
Systematic Evaluation of Automated Tools for Side-Channel
Vulnerabilities Detection

Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel, Sébastien Bardin,
Clémentine Maurice
November 23, 2023

1



Context



Side-channels everywhere

Definition
Side-channels are side-effects in a program’s execution that can leak
information

crypto
algorithm

plaintext ciphertext

key

side channels

2



Side-channels everywhere

Definition
Side-channels are side-effects in a program’s execution that can leak
information

• Focus on microarchitectural side-channels: execution time, cache access
patterns, port congestions, etc

• Requires running on the same hardware as the victim’s program
• Important implications in the era of cloud computing

crypto
algorithm

plaintext ciphertext

key

side channels 2



Constant-time programming

• Root hardware cause unlikely to be fixed

• Countermeasure: constant-time programming
• Ensures the microarchitectural state independent of secret values
• Hard to implement in practice → tools to check this property automatically

Definition
Vulnerability: any branch or memory access that depends on a secret!

3



Constant-time programming

• Root hardware cause unlikely to be fixed
• Countermeasure: constant-time programming
• Ensures the microarchitectural state independent of secret values

• Hard to implement in practice → tools to check this property automatically

Definition
Vulnerability: any branch or memory access that depends on a secret!

3



Constant-time programming

• Root hardware cause unlikely to be fixed
• Countermeasure: constant-time programming
• Ensures the microarchitectural state independent of secret values
• Hard to implement in practice → tools to check this property automatically

Definition
Vulnerability: any branch or memory access that depends on a secret!

3



Research questions

Paradox: many CT bug-finding tools proposed...

...yet most vulnerabilities remain manually found!

4



Research questions

Paradox: many CT bug-finding tools proposed...
...yet most vulnerabilities remain manually found!

4



Contributions

Research questions:

RQ1 How can we compare these frameworks?
RQ2 Could an existing framework have found these vulnerabilities?
RQ3 What features might be missing from existing frameworks?

Contributions:

• (RQ1) Multi-criteria classification of existing tools
• (RQ2) State-of-the-art of recent vulnerabilities
• (RQ1 and RQ3) Unified benchmark of 5 different tools
• (RQ2 and RQ3) Case-study of vulnerabilities from 3 publications

5



Contributions

Research questions:

RQ1 How can we compare these frameworks?
RQ2 Could an existing framework have found these vulnerabilities?
RQ3 What features might be missing from existing frameworks?

Contributions:

• (RQ1) Multi-criteria classification of existing tools
• (RQ2) State-of-the-art of recent vulnerabilities
• (RQ1 and RQ3) Unified benchmark of 5 different tools
• (RQ2 and RQ3) Case-study of vulnerabilities from 3 publications

5



Classification: detection tools

Frameworks

Dynamic
Single trace 4 tools

Trace comparison 11 tools

Static
Symbolic execution 7 tools

Type system 2 tools

Abstract int. 5 tools

Logical reduction 5 tools

• 34 different approaches: 15 dynamic, 19 static
• Broad classification by methods used 6



Classfication criterion

Input
Type of input program supported:
binary, source code, LLVM, etc

Output
Type of information outputed by
the analysis: leakage site,
estimation, witness

Policy
Property checked by the analysis:
constant-time, cache-oblivious,
constant-resource

Scalability
How well the analysis scales: from
simple toy programs to large
cryptographic algorithms

Other criterion: blinding support, soundness, availability

7



Classification: recent vulnerabilities

We compare recent vulnerabilities (post-2017) with past vulnerabilities.

1996 2005 2007 20142011 2017 2019 2021
square-and-multiply

RSA decryption

sliding window
RSA decryption

T-tables
AES encryption

binary GCD
RSA decryption

Montgomery ladder
(timing)

ECDSA signing

Montgomery ladder
(cache)

ECDSA signing

wNAF mult.
ECDSA signing

bignum arithmetic Hash-to-element 
function

binary GCD
RSA keygen

ECDSA signing
SM2 signing

wNAF mult.
SM2 signing

sliding window
RSA keygen

sliding window
SRP protocol

T-tables
PRG

Gaussian sampling

wNAF mult.
key handling
binary GCD
key handling

8



Recent vulnerabilities

New vulnerabilities:
• Arithmetic functions
• Hash-to-element functions
• Functions from new
cryptography

New contexts:
• Key generation
• Key parsing and handling
• Random number generation

Cryptographic primitives themselves are now generally safe... but not always
correctly used. Example: OpenSSL’s BN_FLG_CONSTTIME flag1

Takeaway: most vulnerabilities stem from code already known vulnerable

1García “Side-Channel Analysis and Cryptography Engineering: Getting OpenSSL Closer to Constant-Time (Manuscript)” (University of Tampere 2022)

9



Recent vulnerabilities

New vulnerabilities:
• Arithmetic functions
• Hash-to-element functions
• Functions from new
cryptography

