
Not All Bugs Are Created Equal,
But Robust Reachability Can Tell The Difference

Guillaume Girol1 Benjamin Farinier2 Sébastien Bardin1

1CEA, List, Université Paris-Saclay, France

2TU Wien, Vienna, Austria



Formal Verification

✓

Fix

ptr = foo();
-ptr->bar();
+if (ptr) ptr->bar();
return;

input

human

Infer

Java PathFinder
Astrée CBMC

Sage

Core concept

Reachability
Fruitful since the 70’s

1



Formal Verification

Fix

ptr = foo();
-ptr->bar();
+if (ptr) ptr->bar();
return;

bad input

human

Infer

Java PathFinder
Astrée CBMC

Sage

Core concept

Reachability
Fruitful since the 70’s

1



Formal Verification

Fix

ptr = foo();
-ptr->bar();
+if (ptr) ptr->bar();
return;

bad input

human

Infer

Java PathFinder
Astrée CBMC

Sage

Core concept

Reachability
Fruitful since the 70’s

1



Problem 1 with reachability in bug finding

The number of issues found can be overwhelming

Prioritisation? 2



Problem 2 with reachability: false positives in security-oriented bug finding

What reachability tells us: one bad input
CVE-2019-20839 is triggered whenever

• the attacker passes argument /longpath
• the stack canary is 0x01010180
• stack starts at 0xfff00000

Real life false positives

Formally reachable, but
in reality, cannot be triggered reliably

 

</>

attacker
environment

argum
ent

/longpath

ra
nd
om

sta
ck
&
ca
na
ry

No guarantee

3



False positives in practice

• Randomisation-based protections (stack canaries, ASLR, ...)
Bug only works for the right randomness

• Bugs involving uninitialized memory
Bug only works for the right initial memory

• Undefined behavior
Even exists for compiled executables!

• Stubbing I/O or opaque functions with symbolic output
Bug only works if the hash function is attacker-chosen

• Underspecified initial state
Under-constrained symbolic execution

4



Our Goals

• A formal notion refining reachability without false positives
Focus effort on more severe bugs first

• Amenable to automated verification
Should be provable on compiled executables

5



Contributions

• Defining robust reachability, a way to draw a line between “reliably
reachable” and “reachable but a false positive”.

Comparison to Non-Interference, HyperLTL, …

• Expanding Symbolic Execution and Bounded Model Checking to prove robust
reachability

Standard optimisations (path pruning, concretisation) must be revisited
Path merging increases deduction power

• A prototype based on , experimental evaluation and benchmark
New insight on the exploitability of 4 CVEs
Reasonable overhead

6



Defining Robust Reachability

Choose a threat Model
Partition input into controlled input a and
uncontrolled input x

(a , x ) ⊢ ℓ means “with inputs a and x , the program
executes code at ℓ”

Reachability of
location ℓ

∃ a , x .(a , x) ⊢ ℓ

Robust Reachability
of ℓ

∃a.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ x.(a, x)⊢ ℓ

 

</>

attacker
environment

argum
ent

/longpath

an
y

sta
ck
&
ca
na
ry

Guaranteed

7



Keeping it provable

Scope
 

</>
attacker

chooses−−−−−−−−−→
controlled input environment

chooses−−−−−−−−−−−→
uncontrolled input program

No interactive systems Would require additional quantifier alternations
No quantitative approach Would require a new kind of model counters

(We tried briefly, and it looks prohibitively expensive)

8



Alternative formalisms (1): Non Interference

Behavior does not depend on x Implies reachability

Non Interference for all a no
Robust reachability for a single a yes

Non-interference+Reachability⇒
⇍
Robust Reachability

9



Alternative formalisms (2)

As a hyperproperty, robust reachability is pure hyperliveness
• not a trace property (most studied case)
• not (k-)hypersafety (⇒ not solvable with self-composition)

Temporal logics: Expressible in CTL, HyperLTL, but no provers for generic
programming languages

Choose a

a1 Choose x

x1 original system

x2 original system

…

a2 Choose x

x1 original system

x2 original system

…

…

Robust reachability of ℓ in CTL:

EXAFℓ

No possible reuse

Automatically proving robust reachability on programs requires a
dedicated proof method

10



Alternative formalisms (2)

As a hyperproperty, robust reachability is pure hyperliveness
• not a trace property (most studied case)
• not (k-)hypersafety (⇒ not solvable with self-composition)

Temporal logics: Expressible in CTL, HyperLTL, but no provers for generic
programming languages

Choose a

a1 Choose x

x1 original system

x2 original system

…

a2 Choose x

x1 original system

x2 original system

…

…

Robust reachability of ℓ in CTL:

EXAFℓ

No possible reuse

Automatically proving robust reachability on programs requires a
dedicated proof method

10



Proving robust reachability: universally quantified SMT formulas

input (a,x)

ℓ

x> 0

Unrolled
program

φ(a,x)
BMC

Reachability

∃a,x.φ(a,x)

Path merging

Optional in SE
Required for completeness in Robust SE

11



Proving robust reachability: universally quantified SMT formulas

input (a,x)

ℓ

x> 0

Unrolled
program

φ(a,x)
BMC

Reachability

∃a,x.φ(a,x)

Robust
reachability

∃a.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀x.φ(a,x)

Path merging

Optional in SE
Required for completeness in Robust SE

11



Proving robust reachability: universally quantified SMT formulas

input (a,x)

ℓ

x> 0

Unrolled
program

φ(a,x)
BMC

Reachability

∃a,x.φ(a,x)

Robust
reachability

∃a.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀x.φ(a,x)

Unrolled
path

φ(a,x)
SE

Path merging

Optional in SE
Required for completeness in Robust SE

11



Proving robust reachability: universally quantified SMT formulas

input (a,x)

ℓ

x> 0

Unrolled
program

φ(a,x)
BMC

Reachability

∃a,x.φ(a,x)

Robust
reachability

∃a.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀x.φ(a,x)

Unrolled
path

φ(a,x)
SE

Path merging

Optional in SE
Required for completeness in Robust SE

11



Proving robust reachability: universally quantified SMT formulas

input (a,x)

ℓ

x> 0

Unrolled
program

φ(a,x)
BMC

Reachability

∃a,x.φ(a,x)

Robust
reachability

∃a.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀x.φ(a,x)

Unrolled
path

φ(a,x)
SE

incomplete!

