
Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh, Marwan Nour, Michaël Marcozzi, Sébastien Bardin

Université Paris-Saclay, CEA, List
Palaiseau, Paris Metropolitan Area, France
first.last@cea.fr

International Fuzzing Workshop (FUZZING) 2022
San Diego, CA, USA

April 24, 2022

Feedback-based Fuzzing Process

Test Cases

Guided Random
Input Generator

Crashes

Crash Triage

Program
execution

MonitorFeedback

Feedback −→ Branch Coverage

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 2 / 24

Problem

Branch Coverage is a shallow metric

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 3 / 24

Goals

Support fine-grained coverage metrics within state-of-the-art fuzzers

Leverage decades of software engineering research on defining such metrics

Make them available in existing fuzzers out-of-the-box (no fuzzer modification)

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 4 / 24

Contributions

Developed a Clang pass to annotate C code with fine-grained coverage criteria

Preliminary evaluation using two state-of-art fuzzers, namely AFL++ and QSYM on
the LAVA-M benchmarks

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 5 / 24

Motivating Example

void check (int current_temp , char *data []) {

i f (current_temp>=50)
{
/ / Deal with appliance running outside
/ / the allowed temperature l imit
. . .

/ / The bug triggers a detectable crash
/ / only when current_temp==50
/ / and when rare specif ic values
/ / are present in data

}
}

=⇒

void check (int current_temp , char *data []) {
. . .
i f (current_temp>=50 != current_temp>50) {
}
. . .

i f (current_temp>=50)
{
/ / Deal with appliance running outside
/ / the allowed temperature l imit
. . .

/ / The bug triggers a detectable crash
/ / only when current_temp==50
/ / and when rare specif ic values
/ / are present in data

}
}

A buggy program checking if an appliance is running outside its allowed temperature range

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 6 / 24

Our Approach

Making test objectives explicit in the code of the fuzzed program with labels

statement_1 ;
i f (x==y && a<b)

{ . . . } ;
statement_3 ;

=⇒

statement_1 ;
/ / l −1: x==y
/ / l −2: x!=y
/ / l −3: a<b
/ / l −4: a>=b
i f (x==y && a<b)

{ . . . } ;
statement_3 ;

Condition Coverage (CC)

statement_1 ;
/ / l −1: x==y && a<b
// l −2: x!=y && a<b
/ / l −3: x==y && a>=b
/ / l −4: x!=y && a>=b
i f (x==y && a<b)

{ . . . } ;
statement_3 ;

Multiple Condition Coverage (MCC)

statement_1 ;
x=a+b ;
statement_3 ;

=⇒
statement_1 ;
x=a*b ;
statement_3 ;

Arithmetic Operator Replacement
(AOR) Mutant

statement_1 ;
/ / l −1: (a+b) ! = (a*b)
x=a+b ;
statement_3 ;

Weak Mutation Coverage (WM)

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 7 / 24

Code Coverage Criteria

i f (A && B) {
/ / Statement−1

}
else {

/ / Statement−2
}

Combination DC CC DCC MCC
A&& B ✓ ✗ ✓ ✓

A&& B ✓ ✓ ✗ ✓

A&& B ✗ ✓ ✗ ✓

A&& B ✗ ✗ ✓ ✓

Decision Coverage (DC)
Condition Coverage (CC)
Decision Condition Coverage (DCC)
Multiple Condition Coverage (MCC)

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 8 / 24

Mutation Coverage

Strong Mutation Coverage (SM): A Mutant M is covered/killed by a test t if the
outputs of p(t) and M(t) differ from each other.
Weak Mutation Coverage (WM): A Mutant M is covered/killed by a test t if the
internal states of P(t) and M(t) differ from each other right after the mutated
location.

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 9 / 24

Fine-grained Coverage-based Fuzzing

CC

MCC
COR

ROR

Side-Effects
Extraction

Program
Annotation

Coverage-based
fuzzers

Source Code

Normalized
Source Code

Annotated
Source Code

Weak Mutation
Operators

AOR

ABS
DC

Workflow

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 10 / 24

Side-Effects

Output: ab ̸= Output: aabbab

statement_1 ;
/ / l −1: print (" a ")
/ / l −2: ! print (" a ")
/ / l −3: print (" b ")
/ / l −4: ! print (" b ")
i f (print ("a") && print ("b"))

{ . . . } ;
statement_3 ;

Program with labels for CC

=⇒

statement_1 ;
i f (print ("a")) { }
i f (! print ("a")) { }
i f (print ("b")) { }
i f (! print ("b")) { }
i f (print ("a") && print ("b"))

