
Binary-level Directed Fuzzing for
Use-After-Free Vulnerabilities

Manh-Dung Nguyen, Sébastien Bardin, Matthieu Lemerre (CEA LIST)
Richard Bonichon (Tweag I/O)

Roland Groz (Université Grenoble Alpes)

Fuzzing

2

Coverage-guided Greybox Fuzzing AFL, libFuzzer

3

Bugs
Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Binary

Initial
Testsuite

Bugs

Edge ID Execution
characteristics

Crash-based

Directed Greybox Fuzzing AFLGo, Hawkeye

4

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed Distance

Binary

Initial
Testsuite

Bugs

Targets

Edge ID +
Distance

Execution
characteristics Crash-based

Distance-
guided

Adaptive
Mutation

Applications of Directed Fuzzing (DGF)

Bug Fix & New Features

(3) Static Report Verification
(provide PoC inputs)

New Features

(2) Patch Testing
(vulnerable code)

Bug Fix

(2) Patch Testing
(incomplete patch)

Buggy Commit

(1) Bug Reproduction
(lack of PoC, # env)

Focus on (1) Bug Reproduction & (2) Patch Testing
5

Only 55% bugs reports
are reproducible

Why is Detecting UAF Hard ?

6

UAF bugs found (1%) by OSS-Fuzz
in 2017

● Rarely found by fuzzers
○ Complexity: 3 events in sequence

spanning multiple functions
○ Temporal & Spatial constraints:

extremely difficult to meet in practice
○ Silence: no segmentation fault

Existing DGF: #1 No Ordering & No Prioritization

7

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed Distance

Initial
Testsuite

No
order

Treat edges
equally

Slow

Treat everything
equally

Binary

Targets

UAF Bugs

Existing DGF: #2 Crash Assumption

8

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed Distance

Initial
Testsuite

No
order

Treat edges
equally

Slow

Treat everything
equally

Binary

Targets

UAF Bugs

Expensive
sanitizer-based

triage

UAF Stack Traces

9

// stack trace for the bad Use
 ==4440== Invalid read of size 1
 ==4440== at 0x40A8383: vfprintf (vfprintf.c:1632)
 ==4440== by 0x40A8670: buffered_vfprintf (vfprintf.c:2320)
 ==4440== by 0x40A62D0: vfprintf (vfprintf.c:1293)
[6] ==4440== by 0x80AA58A: error (elfcomm.c:43)
[5] ==4440== by 0x8085384: process_archive (readelf.c:19063)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Free
 ==4440== Address 0x421fdc8 is 0 bytes inside a block of size 86 free'd
 ==4440== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
[4] ==4440== by 0x80857B4: process_archive (readelf.c:19178)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Alloc
 ==4440== Block was alloc'd at
 ==4440== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
[3] ==4440== by 0x80AC687: make_qualified_name (elfcomm.c:906)
[2] ==4440== by 0x80854BD: process_archive (readelf.c:19089)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

At 0x8085C6E in
main(), there is a call
to process_file()

Target location:
(0x8085C6E, main)

UAF Bug Target

10

// stack trace for the bad Use
 ==4440== Invalid read of size 1
 ==4440== at 0x40A8383: vfprintf (vfprintf.c:1632)
 ==4440== by 0x40A8670: buffered_vfprintf (vfprintf.c:2320)
 ==4440== by 0x40A62D0: vfprintf (vfprintf.c:1293)
[6] ==4440== by 0x80AA58A: error (elfcomm.c:43)
[5] ==4440== by 0x8085384: process_archive (readelf.c:19063)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Free
 ==4440== Address 0x421fdc8 is 0 bytes inside a block of size 86 free'd
 ==4440== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
[4] ==4440== by 0x80857B4: process_archive (readelf.c:19178)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Alloc
 ==4440== Block was alloc'd at
 ==4440== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
[3] ==4440== by 0x80AC687: make_qualified_name (elfcomm.c:906)
[2] ==4440== by 0x80854BD: process_archive (readelf.c:19089)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

UAF Bug Target:
0 (0x8085C6E, main) → 1 (0x8085A57, process_file) → 2 (0x80854BD,
process_archive) → 3 (0x80AC687, make_qualified_name) → 4 (0x80857B4,
process_archive) → 5 (0x8085384, process_archive) → 6 (0x80AA58A, error)

Bug Trace of CVE-2018-20623 Dynamic Calling Tree

Bug Trace Flattening

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed Distance

Initial
Testsuite

Edge ID +
Distance (UAF-based)

Execution
characteristics

Pre-triage
for free

Targets
Similarity

Fast

Cut-edge
Coverage

11

Targets

Overview of UAFuzz

Key Insights of UAFuzz

12

★ Seed Selection: based on similarity and ordering of input trace
★ Power Schedule: based on 3 seed metrics dedicated to UAF

