Not All Bugs Are Created Equal,
But Robust Reachability Can Tell The Difference

Guillaume Girol" Benjamin Farinier? Sébastien Bardin’)
onctio

. . . . tifag N
TCEA, List, Université Paris-Saclay, France ® %N*c’?“

e i S\ x»)2
2TU Wien, Vienna, Austria (’..6/%1“«‘ 4}?

list %
unversie (

Formal Verification

eoomo © input

Software Analyzers

------------ *i -/

KAA O infer

& |ava PathFinder
Astrée CBMC

Formal Verification

o © bad input
Sage Fix
ey human| PTE * Foo();
............ >_> - -ptr->bar();
PP +if (ptr) ptr->bar();
SLAM return;
e Dl el R \ NG /
KAA, O Infer 75

«* |ava PathFinder
Astrée CBMC

Formal Verification

om0 © bad input

sssssssssssssssss

= foo();
->bar();
(ptr) ptr->bar();
urn;

Reachability
Fruitful since the 70’s

b4 \ 7 /
KAA O infer | 7%<
«* |ava PathFinder
Astrée CBMC

Problem 1 with reachability in bug finding

The number of issues found can be overwhelming

ALL THE v Al
pezcuw,b HUis | ﬁ%w”

Q

Prioritisation?)

Problem 2 with reachability: false positives in security-oriented bug finding

attacker
envwonment
¢]

What reachability tells us: one bad input
CVE-2019-20839 is triggered whenever

: — @
the attacker passes /longpath 2 § ,
- the is 0x01010180 2 @
: starts at Oxfff00000 °’a

Real life false positives _

Formally reachable, but No gugrantee
in reality, cannot be triggered reliably N o)
p &

False positives in practice

- Randomisation-based protections (stack canaries, ASLR, ...)
Bug only works for the right randomness FALSE POSITIVES

- Bugs involving uninitialized memory
Bug only works for the right initial memory

- Undefined behavior
Even exists for compiled executables!

- Stubbing I/0 or opaque functions with symbolic output
Bug only works if the hash function is attacker-chosen

- Underspecified initial state
Under-constrained symbolic execution

- A formal notion refining reachability without false positives
Focus effort on more severe bugs first

- Amenable to automated verification
Should be provable on compiled executables

Contributions

- Defining robust reachability, a way to draw a line between “reliably
reachable” and “reachable but a false positive”.
Comparison to Non-Interference, HyperLTL, ...

- Expanding Symbolic Execution and Bounded Model Checking to prove robust
reachability
Standard optimisations (path pruning, concretisation) must be revisited
Path merging increases deduction power

- A prototype based on #: BINSEC, experimental evaluation and benchmark
New insight on the exploitability of 4 CVEs
Reasonable overhead

Defining Robust Reachability

attacker

'_ environment
'4

/)sm

Choose a threat Model

Partition input into controlled input (@) and
uncontrolled input]

= S '
([@,X) - ¢ means “with inputs (@ and [x], the program 3%
o
((

executes code at ¢”

Reachability of Robust Reachability

location ¢ of ¢

3(al, . (al, X)) - ¢ Javi.(ax) - ¢

Guarinteed

vy
o

Keeping it provable

Scope

»n

‘ chooses £ chooses I
—— —_———

attacker controlled input environment uncontrolled input program

No interactive systems Would require additional quantifier alternations

No quantitative approach Would require a new kind of model counters

(We tried briefly, and it looks prohibitively expensive)

Alternative formalisms (1): Non Interference

Behavior does not depend on Implies reachability

Non Interference for all (@) no
Robust reachability for a single (@) yes

Non-interference + Reachability = Robust Reachability

Alternative formalisms (2)

As a hyperproperty, robust reachability is pure hyperliveness
- not a trace property (most studied case)
- not (k-)hypersafety (= not solvable with self-composition)
Temporal logics: Expressible in CTL, HyperLTL, but no provers for generic
programming languages

q original system
Choose < Q original system

Robust reachability of £ in CTL:
q original system
Choose (]
Choose < Q original system EXAF/

10

Alternative formalisms (2)

As a hyperproperty, robust reachability is pure hyperliveness
- not a trace property (most studied case)
- not (k-)hypersafety (= not solvable with self-composition)
Temporal logics: Expressible in CTL, HyperLTL, but no provers for generic
programming languages

‘ original system
Chogse Xl)@ NoO possible reuse

Automatically proving robust reachability on programs requires a
dedicated proof method

forl

Choose q original system EXAFC

10

Proving robust reachability: universally quantified SMT formulas

Unrolled Reachability
input (a,x) — Ja,x.¢(a,x)
a,x.e(a,x
/ q)(G,X) ’
BMC
x>0

S

"

Proving robust reachability: universally quantified SMT formulas

Unrolled ™
rnror em Reachability
input (a,x) progra
o(a,x
x>0 Robust

reachability

Ja.vx.e(a,x)

"

