Specification of Concretization and Symbolization Policies in Symbolic Execution

Sébastien Bardin
joint work with
Robin David, Josselin Feist, Laurent Mounier, Marie-Laure Potet, Thanh Dihn Ta, Jean-Yves Marion

CEA LIST (Paris-Saclay, France)

ISSTA 2016
Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

- three key ingredients: path predicate computation & solving, path search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

- many policies (one per tool), no systematic study of C/S
- undocumented, unclear
- tools: often a single hardcoded policy, no reuse across tools

Our goal: establish C/S as a proper field of study [focus first on specification]

- CSML, a specification language for C/S ✓
 - clear, non-ambiguous [documentation]
 - tool independent [reuse, sharing, tuning]
 - executable [input for tools]

- implemented in BINSEC ✓

- an experimental comparison of C/S policies ✓
Preamble

About formal verification

- Between Software Engineering and Theoretical Computer Science
- Goal = proves correctness in a mathematical way

Key concepts: \(M \models \varphi \)

- \(M \): semantic of the program
- \(\varphi \): property to be checked
- \(\models \): algorithmic check

Kind of properties

- absence of runtime error
- pre/post-conditions
- temporal properties
Industrial reality in some key areas, especially safety-critical domains

- hardware, aeronautics [airbus], railroad [metro 14], smartcards, drivers [Windows], certified compilers [CompCert] and OS [Sel4], etc.

Ex: Airbus

Verification of

- runtime errors [Astrée]
- functional correctness [Frama-C]
- numerical precision [Fluctuat]
- source-binary conformance [CompCert]
- ressource usage [Absint]
Preamble

Next big challenge

- Apply formal methods to less-critical software
- Very different context: no formal spec, less developer involvement, etc.

Difficulties

- Robustness [w.r.t. software constructs]
- No place for false alarms
- Scale
- Sometimes, not even source code
Apply formal methods to less-critical software

Very different context: no formal spec, less developer involvement, etc.

Difficulties
- robustness [w.r.t. software constructs]
- no place for false alarms
- scale
- sometimes, not even source code

DSE as a first step
- very robust
- (mostly) no false alarm
- scale in some ways
- ok for binary code
Dynamic Symbolic Execution [since 2004-2005: dart, cute, pathcrawler]

- a very powerful formal approach to verification and testing
- many tools and successful case-studies since mid 2000’s
 - SAGE, Klee, Mayhem, etc.
 - coverage-oriented testing, bug finding, exploit generation, reverse
- arguably one of the most wide-spread use of formal methods

Very good properties

- mostly no false alarm, robust, scale, ok for binary code
DSE in a nutshell

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005: dart, cute, pathcrawler]

- A very powerful formal approach to verification and testing
- Many tools and successful case-studies since mid 2000's
 - SAGE, Klee, Mayhem, etc.
 - Coverage-oriented testing, bug finding, exploit generation, reverse
- Arguably one of the most widespread use of formal methods

Very good properties

- Mostly no false alarm, robust, scale, ok for binary code

Key idea: path predicate [King 70's]

- Consider a program P on input v, and a given path σ
- A path predicate φ_σ for σ is a formula s.t.
 $v \models \varphi_\sigma \Rightarrow P(v)$ follows σ
- Intuitively the conjunction of all branching conditions
- Old idea, recent renewal interest [powerful solvers, dynamic+symbolic]
int main () {
 int x = input();
 int y = input();
 int z = 2 * y;
 if (z == x) {
 if (x > y + 10)
 failure;
 }
 success;
}

- given a path of the program
- automatically find input that follows the path
- then, iterate over all paths
int main () {
 int x = input();
 int y = input();
 int z = 2 * y;
 if (z == x) {
 if (x > y + 10)
 failure;
 else
 success;
 }
}

Three key ingredients

- path predicate computation & solving
- path search
- C/S policy

- given a path of the program
- automatically find input that follows the path
- then, iterate over all paths
DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(y,z)</td>
</tr>
<tr>
<td>1</td>
<td>w := y+1</td>
</tr>
<tr>
<td>2</td>
<td>x := w + 3</td>
</tr>
<tr>
<td>3</td>
<td>if (x < 2 * z)</td>
</tr>
<tr>
<td>4</td>
<td>if (x < z)</td>
</tr>
</tbody>
</table>

