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Reverse engineering is a threat to IP
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tools

Easy with unprotected code



Then we use obfuscation
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₋ Functional equivalence
₋ Efficient 
₋ "Harder " to analyze

tools



Arm race

Static
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Dynamic
Analysis

Semantic
attacks

Self-modification, 
Packing

Trigger-based
behaviors
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What now ?
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₋ Dynamic Symbolic Execution (DSE), Abstract 
Interpretation

₋ Bit-level taint analysis and DSE (Yadegari 2015)
₋ Backward Bounding DSE (David 2017)
₋ Banescu 2016

Semantic attacks



Dynamic Symbolic Execution (DSE)

C source code

int func (int x, int y) {
if (x == 0) {

if (y < 10) {
printf("win");

}
}

}

Paths tree

x == 0

y < 10

printf("win")

Path constraint to print "win":
X=0 Λ y<10

Concrete
solution 

using SMT 
solvers
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₋ As robust as dynamic analysis
₋ Infers triggers
₋ Simplifies code



What can we do against DSE ?

Complex
constraints

Path 
divergence

Path 
explosion
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₋ Specific operations hard to solve
₋ Reduces the subset of paths that

can be explored



What can we do against DSE ?

Path 
explosion
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Complex
constraints

Path 
divergence

₋ Computing correct path constraint
can be hard

₋ DSE misses feasible paths and take
unfeasible paths



What can we do against DSE ?

Path 
divergence
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Complex
constraints

Path 
explosion

₋ DSE need to solve all constraints
and store all pending states

₋ Realistically DSE can explore a 
reduced amount of paths in a 
limited amount of time



We need clear classification

Need clear classification and comparison

Today’s contributions:

→ Classify existing protections

→ Compare protections using key parameters (strength, cost, stealth, implementation availability, etc.)

→ Point out defficiencies in the current state-of-the-art
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Hard constraints



Mixed-boolean arithmetic – ZHOU et. al. 2007
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original code

int func (int x, int y) {
int var = x + y;
if (var > 10) {

// code
}

}

obfuscated code

int func (int x, int y) {

int var = 𝒙 𝐲 + 𝟐 × 𝒙 ˄ 𝒚 × 𝟑𝟗 + 𝟐𝟑 × 𝟏𝟓𝟏+ 𝟏𝟏𝟏;

if (var > 10) {
// code

}
}



Mixed-boolean arithmetic - CHARACTERISTICS
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Strength & Cost

→ Solving constraints: NP-hard problem

→ No general results indicating that MBA 
are significantly harder to solve

→ Hard against simplification queries

→ No cost results for large and efficient 
MBA protections

Stealth & Mitigation

→ Specific use of uncommon operators

→ Mitigation using arithmetic
simplification coupled with MBA 
expressions equivalence

Eyrolles et. al. 2016



Cryptographic hash functions – SHARIF et. al. 2008 
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original code

int func (int x) {
if (x == TRIGGER) {

// code
}

}

obfuscated code

int func (int x) {
if (hash(x) == HASHED_TRIGGER) {

// encrypted_code
}

}



Cryptographic hash functions- CHARACTERISTICS
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Strength & Cost

→ Irreversible functions by definition

→ Relevant part of the code encrypted

→ Encryption is not cheap

Stealth & Mitigation

→ Cryptographic routines easy to spot

→ Limited scope (trigger-based behaviors)



Path divergence



Self-modification
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original code obfuscated code

call get_input()

L1: call func1()

call get_input()

mov [L1], nop

L1: call spurious_func()

L2: call func1()



Self-modification - CHARACTERISTICS
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Strength & Cost

→ Theoretically not an issue for DSE

→ Current symbolic engines cannot cope
with this obfuscation

Moslty engineering effort

→ Full program unpacking has a high 
runtime cost

Stealth & Mitigation

→ Mitigations proposed but not 
implemented

Yadegari et. al. 2015
Brumley et. al. 2013
Bonfante et. al. 2015

→ Self-modification easy to spot



Symbolic code – YADEGARI et. al. 2015
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original code obfuscated code

call get_input()
cmp eax, TRIGGER
jz L
call abort()

