Interface Compliance of Inline Assembly:

Automatically Check, Patch and Refine

Frédéric Recoules

Sébastien Bardin
Richard Bonichon
Matthieu Lemerre
Laurent Mounier
Marie-Laure Potet

International Conference on Software Engineering, 2021

Univ. Paris-Saclay, CEA, List

Univ. Paris-Saclay, CEA, List
Tweag 1/0

Univ. Paris-Saclay, CEA, List
Univ. Grenoble Alpes, VERIMAG
Univ. Grenoble Alpes, VERIMAG

Inline assembly example in C code

AO_INLINE int

AQ_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old_vall, AO_t old_val2,
AOD_t new_vall, AO_t new_val2)

char result;
ATl :
i __asm__ __volatile__("xchg %kebx,%6;" /* swap GOT ptr and new_vall */ :
"lock; cmpxchg8b %0; setz %1;" :
"xchg %%kebx,%6;" /* restore ebz and edi */
"=m" (*addr), "=a"(result)
"m" (*addr), "d" (old_val2), "a" (old_vall),

H "c" (new_val2), "D" (new_vall) : "memory"); :
'~||[::.] ---

return (int) result;

Inline assembly is well spread

Tk packages

N Found %86 chunks = full access to hardware
in 202 packages » hand-crafted optimization

S -- = security / obfuscation

7according to Rigger et al., 2018 2

https://stefan-marr.de/downloads/vee18-rigger-et-al-an-analysis-of-x86-64-inline-assembly-in-c-programs.pdf

“GCC-style inline assembly is notoriously

hard to write correctly”

Oliver Stannard,
ARM Senior Software Engineer on llvm threads, 2018

Inline assembly example in C code

AO_INLINE int

AQ_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old_vall, AO_t old_val2,
AOD_t new_vall, AO_t new_val2)

{
char result;
[..]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_vall */
"lock; cmpxchg8b %0; setz %1;"
"xchg %%kebx,%6;" /* restore ebz and edi */
"=m" (*addr), "=a"(result)
"m" (*addr), "d" (old_val2), "a" (old_vall),
"c" (new_val2), "D" (new_vall) : "memory");
[..]
return (int) result;
}

Inline assembly example in C code

AO_INLINE int

AQ_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old_vall, AO_t old_val2,
AOD_t new_vall, AO_t new_val2)

{
char result; Assembly template
[..]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_vall */
"lock; cmpxchg8b %0; setz %1;"
"xchg %kebx,%6;" /* restore ebx and edi */
"=m" (*addr), "=a"(result)
"m" (*addr), "d" (old_val2), "a" (old_vall),
"c" (new_val2), "D" (new_vall) : "memory");
[..]
return (int) result;
}

Inline assembly example in C code

AO_INLINE int

AQ_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old_vall, AO_t old_val2,
AOD_t new_vall, AO_t new_val2)

{
char result; Assembly template
[..]
__asm__ __volatile__("xchg %Zebxi%@j" /* swap GOT ptr and new_vall */
"lock; cmpxc :} setz j i}“
"xchg %%ebxj%gi" /* restore ebz and edi */
"=m" (*addr), "=a"(result)
"m" (*addr), "d" (old_val2), "a" (old_vall),
"c" (new_val2), "D" (new_vall) : "memory");
[..]
return (int) result;
}

Inline assembly example in C code

AO_INLINE int

AQ_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old_vall, AO_t old_val2,
AOD_t new_vall, AO_t new_val2)

{
char result; Assembly template
[..]
__asm__ __volatile__("xchg %%ebx j}63" /* swap GUT ptr and new_vall */
"lock; cmpxc 0
Output list "xchg /,Aebx,%S-“ /* restore ebcc and edi */
P "=p" (+addr), "=a"(result))
"m" (*addr), "d" (old_val2), "a" (old_vall)),
Input ||St "c" (new_val2), "D" (new_vall)| : ("memory");
[..]
return (int) result; Clobber list
}

Inline assembly example in C code

AO_INLINE int

AQ_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old_vall, AO_t old_val2,
AOD_t new_vall, AO_t new_val2)

{

char result; Assembly template

[..]