Path predicate (input Y_0 et Z_0)
DSE in a nutshell

Path predicate computation

Usually easy to compute
[forward, introduce new logical variables at each step]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(y,z)</td>
</tr>
<tr>
<td>1</td>
<td>(w := y + 1)</td>
</tr>
<tr>
<td>2</td>
<td>(x := w + 3)</td>
</tr>
<tr>
<td>3</td>
<td>if (x < 2 \times z) [True branch]</td>
</tr>
<tr>
<td>4</td>
<td>if (x < z) [False branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(Y_0 \) et \(Z_0 \))

\[
\text{let } W_1 \triangleq Y_0 + 1 \text{ in }
\]
DSE in a nutshell
Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(y,z)</td>
</tr>
<tr>
<td>1</td>
<td>w := y+1</td>
</tr>
<tr>
<td>2</td>
<td>x := w + 3</td>
</tr>
<tr>
<td>3</td>
<td>if (x < 2 * z) [True branch]</td>
</tr>
<tr>
<td>4</td>
<td>if (x < z) [False branch]</td>
</tr>
</tbody>
</table>

Path predicate (input Y_0 et Z_0)
let $W_1 \triangleq Y_0 + 1$ in
let $X_2 \triangleq W_1 + 3$ in
Usually easy to compute
[forward, introduce new logical variables at each step]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(y,z)</td>
</tr>
<tr>
<td>1</td>
<td>w := y+1</td>
</tr>
<tr>
<td>2</td>
<td>x := w + 3</td>
</tr>
<tr>
<td>3</td>
<td>if (x < 2 * z) [True branch]</td>
</tr>
<tr>
<td>4</td>
<td>if (x < z) [False branch]</td>
</tr>
</tbody>
</table>

Path predicate (input Y_0 et Z_0)
let $W_1 \triangleq Y_0 + 1$ in
let $X_2 \triangleq W_1 + 3$ in
$X_2 < 2 \times Z_0$
Path predicate computation

Usually easy to compute

[forward, introduce new logical variables at each step]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(y,z)</td>
</tr>
<tr>
<td>1</td>
<td>w := y+1</td>
</tr>
<tr>
<td>2</td>
<td>x := w + 3</td>
</tr>
<tr>
<td>3</td>
<td>if (x < 2 * z) [True branch]</td>
</tr>
<tr>
<td>4</td>
<td>if (x < z) [False branch]</td>
</tr>
</tbody>
</table>

Path predicate (input Y_0 et Z_0)

let $W_1 \triangleq Y_0 + 1$ in
let $X_2 \triangleq W_1 + 3$ in
$X_2 < 2 \times Z_0 \land X_2 \geq Z_0$
input: a program P
output: a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- pick a path $\sigma \in Paths^{\leq k}(P)$
- compute a path predicate φ_σ of σ
- solve φ_σ for satisfiability
- SAT(s)? get a new pair $< s, \sigma >$
- loop until no more path to cover
input: a program P

output: a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- **SAT(s)?** get a new pair $< s, \sigma >$
- loop until no more path to cover
input: a program P

output: a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- **SAT(s)**? get a new pair $<s, \sigma>$
- **loop until no more path to cover**
input: a program P
output: a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- pick a path $\sigma \in Paths^{\leq k}(P)$
- compute a path predicate φ_σ of σ
- solve φ_σ for satisfiability
- SAT(s)? get a new pair $< s, \sigma >$
- loop until no more path to cover
input: a program P

output: a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- pick a path $\sigma \in Paths^{\leq k}(P)$
- compute a *path predicate* φ_σ of σ
- solve φ_σ for satisfiability
- SAT(s)? get a new pair $< s, \sigma >$
- loop until no more path to cover
input: a program P
output: a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- pick a path $\sigma \in Paths^{\leq k}(P)$
- compute a path predicate φ_σ of σ
- solve φ_σ for satisfiability
- $\text{SAT}(s)\ ?$ get a new pair $< s, \sigma >$
- loop until no more path to cover
DSE in a nutshell

Path Exploration

input: a program P

output: a test suite TS covering all feasible paths of $Paths_{\leq k}(P)$

- pick a path $\sigma \in Paths_{\leq k}(P)$
- compute a *path predicate* φ_σ of σ
- solve φ_σ for satisfiability
- SAT(s)? get a new pair $< s, \sigma >$
- loop until no more path to cover
DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- **SAT(s)**? get a new pair $<s, \sigma>$
- **loop until no more path to cover**

Beware

- \times #paths!
- \times incomplete
Robustness: what if the instruction cannot be reasoned about?