Path merging

Optional in SE
Required for completeness in Robust SE

11



Proving robust reachability: universally quantified SMT formulas

input (a,x)

ℓ

x> 0

Unrolled
program

φ(a,x)
BMC

Reachability

∃a,x.φ(a,x)

Robust
reachability

∃a.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀x.φ(a,x)

Merged
paths

φ(a,x)
SE

Path merging

Optional in SE
Required for completeness in Robust SE

11



Proving robust reachability: universally quantified SMT formulas

input (a,x)

ℓ

x> 0

Unrolled
program

φ(a,x)
BMC

Reachability

∃a,x.φ(a,x)

Robust
reachability

∃a.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀x.φ(a,x)

Merged
paths

φ(a,x)
SE

Path merging

Optional in SE
Required for completeness in Robust SE

11



Proving robust reachability: other adaptions

assume ψ : ∃a.∀x.ψ ⇒ ϕ instead of ∃a.∀x.ψ ∧ϕ

path pruning: no extra quantifier (or lose completeness)
concretization: only works on controlled values

∃a .∀ x .φ concretize−−−−−−→
x to 90

∃a .∀ x . x = 90︸ ︷︷ ︸
⊥

∧φ

Other more advanced enhancements to SE probably also need to be revisited

12



Proof of concept implementation

• A binary-level Robust SE and Robust BMC engine based on
• Discharges quantified SMT(arrays+bitvectors) formulas to Z3
• Evaluated against 46 reachability problems including CVE replays and CTFs

BMC SE RBMC RSE RSE+path
merging

Correct 22 30 32 37 44
False positive 14 16
Inconclusive 1 7
Resource exhaustion 10 13 2 2

Robust variants of SE and BMC
No false positives, more time-outs/memory-outs, 15% median slowdown

13



Case studies: 4 CVEs

CVE-2019-14192 in U-boot (remote DoS: unbounded memcpy) Robustly reachable
CVE-2019-19307 in Mongoose (remote DoS: infinite loop) Robustly reachable
CVE-2019-20839 in libvncserver (local exploit: stack buffer overflow)

Without stack canaries: Robustly reachable
With stack canaries: Timeout

CVE-2019-19307 in Doas (local privilege escalation: use of uninitialized memory)
Doas = OpenBSD’s equivalent of sudo
Depends on the configuration file /etc/doas.conf
Use robust reachability in a more creative way

14



CVE-2019-19307 in Doas: beyond attacker-controlled inputs

Reinterpret “controlled input” differently:

the attacker controls nothing, only executes
the sysadmin controls the configuration file: controlled input
the environment sets initial memory content etc: uncontrolled inputs

The meaning of robust reachability here

Are there configuration files which make the attacker win all the time?
Yes: for example typo “permit ww” instead of “permit www”

Versatility of Robust Reachability

“Controlled inputs” are not limited to
“controlled by the attacker”

15



CVE-2019-19307 in Doas: beyond attacker-controlled inputs

Reinterpret “controlled input” differently:

the attacker controls nothing, only executes
the sysadmin controls the configuration file: controlled input
the environment sets initial memory content etc: uncontrolled inputs

The meaning of robust reachability here

Are there configuration files which make the attacker win all the time?
Yes: for example typo “permit ww” instead of “permit www”

Versatility of Robust Reachability

“Controlled inputs” are not limited to
“controlled by the attacker”

15



Related work (1): Approximating security-relevance

reachable

robustly reachable exploit generated

exploit works reliably

m
or
e
se
rio
us
vu
ln
er
ab
ili
ty

Automatic Exploit Generation
(Avgerinos et al, 2014)
(Heelan, 2013)

16



Related work (2): Quantitative approaches

Pri
sm

Flowcheck

Mic
row

alk

Qualitative: less precise Quantitative: slower

Model Checking Probabilistic Model Checking
Non-Interference Quantitative Information Flow
Robust Reachability Future work?

A small experiment suggests solver queries would be orders of magnitude slower 17



Related work (3)

Flakiness (O’Hearn, 2019) Effort to get rid of tests with non deterministic
outcomes: particular case of non-robustness

Fairness in Model Checking (Hart et al., 1983) Same high-level idea: filter-out
“uninteresting” behaviors

Higher order test generation (Godefroid, 2011) ∀∃ queries to soundly
approximate opaque functions (like hash functions) in Dynamic SE

18



Take Away

Standard reachability leads to false positives: bugs that
are technically reachable, but unreproducible in practice

Robust reachability is a stronger property expressing
that the attacker can reach the target reliably

Can be proved by variants of SE and BMC with reasonable
overhead, but usual optimisations must be revisited

Source code: https://github.com/binsec/cav2021-artifacts
Precompiled artifacts: https://zenodo.org/record/4721753

19

https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753