○ [function level] UAF-based Distance: Prioritize call traces covering UAF events
○ [edge level] Cut-edge Coverage: Cover edge destinations reaching targets
○ [basic block level] Target Similarity: Cover targets

★ Fast precomputation at binary-level

★ Triage only potential inputs covering all locations & pre-filter for free

UAF-based Distance

13

● Intuition: UAFuzz favors the shortest path that is likely
to cover more than 2 UAF events in sequence

○ Statically identify and decrease weights of (caller, callee)
in Call Graph

○ Ex: favored call traces <main, f2, fuse>, <main, f1, f3, fuse>

Example of Call Graph, favored pairs
(caller, callee) are in red

● Existing works compute seed distance
○ regardless of target ordering
○ regardless of UAF characteristic: call traces may contain

in sequence alloc/free function and reach use function

Cut-edge Coverage Metric

14

➀ call f1

ep

 Control Flow Graph, cut edges are in blue

call f2➁

● Existing works treat edges equally in terms of reaching in
sequence targets

● Cut-edge
○ Edge destinations are more likely to reach the next

target in the bug trace
○ Approximately identify via static intraprocedural analysis

of CFGs
● Intuition: UAFuzz favors inputs exercising more cut edges via

a score depending on # covered cut edges and their hit counts

Target Similarity Metric

15

● Target Similarity Metric
○ Prefix: more precise
○ Bag: less precise, but consider the whole trace

● Intuition: Seed Selection heuristic based on both
prefix and bag metrics

○ Select more frequently max-reaching inputs that
have highest value of this metric (most similar to
the bug trace) so far

● Existing works select seeds to be mutated regardless of
number of covered target locations

0

alloc

free

use

1

2

3

4

5

Bug Trace : 0 (alloc) → 1 → 2 (free) → 3 → 4 → 5 (use)

trace of input s: 0 → 1 → 2 → 3 → 7 → 8 → 5

Power Schedule

16

Intuition: UAFuzz assigns more energy (a.k.a, # mutants) to

● seeds that are closer (using UAF-based Distance)
● seeds that are more similar to the bug trace (using Target Similarity Metric)
● seeds that make better decisions at critical code junctions (using Cut-edge

Coverage Metric)

Pre-filter

● Existing work simply send all fuzzed inputs to the bug triager

17

● Potential inputs: cover in sequence all target locations in the bug trace
● UAFuzz triages only potential inputs & safely discards others

○ Available for free after the fuzzing process via Target Similarity Metric
○ Saving a huge amount of time in bug triaging

Implementation

18

AFL-QEMU

Experimental Evaluation

● Bug Reproduction
○ Time-to-Exposure, # bugs

found, overhead, # triaging
inputs

● Patch-Oriented Testing

Our UAF Fuzzing Benchmark

19

● Evaluated fuzzers
○ UAFuzz (BINSEC & AFL-QEMU)
○ AFL-QEMU
○ AFLGo (source - level, co-author)
○ Our implementations AFLGoB &

HawkeyeB

20

Bug Reproduction: Fuzzing Performance

Bug-reproducing performance of binary-based DGFs

● Total success runs vs. 2nd best AFLGoB:
+34% in total, up to +300%

● Time-to-Exposure (TTE) vs. 2nd best AFLGoB:
2.0x, avg 6.7x, max 43x

● Vargha-Delaney metric vs. 2nd best AFLGoB:
avg 0.78

UAFuzz significantly outperforms state-of-the-art directed fuzzers in
terms of UAF bugs reproduction with a high confidence level

RQ1: Bug-reproducing Ability (1)

Bug Reproduction: Overhead

● Instrumentation overhead
○ 15x faster in total than AFLGo-source

● Runtime overhead
○ UAFuzz has the same total executions

done compared to AFL-QEMU

Global Overhead

UAFUZZ enjoys both a lightweight instrumentation time
and a minimal runtime overhead

21

Bug Reproduction: Triage

● Total triaging inputs
○ UAFuzz only triages potential inputs

(9.2% in total – sparing up to 99.76%
of input seeds for confirmation)

● Total triaging time
○ UAFuzz only spends several seconds

(avg 6s; 17x over AFLGoB, max 130x) Bug Triaging Performance

UAFuzz reduces a large portion (i.e., more than 90%) of triaging
inputs in the post-processing phase

22

Patch Testing

23

How to find

● Identify recently discovered UAF bugs

● Manually extract call instructions in bug traces

● Guide the directed fuzzer on the patch code

UAFuzz has been proven effective in a patch-oriented setting, allowing to find
30 new bugs (4 incomplete patches, 7 CVEs) in 6 open-source programs

Targets

● Incomplete patches,
regression bugs

● Weak parts of code

24

Thank you ! Q & A
~~~

UAFuzz: https://github.com/strongcourage/uafuzz

UAF Fuzzing Benchmark: https://github.com/strongcourage/uafbench

https://github.com/strongcourage/uafuzz
https://github.com/strongcourage/uafbench

