Not All Bugs Are Created Equal,
But Robust Reachability Can Tell The Difference
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Formal Verification
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Reachability
Fruitful since the 70’s
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Problem 1 with reachability in bug finding

The number of issues found can be overwhelming
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Problem 2 with reachability: false positives in security-oriented bug finding
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False positives in practice

- Randomisation-based protections (stack canaries, ASLR, ...)
Bug only works for the right randomness FALSE POSITIVES

- Bugs involving uninitialized memory
Bug only works for the right initial memory

- Undefined behavior
Even exists for compiled executables!

- Stubbing I/0 or opaque functions with symbolic output
Bug only works if the hash function is attacker-chosen

- Underspecified initial state
Under-constrained symbolic execution



- A formal notion refining reachability without false positives
Focus effort on more severe bugs first

- Amenable to automated verification
Should be provable on compiled executables




Contributions

- Defining robust reachability, a way to draw a line between “reliably
reachable” and “reachable but a false positive”.
Comparison to Non-Interference, HyperLTL, ...

- Expanding Symbolic Execution and Bounded Model Checking to prove robust
reachability
Standard optimisations (path pruning, concretisation) must be revisited
Path merging increases deduction power

- A prototype based on #: BINSEC, experimental evaluation and benchmark
New insight on the exploitability of 4 CVEs
Reasonable overhead




Defining Robust Reachability
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Keeping it provable

Scope
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attacker controlled input environment uncontrolled input program

No interactive systems Would require additional quantifier alternations

No quantitative approach Would require a new kind of model counters

(We tried briefly, and it looks prohibitively expensive)



Alternative formalisms (1): Non Interference

Behavior does not depend on Implies reachability

Non Interference for all (@) no
Robust reachability for a single (@) yes

Non-interference + Reachability = Robust Reachability




Alternative formalisms (2)

As a hyperproperty, robust reachability is pure hyperliveness
- not a trace property (most studied case)
- not (k-)hypersafety (= not solvable with self-composition)
Temporal logics: Expressible in CTL, HyperLTL, but no provers for generic
programming languages
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Alternative formalisms (2)

As a hyperproperty, robust reachability is pure hyperliveness
- not a trace property (most studied case)
- not (k-)hypersafety (= not solvable with self-composition)
Temporal logics: Expressible in CTL, HyperLTL, but no provers for generic
programming languages

‘ original system
Chogse Xl )@ NoO possible reuse

Automatically proving robust reachability on programs requires a
dedicated proof method
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Proving robust reachability: universally quantified SMT formulas

Unrolled Reachability
input (a,x) — Ja,x.¢(a,x)
a,x.e(a,x
/ q)(G,X) ’
BMC
x>0

S

"



Proving robust reachability: universally quantified SMT formulas
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Proving robust reachability: universally quantified SMT formulas
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Proving robust reachability: universally quantified SMT formulas
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Proving robust reachability: universally quantified SMT formulas
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Proving robust reachability: other adaptions

assume y: Ja.Vx.y = ¢ instead of Ja.Vx.y A ¢
path pruning: no extra quantifier (or lose completeness)

concretization: only works on controlled values
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Other more advanced enhancements to SE probably also need to be revisited
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Proof of concept implementation

- Discharges quantified SMT(arrays+bitvectors) formulas to Z3
- Evaluated against 46 reachability problems including CVE replays and CTFs

| BMC | SE || RBMC | RSE | RSE+E

merging
Correct 22 30 || 32 37 4y
False positive 14 16
Inconclusive 1 7
Resource exhaustion || 10 13 2 2

Robust variants of SE and BMC

No false positives, more time-outs/memory-outs, 15% median slowdown ]
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Case studies: 4 CVEs

CVE-2019-14192 in U-boot (remote DoS: unbounded memcpy) Robustly reachable
CVE-2019-19307 in Mongoose (remote DoS: infinite loop) Robustly reachable

CVE-2019-20839 in libvncserver (local exploit: stack buffer overflow)
Without stack canaries: Robustly reachable
With stack canaries: Timeout

CVE-2019-19307 in Doas (local privilege escalation: use of uninitialized memory)
Doas = OpenBSD’s equivalent of sudo
Depends on the configuration file /etc/doas.conf
Use robust reachability in a more creative way



CVE-2019-19307 in Doas: beyond attacker-controlled inputs

Reinterpret “controlled input” differently:

the controls nothing, only executes

the controls the configuration file: [controlled input]
the sets initial memory content etc: [uncontrolled inputs]

The meaning of robust reachability here

Are there configuration files which make the attacker win all the time?
Yes: for example typo “permit ww” instead of “permit www"
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CVE-2019-19307 in Doas: beyond attacker-controlled inputs

Reinterpret “controlled input” differently:

the controls nothing, only executes
the controls the configuration file: [controlled input]

the sets initial memory content etc: [uncontrolled inputs]

The meaning of robust reachability here

Are there configuration files which make the attacker win all the time?
Yes: for example typo “permit ww” instead of “permit www"

Versatility of Robust Reachability

“Controlled inputs” are not limited to
“controlled by the attacker” -




Related work (1): Approximating security-relevance

exploit works reliably

Automatic Exploit Generation
robustly reachable exploit generated k--|  (Avgerinos et al, 2014)
(Heelan, 2013)

more serious vulnerability
___________________>



Related work (2): Quantitative approaches

Qualitative: less precise Quantitative: slower
Model Checking Probabilistic Model Checking
Non-Interference Quantitative Information Flow

Robust Reachability Future work?

A small experiment suggests solver queries would be orders of magnitude slower .



Related work (3)

Flakiness (O'Hearn, 2019) Effort to get rid of tests with non deterministic
outcomes: particular case of non-robustness

Fairness in Model Checking (Hart et al., 1983) Same high-level idea: filter-out
“uninteresting” behaviors

Higher order test generation (Godefroid, 2011) ¥3 queries to soundly
approximate opaque functions (like hash functions) in Dynamic SE



Take Away

IDONTAIWAYS
_FINDBUGS

Standard reachability leads to false positives: bugs that
are technically reachable, but unreproducible in practice

Robust reachability is a stronger property expressing
that the attacker can reach the target reliably

Can be proved by variants of SE and BMC with reasonable
overhead, but usual optimisations must be revisited
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Source code: https://github.com/binsec/cav2021-artifacts
Precompiled artifacts: https://zenodo.org/record/4721753
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