
| 1 Sébastien Bardin et al. – S&P 2017

Robin David (CEA LIST) & Jean-Yves Marion (LORIA)

TARGETING INFEASIBILITY QUESTIONS

on

OBUFSCATED CODES

Sébastien Bardin (CEA LIST)

| 2 Sébastien Bardin et al. -- S&P 2017

IN A NUTSHELL

• Challenge: malware deobfuscation

• Infeasibility questions are a blind spot of current automated techniques

• We propose an efficient, robust and precise method for them

• Very promising case-studies

| 3 Sébastien Bardin et al. -- S&P 2017

CONTEXT: MALWARE COMPREHENSION

The day after: malware comprehension

• understand what has been going on

• mitigate, fix and clean

• improve defense

Goal: help malware comprehension

• Reverse of heavily obfuscated code

• Identify and simplify protections

APT: highly sophisticated attacks

• Targeted malware

• Written by experts

• Attack: 0-days

• Defense: stealth, obfuscation

• Sponsored by states or mafia

USA elections: DNC Hack

| 4 Sébastien Bardin et al. -- S&P 2017

CHALLENGE: CORRECT DISASSEMBLY

Basic reverse problem

• aka model recovery

• aka CFG recovery

| 5 Sébastien Bardin et al. -- S&P 2017

CAN BE TRICKY! • code – data

• dynamic jumps (jmp eax)

| 6 Sébastien Bardin et al. -- S&P 2017

CAN BECOME A NIGHTMARE (OBFUSCATION)

Obfuscation: make a code

hard to reverse
• self-modification

• encryption

• virtualization

• code overlapping

• opaque predicates

• callstack tampering

• …

| 7 Sébastien Bardin et al. -- S&P 2017

EXAMPLE: OPAQUE PREDICATE

Constant-value predicates

 (always true, always false)

• dead branch points to spurious code

• goal = waste reverser time & efforts

| 8 Sébastien Bardin et al. -- S&P 2017

EXAMPLE: STACK TAMPERING

Alter the standard compilation scheme:

 ret do not go back to call

• hide the real target

• return site may be spurious code

| 9 Sébastien Bardin et al. -- S&P 2017

STANDARD DISASSEMBLY TECHNIQUES ARE NOT ENOUGH

Static analysis

• too fragile vs obfuscation

• junk instr, missed instr.

Dynamic analysis

• robust vs obfuscation

• too incomplete

| 10 Sébastien Bardin et al. -- S&P 2017

DYNAMIC SYMBOLIC EXECUTION CAN HELP

For deobfuscation
• find new real paths

• robust

• still incomplete

| 11 Sébastien Bardin et al. -- S&P 2017

YET … WHAT ABOUT INFEASIBILITY QUESTIONS?

Prove that something is

always true (resp. false)

Many such issues in reverse

• is a branch dead?

• does the ret always return to the call?

• have i found all targets of a dynamic jump?

And more

• does this malicious ret always go there?

• does this expression always evaluate to 15?

• does this self-modification always write this opcode?

• does this self-modification always rewrite this instr.?

• …

Not addressed by DSE
• Cannot enumerate all paths

| 12 Sébastien Bardin et al. -- S&P 2017

OUR CHALLENGE

Check infeasibility questions in obfuscated codes

• scale to realistic malware sizes

• robust to obfuscation such as self-modification

• precise

• generic

Rest of the talk:

• opaque predicate

• stack tampering

| 13 Sébastien Bardin et al. -- S&P 2017

OUR PROPOSAL: BACKWARD-BOUNDED SYMBOLIC EXECUTION

Insight 1: symbolic reasoning

• precision

• But: need finite #paths

Insight 2: backward-bounded

• pre_k(c)=0 => c is infeasible

• finite #paths

• efficient, depends on k

• But: backward on jump eax?

Insight 3: dynamic partial CFG

• solve (partially) dyn. jumps

• robustness

False negative (FN)

• can miss infeasibility

• why: k too small (miss /\-constraints)

False positive (FP)

• wrongly assert infeasibility

• why: CFG too partial (miss \/-constraints)

Low FP/FN rates in practice

• ground truth xp

| 14 Sébastien Bardin et al. -- S&P 2017

EXPERIMENTAL EVALUATION

• Controlled experiments (ground truth) precision

• Large-scale experiment: packers scalability, robustness

• Case-study: X-tunnel malware usefulness

| 15 Sébastien Bardin et al. -- S&P 2017

CONTROLLED EXPERIMENTS

• Goal = assess the precision of the technique

• ground truth value

• Experiment 1: opaque predicates (o-llvm)

• 100 core utils, 5x20 obfuscated codes

• k=16: 3.46% error, no false negative

• robust to k

• efficient: 0.02s / query

• Experiment 2: stack tampering (tigress)

• 5 obfuscated codes, 5 core utils

• almost all genuine ret are proved (no false positive)

• many malicious ret are proved « single-targets »

• Very precise résults

• Seems efficient

| 16 Sébastien Bardin et al. -- S&P 2017

CASE-STUDY: PACKERS

Packers: legitimate software protection tools

 (basic malware: the sole protection)

| 17 Sébastien Bardin et al. -- S&P 2017

CASE-STUDY: THE XTUNNEL MALWARE (part of DNC hack)

Two heavily obfuscated samples
• Many opaque predicates

Goal: detect & remove protections
• Identify 50% of code as spurious

• Fully automatic, < 3h

| 18 Sébastien Bardin et al. -- S&P 2017

SECURITY ANALYSIS: COUNTER-MEASURES (and mitigations)

• Long dependecy chains (evading the bound k)

• Not always requires the whole chain to conclude!

• Can use a more flexible notion of bound (data-dependencies, formula size)

• Hard-to-solve predicates (causing timeouts)
• A time-out is already a valuable information

• Opportunity to find infeasible patterns (then matching), or signatures

• Tradeoff between performance penalty vs protection focus

• Note: must be input-dependent, otherwise removed by standard DSE optimizations

• Anti-dynamic tricks (fool initial dynamic recovery)

• Can use the appropriate mitigations

• Note: some tricks can be circumvent by symbolic reasoning

Current state-of-the-art

• push the cat-and-mouse game further

• raise the bar for malware designers

| 19 Sébastien Bardin et al. -- S&P 2017

CONCLUSION & TAKE AWAY

• What has been done

• Identify infeasibility questions as a blind spot of deobfuscation techniques

• Propose an efficient, robust and precise method

• Controlled experiments and large-scale studies

• Semantic analysis can change the game of deobfuscation

• Complement existing approaches

• Open the way to fruitful combinations [see the paper]

• Formal methods can be useful for malware, but must be adapted

• Need robustness and scalability!

• Accept to lose both correctness & completeness – in a controlled way

• BINSEC platform: looking for collaborations and users 

• Open-source, still in its infancy

Commissariat à l’énergie atomique et aux énergies alternatives

Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142

91191 Gif-sur-Yvette Cedex - FRANCE

www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

