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Problem

is a shallow metric
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Goals

m Support within state-of-the-art fuzzers
m Leverage decades of research on defining such metrics
m Make them available in existing fuzzers (no fuzzer modification)
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Contributions

m Developed a Clang pass to C code with fine-grained coverage criteria

m Preliminary evaluation using two state-of-art fuzzers, namely and on
the LAVA-M benchmarks
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Motivating Example

void check(int current_temp,char *data[] ){

void check(int current_temp,char *data[] ){ if (current_temp>=50 != current_temp>50) {
if (current_temp>=50)
{
// Deal with appliance running outside if (current_temp>=50)
// the allowed temperature limit {
— // Deal with appliance running outside
// The bug triggers a detectable crash // the allowed temperature limit
// only when current_temp==50
// and when rare specific values // The bug triggers a detectable crash
// are present in data // only when current_temp==50
} // and when rare specific values
} // are present in data
}
}

A buggy program checking if an appliance is running outside its allowed temperature range
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Our Approach

Making test objectives explicit in the code of the fuzzed program with

statement_1;
if (x==y && a<b)
{-.h

statement_3;

statement_1;
X=a+b;
statement_3;

statement_1; statement_1;
//L-1: x==y //L-1: x==y && a<b
//L=2: xl=y //L-2: x!=y && a<b
//1=3: a<b //1=-3: x==y && a>=b
//l-4: a>=b //L-4: xl=y && a>=b
if (x==y && a<b) if (x==y && a<b)
statemen’t_S ; statemen,t_B ;
Condition Coverage (CC) Multiple Condition Coverage (MCC)
statement_1; statement_1;
X=a*b; //L-1: (a+b)!=(a*b)
statement_3; X=a+b;

statement_3;

Arithmetic Operator Replacement
(AOR) Mutant Weak Mutation Coverage (WM)
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Code Coverage Criteria

Combination | DC | CC | DCC | MCC
if(A/%taBt)e{mentﬂ é && B v | X Ve v
A&&B v |/ X v
elseE/Statement—z A&& B X v X v
: AB | Xx | x| v | v

m Decision Coverage (DC)
m Condition Coverage (CC)
m Decision Condition Coverage (DCC)
m Multiple Condition Coverage (MCQ)
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Mutation Coverage

testt

l

testt

|

Program P > Mutant M
statement i - 1; slalemém i-1;
X weak mutation x *z

statement i + 1;

Output P(t)

statement i + 1;

strong mutation +——— Output M(t)

m Strong Mutation Coverage (SM): A Mutant M is covered/killed by a test t if the
outputs of p(t) and M(t) differ from each other.

m Weak Mutation Coverage (WM): A Mutant M is covered/killed by a test t if the
internal states of P(t) and M(t) differ from each other right after the mutated

location.
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Fine-grained Coverage-based Fuzzing

Source Code

>

\ 4

Side-Effects
Extraction

D
24

© cc R o
@ bc y o
© mec 2=

Coverage-based
fuzzers

\ 4

> Progra_m
Annotation

Normalized Annotated
Source Code Source Code

Workflow

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 10/ 24



Side-Effects

Output:

statement_1;

//L=-1: print("a")
//L=2: lprint("a")
//L=3: print("b")
//L=4: \print("b")

if(print("a”) && print("b")) —

{--.h
statement_3;

Program with labels for CC
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Output:

statement_1;

if (print("a’)) {}

if (!print("a")) {}

if (print("b")) {}

if (!print('b")) {}

if (print("a") && print("b"))

statement_3;

Annotated program for CC
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Examples of Side-Effects Extraction (1)

int foo(); i oo ()2

—

i.r;‘t.temp = foo();

if(foo 0){ } if (temp){ }

Side-effect in an atomic condition at a decision point
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Examples of Side-Effects Extraction (2)

if(x>0){
int temp = foo();

int foo(); ;{s(;emp){}

; goto label_1;

}
label_1:{
}

if (x>0 && foo ()){ }

Side-effect in the second atomic condition of a lazy boolean operator (AND case)
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Examples of Side-Effects Extraction (3)

if (x>0){
goto label_1;
}
int foo(); else{
— int temp = foo();
if (x>0 || foo()){ } if (temp)
label_1:{}
else{}
}

Side-effect in the second atomic condition of a lazy boolean operator (OR case)

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 14 /24



Program Annotation

statement_1;

//L=-1: x==y

//L=2: xl=y

//L=3: a<b

//L=4: a>=b

if (x==y && a<b) —

statement_3;
Program with labels for CC

m Off-the-shelf fuzzers will be able to handle
out-of-the-box.
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it (x==y) {}
if (x!=y) {}
if (a<b) {}
if (a>=b) {}
if (x==y && a<b)

statement_3;

Annotated program for CC

Coverage
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Research Questions

m RO1: Is our code annotation tool and

m Is it easy to use and does out-of-the-box
m Canit to real-world applications?

m RQ2: Does our fine-grained approach allow to
fuzzers?
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Experimental Evaluation

m Objective: Fuzzer performance with and without label instrumentation (MCC and
WM)
m Coverage-based fuzzers: and

m Infrastructure
m Intel Skylake CPU, with 192GB memory RAM and 72 logical cores running at 2.6GHz.

m Time budget of (repeated 5 times)
m Benchmark: Suite

FUZZING 2022 . Fine-Grained Coverage-Based Fuzzing - April 24, 2022 17 /24



Preliminary Experimental Evaluation

Weak Mutation
Application | LOC || MCC | ABS | AOR | COR | ROR | Total
uniq 494 || 204 | 61 7 18 45 335
base64 255 26 56 7 6 51 146
md5sum 663 || 125 | 113 | 20 24 79 361
who 622 || 170 | 180 | 15 30 19 414
Number of on LAVA-M benchmark suite
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Preliminary Experimental Evaluation

uniq

base64

md5sum

H
5
o

SOO$

AFL++
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QSYM + lannot

88

Bugs found on the LAVA-M benchmark by fuzzers
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Time to Bug
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Average number of bugs found by QSYM and QSYM+lannot vs time
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Label Coverage
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Conclusion

m Borrow well-established research over fine-grained code coverage criteria and
provide off the shelf support in popular fuzzers

m Making test objectives (defined by fine-grained metrics) explicit as new branches in
the target program

m Preliminary evaluation on the four

m Tested on two fuzzers: and

m Preliminary findings:

m On average, 100 more bugs being discovered in total
m Bugs being uncovered faster during the fuzzing process
m Label coverage improvement in two applications
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Future Direction

m Pruning out labels

m Teston (ground-truth benchmark) and applications

m Investigate the effect of each coverage criteria on the
separately

m Evaluation on as suggested by the fuzzing community (edge
coverage)

m Investigate the introduce by labelling in fuzzer throughput
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"Making current fuzzer support fine-grained coverage metrics out-of-the-box"

fm BINSEC

Preprint available at https://binsec.github.io/

Follow us on Twitter y
@BinsecTool, @BernardNongpoh, @__M4rwan, @michaelmarcozzi

The team is looking for Ph.D. Students and PostDoc
Visit https://binsec.github.io/ for more information
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