__asm__ __volatile__(/"xchg //.ebx,76-“ /* swap GUT ptr and new_vall */

"lock; cmpxcthb, -“ %eaX
= hg %%ebx %6"‘ /* Te ebcc and edi */
Output list el A
P \f‘—m"l*addr), "'=a"(result)) /
"a") (old_vall)),
Input list

return (int) result; o . obber list

} hecx Yedi

Y%edx 3

This code works fine prior to GCC 5.0,
then suddenly crashes with a Segmentation fault

= compiler knowledge is limited to the interface
» register allocation and optimizations rely on it

= mismatches code-interface can lead to bugs

A few known inline assembly bugs ¥¥

strcspn
glibc = January 1999, commit 7c97add

= compare_double_and_swap_double
libatomic_ops — Mars 2012, commit 30cealb

= compare_double_and_swap_double
libatomic_ops — September 2012, commit 64d81cd

= bswap
libtomcrypt — November 2012, commit cefff85

Interface compliance does matter

https://github.com/bminor/glibc/commit/7c97addd6fbb44818b6e4d219cdbd189554a10f3
https://github.com/ivmai/libatomic_ops/commit/30cea1b9ea06c4c25cc219e1197dfac8dfa52083
https://github.com/ivmai/libatomic_ops/commit/64d81cd475b07c8a01b91a3be25e20eeca2d27ec
https://github.com/libtom/libtomcrypt/commit/cefff85550786ec869b39c0cb4a5904e88c84319

Today’s challenge :
Interface Compliance

Define — Check — Patch

Goal & challenges

Define

must be built on a currently missing proper formalization
indeed there is not even a complete documentation...

Check, Patch & Refine

must be able to check whether an assembly chunk is compliant
ideally, should suggest a patch for the non compliant ones

Widely applicable

must be compiler & architecture agnostic (Gé?f RS (inteD m Elirt
lece) <

Our contributions (1/2)

A and comprehensive

» support GCC, Clang and mostly icc

] condition & condition

A method to , and the interface

= dataflow analysis + dedicated optimizations

= infer an over-approximation of the ideal interface

Our contributions (2/2)

Thorough experiments of our prototype

= 2.6k™ real-world assembly chunks ()
» 2183 issues, including issues
= 2000 patches, including fixes

7 packages have already accepted the fixes

https://github.com/binsec/icse2021-artifact992 [LREURFIAVIENELERTINvr]

A study of current inline assembly bad coding practices

= 6 recurrent patterns yield 90% of issues

= 5 patterns rely on assumptions
(80% of severe issues)

https://github.com/binsec/icse2021-artifact992

GNU documentation is

informal & incomplete

» no standard, only based on GCC implementation
= non documented behaviors may change at any time

» Clang and icc follow “what they understood”

Looking for the missing formalism

asm

Syntax GNU

volatile (

((C° : asm®
lock;

cmpxchgl %3, %0;

setz 1

: vem! (+addr),
"=q" (result)
"m" (+addr),
Tt (new_val),
"a" (old)

: "memory"

\
v

\

4 domainygs

extract
c* = [C°I%es

model

D(%0) = { *(ebx), .. }
D(%1) = { %eax, %ebx, %ecx, %edx }
D(43) = { %eax, %ebx, %ecx, %edx,

Yesi, Yiedi, %ebp }
D(/4) = { %eax }

c* : asm®
z +— Yeax = J0
Yeax «— o
%0 — 43
W
I°: interface
B® = { (%0, *addr, indirect),
(%1, result, direct) }
B' = { (%0, *addr, indirect),
(%3, new_val, direct),
(%4, o014, direct) }
F = false /* no memory separation */
s = { } /* no clobber registers */
st = {

