable vulnerable

array 1 bitflip in memory resistant resistant

array 1 bitflip anywhere ??? vulnerable

SecSwift protection 
[3] (ST Micro.) 

[4] version 
applied to 
VerifyPIN_0

1 arbitrary data 
(same effect than 
test inversion)

??? vulnerable
(early loop exit, 
valid in CFG)

[1] Puys et al. 
High-level simulation for 
multiple fault injection 
evaluation. 2014
[2] Dullien Weird 
machines, exploitability, 
and provable 
unexploitability. 2017
[3] de Ferrière Software 
countermeasures in the 
llvm risc-v compiler. 
2021
[4] Lacombe et al. 
Combining static 
analysis and dynamic 
symbolic execution in a 
toolchain to detect fault 
injection vulnerabilities. 
2021
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Case study

WooKey bootloader [security challenge]: secure data storage by ANSSI, 3.2k loc

Attacker model: 1 arbitrary data — or test inversion with equivalent effect

1. Find known attacks (from source-level analysis)
a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. An incorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate recent countermeasures [1]
a. Evaluate original code → We found an attack not mentioned before
b. Evaluate existing protection scheme [1]
c. Propose and evaluate our own protection scheme
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[1] Lacombe et al. Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection 
vulnerabilities. 2021
[2] Martin et al. Verifying redundant-check based countermeasures: a case study. 2022
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Discussions

Fault models limitations:
❏ Instruction corruption
❏ Spectre attack → speculative rollback vs. max fault

Other analysis techniques:
❏ BMC, CEGAR, … (based on path unrolling) could benefit
❏ Possibility of code instrumentation for reuse of analyzers [Forkless     - Optims    ]
❏ Over-approximation analysis

Other properties:
❏ We consider location reachability for the sake of simplicity
❏ Direct extension to local assertions (buffer-overflow) and finite traces 

(use-after-free)
❏      Possible extension to liveness, hyperproperties, …
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?
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C1: Formal Framework Adversarial Reachability

C2: Efficient Algorithm
Forkless Adversarial Symbolic Execution

(+ 2 optimizations)

Implementation

Evaluation Security Scenarios
Use Case: WooKey 

Bootloader


