
Obfuscation: where are we in anti-DSE protections ?

Mathilde OLLIVIER

Sébastien BARDIN

Jean-Yves MARION

Richard BONICHON

CEA LIST, France

CEA LIST

Université de Lorraine, CNRS, LORIA

Tweag I/O

Reverse engineering is a threat to IP

2

tools

Easy with unprotected code

Then we use obfuscation

3

₋ Functional equivalence
₋ Efficient
₋ "Harder " to analyze

tools

Arm race

Static
Analysis

Dynamic
Analysis

Semantic
attacks

Self-modification,
Packing

Trigger-based
behaviors

4

Arm race

Static
Analysis

Dynamic
Analysis

Semantic
attacks

Self-modification,
Packing

Trigger-based
behaviors

What now ?

4

₋ Dynamic Symbolic Execution (DSE), Abstract
Interpretation

₋ Bit-level taint analysis and DSE (Yadegari 2015)
₋ Backward Bounding DSE (David 2017)
₋ Banescu 2016

Semantic attacks

Dynamic Symbolic Execution (DSE)

C source code

int func (int x, int y) {
if (x == 0) {

if (y < 10) {
printf("win");

}
}

}

Paths tree

x == 0

y < 10

printf("win")

Path constraint to print "win":
X=0 Λ y<10

Concrete
solution

using SMT
solvers

5

₋ As robust as dynamic analysis
₋ Infers triggers
₋ Simplifies code

What can we do against DSE ?

Complex
constraints

Path
divergence

Path
explosion

6

₋ Specific operations hard to solve
₋ Reduces the subset of paths that

can be explored

What can we do against DSE ?

Path
explosion

6

Complex
constraints

Path
divergence

₋ Computing correct path constraint
can be hard

₋ DSE misses feasible paths and take
unfeasible paths

What can we do against DSE ?

Path
divergence

6

Complex
constraints

Path
explosion

₋ DSE need to solve all constraints
and store all pending states

₋ Realistically DSE can explore a
reduced amount of paths in a
limited amount of time

We need clear classification

Need clear classification and comparison

Today’s contributions:

→ Classify existing protections

→ Compare protections using key parameters (strength, cost, stealth, implementation availability, etc.)

→ Point out defficiencies in the current state-of-the-art

7

Hard constraints

Mixed-boolean arithmetic – ZHOU et. al. 2007

8

original code

int func (int x, int y) {
int var = x + y;
if (var > 10) {

// code
}

}

obfuscated code

int func (int x, int y) {

int var = 𝒙 𝐲 + 𝟐 × 𝒙 ˄ 𝒚 × 𝟑𝟗 + 𝟐𝟑 × 𝟏𝟓𝟏+ 𝟏𝟏𝟏;

if (var > 10) {
// code

}
}

Mixed-boolean arithmetic - CHARACTERISTICS

9

Strength & Cost

→ Solving constraints: NP-hard problem

→ No general results indicating that MBA
are significantly harder to solve

→ Hard against simplification queries

→ No cost results for large and efficient
MBA protections

Stealth & Mitigation

→ Specific use of uncommon operators

→ Mitigation using arithmetic
simplification coupled with MBA
expressions equivalence

Eyrolles et. al. 2016

Cryptographic hash functions – SHARIF et. al. 2008

10

original code

int func (int x) {
if (x == TRIGGER) {

// code
}

}

obfuscated code

int func (int x) {
if (hash(x) == HASHED_TRIGGER) {

// encrypted_code
}

}

Cryptographic hash functions- CHARACTERISTICS

11

Strength & Cost

→ Irreversible functions by definition

→ Relevant part of the code encrypted

→ Encryption is not cheap

Stealth & Mitigation

→ Cryptographic routines easy to spot

→ Limited scope (trigger-based behaviors)

Path divergence

Self-modification

12

original code obfuscated code

call get_input()

L1: call func1()

call get_input()

mov [L1], nop

L1: call spurious_func()

L2: call func1()

