
| 1 Sébastien Bardin et al. ï S&P 2017

Robin David (CEA LIST) & Jean-Yves Marion (LORIA)

TARGETING INFEASIBILITY QUESTIONS

on

OBUFSCATED CODES

Sébastien Bardin (CEA LIST)

| 2 Sébastien Bardin et al. -- S&P 2017

IN A NUTSHELL

ÅChallenge: malware deobfuscation

Å Infeasibility questions are a blind spot of current automated techniques

ÅWe propose an efficient, robust and precise method for them

ÅVery promising case-studies

| 3 Sébastien Bardin et al. -- S&P 2017

CONTEXT: MALWARE COMPREHENSION

The day after: malware comprehension

Åunderstand what has been going on

Åmitigate, fix and clean

Åimprove defense

Goal: help malware comprehension

ÅReverse of heavily obfuscated code

ÅIdentify and simplify protections

APT: highly sophisticated attacks

ÅTargeted malware

ÅWritten by experts

ÅAttack: 0-days

ÅDefense: stealth, obfuscation

ÅSponsored by states or mafia

USA elections: DNC Hack

| 4 Sébastien Bardin et al. -- S&P 2017

CHALLENGE: CORRECT DISASSEMBLY

Basic reverse problem

Åaka model recovery

Åaka CFG recovery

| 5 Sébastien Bardin et al. -- S&P 2017

CAN BE TRICKY! Åcode ï data

Ådynamic jumps (jmp eax)

| 6 Sébastien Bardin et al. -- S&P 2017

CAN BECOME A NIGHTMARE (OBFUSCATION)

Obfuscation: make a code

hard to reverse
Åself-modification

Åencryption

Åvirtualization

Åcode overlapping

Åopaque predicates

Åcallstack tampering

Åé

| 7 Sébastien Bardin et al. -- S&P 2017

EXAMPLE: OPAQUE PREDICATE

Constant-value predicates

 (always true, always false)

Ådead branch points to spurious code

Ågoal = waste reverser time & efforts

| 8 Sébastien Bardin et al. -- S&P 2017

EXAMPLE: STACK TAMPERING

Alter the standard compilation scheme:

 ret do not go back to call

Åhide the real target

Åreturn site may be spurious code

| 9 Sébastien Bardin et al. -- S&P 2017

STANDARD DISASSEMBLY TECHNIQUES ARE NOT ENOUGH

Static analysis

Å too fragile vs obfuscation

Å junk instr, missed instr.

Dynamic analysis

Å robust vs obfuscation

Å too incomplete

| 10 Sébastien Bardin et al. -- S&P 2017

DYNAMIC SYMBOLIC EXECUTION CAN HELP

For deobfuscation
Åfind new real paths

Årobust

Åstill incomplete

| 11 Sébastien Bardin et al. -- S&P 2017

YET é WHAT ABOUT INFEASIBILITY QUESTIONS?

Prove that something is

always true (resp. false)

Many such issues in reverse

Åis a branch dead?

Ådoes the ret always return to the call?

Åhave i found all targets of a dynamic jump?

And more

Ådoes this malicious ret always go there?

Ådoes this expression always evaluate to 15?

Ådoes this self-modification always write this opcode?

Ådoes this self-modification always rewrite this instr.?

Åé

Not addressed by DSE
ÅCannot enumerate all paths

| 12 Sébastien Bardin et al. -- S&P 2017

OUR CHALLENGE

Check infeasibility questions in obfuscated codes

Åscale to realistic malware sizes

Å robust to obfuscation such as self-modification

Åprecise

Ågeneric

Rest of the talk:

Åopaque predicate

Åstack tampering

| 13 Sébastien Bardin et al. -- S&P 2017

OUR PROPOSAL: BACKWARD-BOUNDED SYMBOLIC EXECUTION

Insight 1: symbolic reasoning

Åprecision

ÅBut: need finite #paths

Insight 2: backward-bounded

Åpre_k(c)=0 => c is infeasible

Å finite #paths

Åefficient, depends on k

ÅBut: backward on jump eax?

Insight 3: dynamic partial CFG

Åsolve (partially) dyn. jumps

Å robustness

False negative (FN)

Åcan miss infeasibility

Åwhy: k too small (miss /\-constraints)

False positive (FP)

Åwrongly assert infeasibility

Åwhy: CFG too partial (miss \/-constraints)

Low FP/FN rates in practice

Å ground truth xp

| 14 Sébastien Bardin et al. -- S&P 2017

EXPERIMENTAL EVALUATION

ÅControlled experiments (ground truth) precision

ÅLarge-scale experiment: packers scalability, robustness

ÅCase-study: X-tunnel malware usefulness

| 15 Sébastien Bardin et al. -- S&P 2017

CONTROLLED EXPERIMENTS

ÅGoal = assess the precision of the technique

Å ground truth value

Å Experiment 1: opaque predicates (o-llvm)

Å 100 core utils, 5x20 obfuscated codes

Å k=16: 3.46% error, no false negative

Å robust to k

Å efficient: 0.02s / query

Å Experiment 2: stack tampering (tigress)

Å 5 obfuscated codes, 5 core utils

Å almost all genuine ret are proved (no false positive)

Å many malicious ret are proved « single-targets »

ÅVery precise résults

ÅSeems efficient

| 16 Sébastien Bardin et al. -- S&P 2017

CASE-STUDY: PACKERS

Packers: legitimate software protection tools

 (basic malware: the sole protection)

| 17 Sébastien Bardin et al. -- S&P 2017

CASE-STUDY: THE XTUNNEL MALWARE (part of DNC hack)

Two heavily obfuscated samples
ÅMany opaque predicates

Goal: detect & remove protections
ÅIdentify 50% of code as spurious

ÅFully automatic, < 3h