L: call payload()

call get_input()
sub eax, TRIGGER
// operations on eax
mov [L1], eax

L1: nop
L2: call abort()
L3: call payload()



Symbolic code – YADEGARI et. al. 2015

14

original code obfuscated code

call get_input()
cmp eax, TRIGGER
jz L
call abort()

L: call payload()

call get_input()
sub eax, TRIGGER
// operations on eax
mov [L1], eax

L1: jmp L3
L2: call abort()
L3: call payload()



Symbolic code- CHARACTERISTICS
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Strength & Cost

→ Trigger-based behavior

→ Current symbolic engines cannot cope
with this protection

→ Probably no runtime cost

Stealth & Mitigation

→ Mitigation proposed but not 
implemented

Yadegari et. al. 2015

→ Self-modification easy to spot



Covert channel – STEPHENS et. al. 2018
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original code

int func (int x) {
int var = x;
return(var);

}

obfuscated code

int func (int x) {
int value=0;
for( i in [0 . . . (bits in b)-1]) {

timeT start = time();
if (( i th bit of b)==1)

slow_process(param);
else

fast_process(param);
timeT time = time()-start;
if (time > threshold)

value |= 1 << i ;
}
int var = value;

return(var);
}



Covert channels - CHARACTERISTICS
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Strength & Cost

→ State-of-the-art symbolic engines does
not support covert channels

→ Some primitives hinder runtime
performances

→ Probabilistically correct

Stealth & Mitigation

→ Sensitive to system call-based
anomaly detection

→ No mitigation proposed



Path explosion



Linear obfuscation – WANG et. al. 2011 
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original code

int func (int x) {
if ( x == 10) {

// code
}

}

obfuscated code

int func (int x) {
int y = x + 1000;
while (y > 1) {

if (y % 2 == 1) {
y = 3 × y + 1;

} else {
y = y / 2;

}  
if ((x – y > 28) && (x + y < 32)) {

// code
break;

}
}

}

Collatz conjecture



Linear obfuscation- CHARACTERISTICS
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Strength & Cost

→ Input dependant loop

→ Runtime number of loop iterations
depends on input value

Stealth & Mitigation

→ Common control flow structure

→ But unusual arithmetic operators
(modulo 3 or 5)

→ Pattern attacks



Path-oriented protections 
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original code

int func (int x) {
int var = x + 10;
return(var);

}

obfucated code
- Range Divider -

int func (int x) {
int var = 0;
switch(x) {

case 0: 
var = x+10;

…
case INT_MAX:

//obfuscated version of "var=x+10"

}
return(var);

}

obfuscated code
- For -

int func (int x) {
int var = 0;
for (int i=0; i<x+10; i++) {

var++;
}
return(var);

}

BANESCU et. al. 2016 OLLIVIER et. al. 2019



Path-oriented protections - CHARACTERISTICS
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Strength & Cost

→ Input dependant loop

→ Strength exponential to the size in bits 
of the input space

→ Some primitives increase the size of 
the code

Stealth & Mitigation

→ Common control flow structure and no 
exotic operators

→ Some primitives use large jump tables

→ Pattern attacks (need diversity)

→ Path-merging ? Customized existing tools ?



Anti-DSE protections

Protections Strength Cost Correctness Stealth Implementation Mitigation

Complex Constraints

MBA ?  ×  

Crypto Hash Functions † ?  × × ×

Path Divergence

Self-modification  ×  

Symbolic Code  × 

Covert Channel † ×  ×

Path Explosion

Linear Obfuscation †  × ×

Path-oriented †† ††   ×
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 Bad/No ? Unknown

Medium † Some experimental evaluation

Good †† Large experimental evaluation



Conclusion

State-of-the-art in anti-DSE protections unclear

→ We propose a classification and comparison of existing work

State-of-the-art insufficiency and call for action:

→ Many implementations not available

→ Many studies lack strong enough experimental evaluation

→ Cost and stealth are often overlooked
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Questions ?