New contexts:
• Key generation
• Key parsing and handling
• Random number generation

Cryptographic primitives themselves are now generally safe... but not always
correctly used. Example: OpenSSL’s BN_FLG_CONSTTIME flag1

Takeaway: most vulnerabilities stem from code already known vulnerable

1García “Side-Channel Analysis and Cryptography Engineering: Getting OpenSSL Closer to Constant-Time (Manuscript)” (University of Tampere 2022)

9



Benchmark setup

Unified benchmark representative of cryptographic operations:

• Tools considered: Binsec/Rel2, Abacus3, ctgrind4, dudect5, Microwalk-CI6

• Total: 25 benchmarks from 3 libraries (OpenSSL, MbedTLS, BearSSL)
• Primitives: symmetric (AES, Chacha20), AEAD, asymmetric (RSA, ECDSA, EdDSA)
• Benchmark design: limits the amount of operations besides the target one
(e.g. encryption)

• Common timeout limit ( ): 1 hour
2Daniel et al. “Binsec/Rel” (S&P 2020)
3Bao et al. “Abacus: Precise Side-Channel Analysis” (ICSE 2021)
4Langley Ctgrind (https://github.com/agl/ctgrind 2010)
5Reparaz et al. “Dude, Is My Code Constant Time?” (DATE 2017)
6Wichelmann et al. “Microwalk-CI” (CCS 2022)

10



Benchmark results

Binsec/Rel2 Abacus ctgrind Microwalk dudect
Benchmark #V T #V T #V T #V T S T
AES-CBC-bearssl (T) 36 0.10 36 3.65 36 0.16 36 1.39 # 100.51
AES-CBC-bearssl (BS) 0 0.31 0 10.69 0 0.17 0 1.55 G#
AES-GCM-openssl (EVP) 0 21.19 0 104.27 70 0.71 8 5.66 G#
RSA-bearssl (OAEP) 2 356.41 87 0.57 0 146.52 G#
RSA-openssl (PKCS) 1 0 551.72 321 1.32 46 52.06 # 618.73
RSA-openssl (OAEP) 1 535.91 546 1.73 61 59.90 # 771.3

• Tools generally agree on symmetric crypto, not for asymmetric crypto
• Support for vector instructions is essential

11



Benchmark results

Binsec/Rel2 Abacus ctgrind Microwalk dudect
Benchmark #V T #V T #V T #V T S T
AES-CBC-bearssl (T) 36 0.10 36 3.65 36 0.16 36 1.39 # 100.51
AES-CBC-bearssl (BS) 0 0.31 0 10.69 0 0.17 0 1.55 G#
AES-GCM-openssl (EVP) 0 21.19 0 104.27 70 0.71 8 5.66 G#
RSA-bearssl (OAEP) 2 356.41 87 0.57 0 146.52 G#
RSA-openssl (PKCS) 1 0 551.72 321 1.32 46 52.06 # 618.73
RSA-openssl (OAEP) 1 535.91 546 1.73 61 59.90 # 771.3

• Tools generally agree on symmetric crypto, not for asymmetric crypto
• Support for vector instructions is essential

11



Vulnerability case-study

Replication of published vulnerabilities:

• 7 vulnerable functions from 3 publications
• Both the function itself and its context are targeted
• Total: 11 additional benchmarks

Example from two vulnerabilities:

• Two vulnerable functions: modular inversion and GCD computation
• Two different contexts: RSA key generation7 and RSA key validation8

7Aldaya et al. “Cache-Timing Attacks on RSA Key Generation” (TCHES 2019)
8García et al. “Certified Side Channels” (USENIX 2020)

12



Case-study results

Binsec/Rel2 Abacus ctgrind Microwalk
Benchmark V T V T V T V T
RSA valid. (MbedTLS) 490.01 ✓ 0.40 ✓ 278.94
GCD 37.74 0.21 ✓ 22.96
modular inversion 242.1 ✓ 0.24 ✓ 141.82
RSA keygen (OpenSSL) 0.17 8.66 6.36 ✓ 842.02
GCD ✓ ✓ 0.19 ✓ 3.61
modular inversion ✓ 0.21 ✓ 5.96

• Tools struggle to scale on these functions, except Microwalk
• Other limitations: support for indirect flows and internal secrets

13



Recommendations

1
Provide support for SIMD
instructions

2
Provide support for indirect flows

3
Provide support for internally
generated secrets (e.g. key
generation)

4
Promote usage of a standardized
benchmark

5
Improve usability for static tools
(e.g. core-dump initialization)

6
Make libraries more static analysis
friendly

14



Conclusion

• We surveyed the state-of-the-art of vulnerability detection tools
• We introduced a common benchmark allowing fair comparison of these tools
• We identified limitations in the current literature and issued
recommendations for the community

• Our benchmark will soon be available on:
https://github.com/ageimer/sok-detection/

Q&A

15

https://github.com/ageimer/sok-detection/

	Context