Self-modification - CHARACTERISTICS

13

Strength & Cost

→ Theoretically not an issue for DSE

→ Current symbolic engines cannot cope
with this obfuscation

Moslty engineering effort

→ Full program unpacking has a high
runtime cost

Stealth & Mitigation

→ Mitigations proposed but not
implemented

Yadegari et. al. 2015
Brumley et. al. 2013
Bonfante et. al. 2015

→ Self-modification easy to spot

Symbolic code – YADEGARI et. al. 2015

14

original code obfuscated code

call get_input()
cmp eax, TRIGGER
jz L
call abort()

L: call payload()

call get_input()
sub eax, TRIGGER
// operations on eax
mov [L1], eax

L1: nop
L2: call abort()
L3: call payload()

Symbolic code – YADEGARI et. al. 2015

14

original code obfuscated code

call get_input()
cmp eax, TRIGGER
jz L
call abort()

L: call payload()

call get_input()
sub eax, TRIGGER
// operations on eax
mov [L1], eax

L1: jmp L3
L2: call abort()
L3: call payload()

Symbolic code- CHARACTERISTICS

15

Strength & Cost

→ Trigger-based behavior

→ Current symbolic engines cannot cope
with this protection

→ Probably no runtime cost

Stealth & Mitigation

→ Mitigation proposed but not
implemented

Yadegari et. al. 2015

→ Self-modification easy to spot

Covert channel – STEPHENS et. al. 2018

16

original code

int func (int x) {
int var = x;
return(var);

}

obfuscated code

int func (int x) {
int value=0;
for(i in [0 . . . (bits in b)-1]) {

timeT start = time();
if ((i th bit of b)==1)

slow_process(param);
else

fast_process(param);
timeT time = time()-start;
if (time > threshold)

value |= 1 << i ;
}
int var = value;

return(var);
}

Covert channels - CHARACTERISTICS

17

Strength & Cost

→ State-of-the-art symbolic engines does
not support covert channels

→ Some primitives hinder runtime
performances

→ Probabilistically correct

Stealth & Mitigation

→ Sensitive to system call-based
anomaly detection

→ No mitigation proposed

Path explosion

Linear obfuscation – WANG et. al. 2011

18

original code

int func (int x) {
if (x == 10) {

// code
}

}

obfuscated code

int func (int x) {
int y = x + 1000;
while (y > 1) {

if (y % 2 == 1) {
y = 3 × y + 1;

} else {
y = y / 2;

}
if ((x – y > 28) && (x + y < 32)) {

// code
break;

}
}

}

Collatz conjecture

Linear obfuscation- CHARACTERISTICS

19

Strength & Cost

→ Input dependant loop

→ Runtime number of loop iterations
depends on input value

Stealth & Mitigation

→ Common control flow structure

→ But unusual arithmetic operators
(modulo 3 or 5)

→ Pattern attacks

Path-oriented protections

20

original code

int func (int x) {
int var = x + 10;
return(var);

}

obfucated code
- Range Divider -

int func (int x) {
int var = 0;
switch(x) {

case 0:
var = x+10;

…
case INT_MAX:

//obfuscated version of "var=x+10"

}
return(var);

}

obfuscated code
- For -

int func (int x) {
int var = 0;
for (int i=0; i<x+10; i++) {

var++;
}
return(var);

}

BANESCU et. al. 2016 OLLIVIER et. al. 2019

Path-oriented protections - CHARACTERISTICS

21

Strength & Cost

→ Input dependant loop

→ Strength exponential to the size in bits
of the input space

→ Some primitives increase the size of
the code

Stealth & Mitigation

→ Common control flow structure and no
exotic operators

→ Some primitives use large jump tables

→ Pattern attacks (need diversity)

→ Path-merging ? Customized existing tools ?

Anti-DSE protections

Protections Strength Cost Correctness Stealth Implementation Mitigation

Complex Constraints

MBA ?  ×  

Crypto Hash Functions † ?  × × ×

Path Divergence

Self-modification  ×  

Symbolic Code  × 

Covert Channel † ×  ×

Path Explosion

Linear Obfuscation †  × ×

Path-oriented †† ††   ×

22

 Bad/No ? Unknown

Medium † Some experimental evaluation

Good †† Large experimental evaluation

Conclusion

State-of-the-art in anti-DSE protections unclear

→ We propose a classification and comparison of existing work

State-of-the-art insufficiency and call for action:

→ Many implementations not available

→ Many studies lack strong enough experimental evaluation

→ Cost and stealth are often overlooked

23

Questions ?