Proving robust reachability: universally quantified SMT formulas

U:]rorll?: Reachability
input (a,x) progra SN

/ 0(a,x) Ja,x.¢(a,x)
BMC \

) S—

x>0 Robust
> reachability

| el 30.¥x.0(a,X)
SE

"

Proving robust reachability: universally quantified SMT formulas

U:]rorll?: Reachability
input (a,x) progra SN

da,x.p(a,x
/ (P(G,X) (p()
BMC ><
Robust

x>0
> reachability

| el 30.¥x.0(a,X)
SE

"

Proving robust reachability: universally quantified SMT formulas

input (a,x)

e

>X>O

R

Unrolled Reachability
program
_—

¢(a,x)

\——

®(a,x)

<

incomplete!

da,x.¢(a,x)

Robust
reachability

Ja.vx.e(a,x)

"

Proving robust reachability: universally quantified SMT formulas

U:]rorll?: Reachability
input (a,x) progra _

da,x.e(a,x
/ (P(G,X) (p()
BMC ><
Robust

x>0
> reachability

/ o(a,x) da.vx.e(a,x)
SE

"

Proving robust reachability: universally quantified SMT formulas

input (a,x)

)

e

>0

R

Unrolled
program

¢(a,x) ><
®(a,x)

Path merging

Optional in SE
Required for completen

Reachability

da,x.¢(a,x)

Robust

reachability

Ja.Vx.e(a,x)

essin Robust SE

"

Proving robust reachability: other adaptions

assume y: Ja.Vx.y = ¢ instead of Ja.Vx.y A ¢
path pruning: no extra quantifier (or lose completeness)

concretization: only works on controlled values

3@.VR.¢ 222 5@, VRLE = 90 Ag
I

X|to 90

Other more advanced enhancements to SE probably also need to be revisited

12

Proof of concept implementation

- Discharges quantified SMT(arrays+bitvectors) formulas to Z3
- Evaluated against 46 reachability problems including CVE replays and CTFs

| BMC | SE || RBMC | RSE | RSE+E

merging
Correct 22 30 || 32 37 4y
False positive 14 16
Inconclusive 1 7
Resource exhaustion || 10 13 2 2

Robust variants of SE and BMC

No false positives, more time-outs/memory-outs, 15% median slowdown]

13

Case studies: 4 CVEs

CVE-2019-14192 in U-boot (remote DoS: unbounded memcpy) Robustly reachable
CVE-2019-19307 in Mongoose (remote DoS: infinite loop) Robustly reachable

CVE-2019-20839 in libvncserver (local exploit: stack buffer overflow)
Without stack canaries: Robustly reachable
With stack canaries: Timeout

CVE-2019-19307 in Doas (local privilege escalation: use of uninitialized memory)
Doas = OpenBSD’s equivalent of sudo
Depends on the configuration file /etc/doas.conf
Use robust reachability in a more creative way

CVE-2019-19307 in Doas: beyond attacker-controlled inputs

Reinterpret “controlled input” differently:

the controls nothing, only executes

the controls the configuration file: [controlled input]
the sets initial memory content etc: [uncontrolled inputs]

The meaning of robust reachability here

Are there configuration files which make the attacker win all the time?
Yes: for example typo “permit ww” instead of “permit www"

15

CVE-2019-19307 in Doas: beyond attacker-controlled inputs

Reinterpret “controlled input” differently:

the controls nothing, only executes
the controls the configuration file: [controlled input]

the sets initial memory content etc: [uncontrolled inputs]

The meaning of robust reachability here

Are there configuration files which make the attacker win all the time?
Yes: for example typo “permit ww” instead of “permit www"

Versatility of Robust Reachability

“Controlled inputs” are not limited to
“controlled by the attacker” -

Related work (1): Approximating security-relevance

exploit works reliably

Automatic Exploit Generation
robustly reachable exploit generated k--| (Avgerinos et al, 2014)
(Heelan, 2013)

more serious vulnerability
___________________>

Related work (2): Quantitative approaches

Qualitative: less precise Quantitative: slower
Model Checking Probabilistic Model Checking
Non-Interference Quantitative Information Flow

Robust Reachability Future work?

A small experiment suggests solver queries would be orders of magnitude slower .

Related work (3)

Flakiness (O'Hearn, 2019) Effort to get rid of tests with non deterministic
outcomes: particular case of non-robustness

Fairness in Model Checking (Hart et al., 1983) Same high-level idea: filter-out
“uninteresting” behaviors

Higher order test generation (Godefroid, 2011) ¥3 queries to soundly
approximate opaque functions (like hash functions) in Dynamic SE

Take Away

IDONTAIWAYS
_FINDBUGS

Standard reachability leads to false positives: bugs that
are technically reachable, but unreproducible in practice

Robust reachability is a stronger property expressing
that the attacker can reach the target reliably

Can be proved by variants of SE and BMC with reasonable
overhead, but usual optimisations must be revisited

b
*

BUT WHEN {'D0, THEY ARE
" ROBUSTLY REACHABLE

Source code: https://github.com/binsec/cav2021-artifacts
Precompiled artifacts: https://zenodo.org/record/4721753

https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753