T1 = { %0 — *(%ebx), %1 — Y%eax,
%3 v Yedx, %4 + Yeax },
Ty = { %0 — *(%ebx), %1 — Y%ecx,

%3 > %hebp, %4 — Y%eax },

Interface compliance properties

Frame-write :

“Only clobber registers and output location are allowed to be modified
by the assembly template”

Frame-read :

“All read values must be initialized — only input dependent values are allowed in output
productions, memory addressing and branching condition”

Unicity :

“The instruction behavior must not depend of the compiler choices”

Interface compliance properties

Frame-write : V1 ¢ B°US® S(1) = exec(S, C'<T>)(1)
“Only clobber registers and output location are allowed to be modified

by the assembly template”

¢
Frame-read : exec(S,, C'<T>) =, exec(S;, C'<T>)

“All read values must be initialized — only input dependent values are allowed in output
productions, memory addressing and branching condition”

4
Unicity : exec(S;, C'<T;>) 223’52 exec(Sy, C'<Ty>)

“The instruction behavior must not depend of the compiler choices”
(Unicity implies Frame-read)

Our prototype RUSTINA

enon

ah als
GNU template Template C° INSTANT;:TSE Asm C* _S;TANN;I:C IR C*
C + |————— e — -
GNU interface Interface I° -

Py
Q
-

0 INFER
—— +——— Interface I° P———
e @

Experimental evaluation

00 How does perform RUSTINA at checking and patching?
[0 Why so many issues do not turn more often into bugs?

[0 What is the real impact of the reported issues?

(more research questions addressed in the paper)

Checking and patching statistics

Initial Patched Over 2656 chunks

fully compliant

code code
Initial
Found issues 2183 183 -
significant issues 986 183 "
frame-write 1718 0 Patched . o
U - flag register clobbered 1197 0
© - read-only input clobbered 17 0
© — unbound register clobbered 436 0 SRS
© - unbound memory access 68 0 Over 202 packages
frame-read 379 183 fully compliant
© - non written write-only output 19 0 Initial
© - unbound register read 183 183
© - unbound memory access 177 0
unicity 86 0

serious issues

Total time: 2min — Average time per chunk: 40ms benign issues 10

Common issues (90%)
do not break very often

Are they somehow under

“implicit protections”?

What if we stress out the compilation
process? (“copy-paste”, -03, -1to, etc.)

Common bad coding practices

:

6 recurrent patterns yield 90% of issues
5 of them can lead to bugs

Pattern Omitted clobber Implicit protection Robust? # issues
P1- ‘'cc" compiler choice 1197
P2 - Yebx register compiler choice © (GCC > 5) + ¥¥ 30
P3 - Yesp register compiler choice O (GCC > 4.6) + ¥ 5
P4 — "memory" function embedding @ (inlining, cloning) + ¥ 285
P5 - MMX register ABI @ (inlining, cloning) 363
P6 — XMM register compiler option O (cloning) 109
792 80%

does not break — @ : has been broken — ¥¥ : known bug

11

Real-life impact of RUSTINA

Submitted patches (applied or in review)

= 114 faulty chunks in 8 packages

. severe issues (55%)
ALSA
libtomcrypt
« DFFMPEG
haproxy

UDPCast X264 libatomic_ops

12

= Have a look @ the paper
= Have a look @ the artifact
= Have a look @ #:BINSEC

Interface compliance is hard,

it matters but it is no longer a problem
thanks to RUSTINA

If you have any question,
do not hesitate!

frederic.recoules@cea.fr https://binsec.github.io/

https://conf.researchr.org/details/icse-2021/icse-2021-papers/82/Interface-Compliance-of-Inline-Assembly-Automatically-Check-Patch-and-Refine
https://binsec.github.io/new/publication/1970/01/01/nutshell-icse-21.html
https://binsec.github.io/
mailto:frederic.recoules@cea.fr