{ . . . } ;
statement_3 ;

Annotated program for CC

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 11 / 24

Examples of Side-Effects Extraction (1)

int foo () ;
. . . .
i f (foo ()) { }

=⇒
int foo () ;
. . . .
int temp = foo () ;
i f (temp) { }

Side-effect in an atomic condition at a decision point

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 12 / 24

Examples of Side-Effects Extraction (2)

int foo () ;
. . . .
i f (x>0 && foo ()) { }

=⇒

i f (x>0){
int temp = foo () ;
i f (temp) { }
else
goto label_1 ;
}
label_1 : {
}

Side-effect in the second atomic condition of a lazy boolean operator (AND case)

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 13 / 24

Examples of Side-Effects Extraction (3)

int foo () ;
. . . .
i f (x>0 | | foo ()) { }

=⇒

i f (x>0){
goto label_1 ;
}
else {
int temp = foo () ;
i f (temp)
label_1 : { }
else { }
}

Side-effect in the second atomic condition of a lazy boolean operator (OR case)

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 14 / 24

Program Annotation

statement_1 ;
/ / l −1: x==y
/ / l −2: x!=y
/ / l −3: a<b
/ / l −4: a>=b
i f (x==y && a<b)

{ . . . } ;
statement_3 ;

Program with labels for CC

=⇒

i f (x==y) { }
i f (x!=y) { }
i f (a<b) { }
i f (a>=b) { }
i f (x==y && a<b)

{ . . . } ;
statement_3 ;

Annotated program for CC

Off-the-shelf fuzzers will be able to handle Condition/Branch Coverage
out-of-the-box. Thanks to This!

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 15 / 24

Research Questions

RQ1: Is our code annotation tool effective and useful?
Is it easy to use and does out-of-the-box integration with existing fuzzers work well?
Can it scale to real-world applications?

RQ2: Does our fine-grained approach allow to improve over the baseline state-of-art
fuzzers?

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 16 / 24

Experimental Evaluation

Objective: Fuzzer performance with and without label instrumentation (MCC and
WM)
Coverage-based fuzzers: AFL++ and QSYM
Infrastructure

Intel Skylake CPU, with 192GB memory RAM and 72 logical cores running at 2.6GHz.

Time budget of 24 hours (repeated 5 times)
Benchmark: LAVA-M Benchmark Suite

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 17 / 24

Preliminary Experimental Evaluation

Weak Mutation
Application LOC MCC ABS AOR COR ROR Total
uniq 494 204 61 7 18 45 335
base64 255 26 56 7 6 51 146
md5sum 663 125 113 20 24 79 361
who 622 170 180 15 30 19 414

Number of labels on LAVA-M benchmark suite

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 18 / 24

Preliminary Experimental Evaluation

uniq

base64

md5sum

who

AFL++

1

0

0

1

 AFL++ + lannot

1

2

0

1

QSYM

19

45

44

QSYM + lannot

19

44

42

18871734

Bugs found on the LAVA-M benchmark by fuzzers

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 19 / 24

Time to Bug

Average number of bugs found by QSYM and QSYM+lannot vs time

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 20 / 24

Label Coverage

Cumulative label coverage (in %) vs time

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 21 / 24

Conclusion

Borrow well-established research over fine-grained code coverage criteria and
provide off the shelf support in popular fuzzers
Making test objectives (defined by fine-grained metrics) explicit as new branches in
the target program
Preliminary evaluation on the four LAVA-M benchmark suite
Tested on two fuzzers: AFL++ and QSYM
Preliminary findings:

On average, 100 more bugs being discovered in total
Bugs being uncovered faster during the fuzzing process
Label coverage improvement in two applications

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 22 / 24

Future Direction

Pruning out infeasible labels
Test on Magma (ground-truth benchmark) and real-world applications
Investigate the effect of each coverage criteria on the fuzzing performance
separately
Evaluation on standard metrics as suggested by the fuzzing community (edge
coverage)
Investigate the overhead introduce by labelling in fuzzer throughput

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 23 / 24

"Making current fuzzer support fine-grained coverage metrics out-of-the-box"

Preprint available at https://binsec.github.io/

Follow us on Twitter

@BinsecTool, @BernardNongpoh, @__M4rwan, @michaelmarcozzi

The team is looking for Ph.D. Students and PostDoc
Visit https://binsec.github.io/ for more information

FUZZING 2022 · Fine-Grained Coverage-Based Fuzzing · April 24, 2022 24 / 24

https://binsec.github.io/
https://binsec.github.io/

