Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh, Marwan Nour, Michaél Marcozzi, Sébastien Bardin

Université Paris-Saclay, CEA, List
Palaiseau, Paris Metropolitan Area, France
first.last@cea.fr

International Fuzzing Workshop (FUZZING) 2022
San Diego, CA, USA

April 24, 2022

Feedback-based Fuzzing Process

Test Cases II

Guided Random | _ Feedback
Input Generator |

©

m Feedback — Branch Coverage

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022

Monitor

Program
execution

e

Crashes

Crash Triage

2/24

Problem

is a shallow metric

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing - April 24, 2022 3/24

Goals

m Support within state-of-the-art fuzzers
m Leverage decades of research on defining such metrics
m Make them available in existing fuzzers (no fuzzer modification)

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing - April 24, 2022 4/24

Contributions

m Developed a Clang pass to C code with fine-grained coverage criteria

m Preliminary evaluation using two state-of-art fuzzers, namely and on
the LAVA-M benchmarks

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing « April 24, 2022 5/24

Motivating Example

void check(int current_temp,char *data[]){

void check(int current_temp,char *data[]){ if (current_temp>=50 != current_temp>50) {
if (current_temp>=50)
{
// Deal with appliance running outside if (current_temp>=50)
// the allowed temperature limit {
— // Deal with appliance running outside
// The bug triggers a detectable crash // the allowed temperature limit
// only when current_temp==50
// and when rare specific values // The bug triggers a detectable crash
// are present in data // only when current_temp==50
} // and when rare specific values
} // are present in data
}
}

A buggy program checking if an appliance is running outside its allowed temperature range

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 6/24

Our Approach

Making test objectives explicit in the code of the fuzzed program with

statement_1;
if (x==y && a<b)
{-.h

statement_3;

statement_1;
X=a+b;
statement_3;

statement_1; statement_1;
//L-1: x==y //L-1: x==y && a<b
//L=2: xl=y //L-2: x!=y && a<b
//1=3: a<b //1=-3: x==y && a>=b
//l-4: a>=b //L-4: xl=y && a>=b
if (x==y && a<b) if (x==y && a<b)
statemen’t_S ; statemen,t_B ;
Condition Coverage (CC) Multiple Condition Coverage (MCC)
statement_1; statement_1;
X=a*b; //L-1: (a+b)!=(a*b)
statement_3; X=a+b;

statement_3;

Arithmetic Operator Replacement
(AOR) Mutant Weak Mutation Coverage (WM)

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing « April 24, 2022 7/24

Code Coverage Criteria

Combination | DC | CC | DCC | MCC
if(A/%taBt)e{mentﬂ é && B v | X Ve v
A&&B v |/ X v
elseE/Statement—z A&& B X v X v
: AB | Xx | x| v | v

m Decision Coverage (DC)
m Condition Coverage (CC)
m Decision Condition Coverage (DCC)
m Multiple Condition Coverage (MCQ)

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing - April 24, 2022 8/24

Mutation Coverage

testt

l

testt

|

Program P > Mutant M
statement i - 1; slalemém i-1;
X weak mutation x *z

statement i + 1;

Output P(t)

statement i + 1;

strong mutation +——— Output M(t)

m Strong Mutation Coverage (SM): A Mutant M is covered/killed by a test t if the
outputs of p(t) and M(t) differ from each other.

m Weak Mutation Coverage (WM): A Mutant M is covered/killed by a test t if the
internal states of P(t) and M(t) differ from each other right after the mutated

location.

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing - April 24, 2022

9/24

Fine-grained Coverage-based Fuzzing

Source Code

>

\ 4

Side-Effects
Extraction

D
24

© cc R o
@ bc y o
© mec 2=

Coverage-based
fuzzers

\ 4

> Progra_m
Annotation

Normalized Annotated
Source Code Source Code

Workflow

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 10/ 24

Side-Effects

Output:

statement_1;

//L=-1: print("a")
//L=2: lprint("a")
//L=3: print("b")
//L=4: \print("b")

if(print("a”) && print("b")) —

{--.h
statement_3;

Program with labels for CC

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022

Output:

statement_1;

if (print("a’)) {}

if (!print("a")) {}

if (print("b")) {}

if (!print('b")) {}

if (print("a") && print("b"))

statement_3;

Annotated program for CC

11/24

Examples of Side-Effects Extraction (1)

int foo(); i oo ()2

—

i.r;‘t.temp = foo();

if(foo 0){ } if (temp){ }

Side-effect in an atomic condition at a decision point

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 12 /24

Examples of Side-Effects Extraction (2)

if(x>0){
int temp = foo();

int foo(); ;{s(;emp){}

; goto label_1;

}
label_1:{
}

if (x>0 && foo ()){ }

Side-effect in the second atomic condition of a lazy boolean operator (AND case)

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 13/24

Examples of Side-Effects Extraction (3)

if (x>0){
goto label_1;
}
int foo(); else{
— int temp = foo();
if (x>0 || foo()){ } if (temp)
label_1:{}
else{}
}

Side-effect in the second atomic condition of a lazy boolean operator (OR case)

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 14 /24

Program Annotation

statement_1;

//L=-1: x==y

//L=2: xl=y

//L=3: a<b

//L=4: a>=b

if (x==y && a<b) —

statement_3;
Program with labels for CC

m Off-the-shelf fuzzers will be able to handle
out-of-the-box.

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing « April 24, 2022

it (x==y) {}
if (x!=y) {}
if (a<b) {}
if (a>=b) {}
if (x==y && a<b)

statement_3;

Annotated program for CC

Coverage

15/24

Research Questions

m RO1: Is our code annotation tool and

m Is it easy to use and does out-of-the-box
m Canit to real-world applications?

m RQ2: Does our fine-grained approach allow to
fuzzers?

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing « April 24, 2022

?
with existing fuzzers work well?

over the baseline state-of-art

16 /24

Experimental Evaluation

m Objective: Fuzzer performance with and without label instrumentation (MCC and
WM)
m Coverage-based fuzzers: and

m Infrastructure
m Intel Skylake CPU, with 192GB memory RAM and 72 logical cores running at 2.6GHz.

m Time budget of (repeated 5 times)
m Benchmark: Suite

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 17 /24

Preliminary Experimental Evaluation

Weak Mutation
Application | LOC || MCC | ABS | AOR | COR | ROR | Total
uniq 494 || 204 | 61 7 18 45 335
base64 255 26 56 7 6 51 146
md5sum 663 || 125 | 113 | 20 24 79 361
who 622 || 170 | 180 | 15 30 19 414
Number of on LAVA-M benchmark suite

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022

18/24

Preliminary Experimental Evaluation

uniq

base64

md5sum

H
5
o

SOO$

AFL++

CONONONG,

AFL++ + lannot

O 6 0 O

QsYm

N

QSYM + lannot

88

Bugs found on the LAVA-M benchmark by fuzzers

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022

19/24

Time to Bug

base64 ALL 45 mdssum ALL
441
40
42
o
w40 835
g 2
*
381 30
361
o asvm 25 —— asvm
34] —— QSYM+lannotate —— QSYM+lannotate
012345678 9101112131415161718192021222324 012345678 09101112131415161718192021222324
Time (in hrs) Time (in hrs)
unig ALL who ALL
19/
1800
18 1600
1400
817] %1200
H 2
* 16| & 1000
800
15 600
—— asm —— asvm
14] — QSYM+lannotate 400 —— QSYM-+lannotate
012345678 9101112131415161718192021222324 012345678 9101112131415161718192021222324
Time (in hrs) Time (in hrs)

Average number of bugs found by QSYM and QSYM+lannot vs time

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 20/24

Label Coverage

base64 ALL
18.5]
8
1801
@
g
€175
g
3
S
317.04 —— AFL+ + lannotate
3 —— AFLH
—e— QSYM+lannotate
165 —— QsvM
012345678 9101112131415161718192021222324
Time (in hrs)
unig ALL
18.8]
8
$18s
&
218.4
g
g
8
182
3 e AFLe+ + lannotate
® — AL
18.0 D A——
—*— QSYM
012345678 9101112131415161718192021222324
Time (in hrs)

Label Coverage (in %)
NN N NN
o o o ~ ~
b o o o &

N
o
o

20.5
3 20.0

%)

2o
© ©
o

185

18.0

Label Coverage (in

17.5
17.0

md5sum ALL

—— AFL#+ + lannotate
— AFL++

—e— QSYM-+lannotate
—— QSYM

012345678 9101112131415161718192021222324

Time (in hrs)

who ALL

L

—— AFL#+ + lannotate
—— AFLH+

—e— QSYM+lannotate
—— QsYM

012345678 9101112131415161718192021222324

Time (in hrs)

Cumulative label coverage (in %) vs time

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022

21/24

Conclusion

m Borrow well-established research over fine-grained code coverage criteria and
provide off the shelf support in popular fuzzers

m Making test objectives (defined by fine-grained metrics) explicit as new branches in
the target program

m Preliminary evaluation on the four

m Tested on two fuzzers: and

m Preliminary findings:

m On average, 100 more bugs being discovered in total
m Bugs being uncovered faster during the fuzzing process
m Label coverage improvement in two applications

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing - April 24, 2022 22/24

Future Direction

m Pruning out labels

m Teston (ground-truth benchmark) and applications

m Investigate the effect of each coverage criteria on the
separately

m Evaluation on as suggested by the fuzzing community (edge
coverage)

m Investigate the introduce by labelling in fuzzer throughput

FUZZING 2022 - Fine-Grained Coverage-Based Fuzzing - April 24, 2022 23/24

"Making current fuzzer support fine-grained coverage metrics out-of-the-box"

fm BINSEC

Preprint available at https://binsec.github.io/

Follow us on Twitter y
@BinsecTool, @BernardNongpoh, @__M4rwan, @michaelmarcozzi

The team is looking for Ph.D. Students and PostDoc
Visit https://binsec.github.io/ for more information

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 24/24

https://binsec.github.io/
https://binsec.github.io/