- missing code, self-modification
- hash functions, dynamic memory accesses, NLA operators

Solutions

- Concretization: replace by runtime value [lose completeness]
- Symbolization: replace by fresh variable [lose correctness]
Robustness: what if the instruction cannot be reasoned about?

- missing code, self-modification
- hash functions, dynamic memory accesses, NLA operators

C/S essential to DSE

- robustness to real-life code
- trade-off correction / completeness / efficiency

Solutions

- **Concretization**: replace by runtime value [lose completeness]
- **Symbolization**: replace by fresh variable [lose correctness]
The problem

Outline

- about DSE
- the problem with C/S
- goal and results
- experiments
- conclusion
The problem with C/S policies

State of DSE

- Path predicate computation + solving ✓
- Path search: under active research
- C/S: ??? kind of black magic

- hardcoded
- often a single C/S
- no easy tuning
- no reuse across tools

- undocumented, unclear
- many policies (one per tool)
- no comparison of C/S
- no systematic study of C/S
Consider the following situation

- instruction \(x := @ (a \times b) \)
- your tool documentation says: "memory accesses are concretized"
- suppose that at runtime: \(a = 7, b = 3 \)

What is the intended meaning? [perfect reasoning: \(x \equiv \text{select}(M, a \times b) \)]

- **CS1**: \(x \equiv \text{select}(M, 21) \) [incorrect]
- **CS2**: \(x \equiv \text{select}(M, 21) \land a \times b \equiv 21 \) [minimal]
- **CS3**: \(x \equiv \text{select}(M, 21) \land a \equiv 7 \land b \equiv 3 \) [atomic]

No best choice, depends on the context

- acceptable loss of correctness / completeness?
- is it mandatory to get rid off \(\times \)?
The problem
Too many C/S policies

Just for C/S on memory accesses

- 4 basic policies: concretize or keep symbolic reads / writes
- Exotic variations: multi-level dereferencement [exe], domain restriction [osmose], taint-based [s. heelan], dataflow-based [mayhem], etc.
- Flavors of concretization: minimal, atomic, incorrect
- All can be combined together
Our goal

Establish C/S as a proper field of study

- what is a generic C/S?
- how DSE can handle generic C/S?
- identify tradeoffs, sweetspots, etc.

First step: a specification mechanism for C/S

- clear, non-ambiguous
- tool independent
- executable
Establish C/S as a proper field of study

- what is a generic C/S?
- how DSE can handle generic C/S?
- identify tradeoffs, sweetspots, etc.

First step: a specification mechanism for C/S

- clear, non-ambiguous
- tool independent
- executable
- input for tools

Results

- formal definition of a generic C/S ✓
- a variant of DSE supporting generic C/S ✓
- CSML, a specification language for C/S ✓
- implementation in BINSEC ✓
- an experimental comparison of C/S policies ✓
Our goal

Overview

DSE

Generic C/S

C/S policy

CSML input

path

formula

csml spec

csml spec

csml spec
Our goal

Overview

Tool users

- clear, well-doc. C/S
- change, reuse, share
- best C/S available

Tool builders

- flexibility
- do not reimplement existing C/S
- futur-proof wrt C/S

DSE

Generic C/S

C/S policy

CSML input

path

formula

csml spec

csml spec

csml spec
Technical keys

What is a C/S policy?

A decision function queried

- within path predicate computation
- before logical evaluation of an expression
- in the scope of a given location, instruction and memory state

\[\text{cs} : \text{loc} \times \text{instr} \times \text{state} \times \text{expr} \mapsto \left\{ C \quad \text{concretization} \\
S \quad \text{symbolization} \\
P \quad \text{propagation} \right\} \]
Technical keys

DSE with parametric C/S

Example:

- `loc: x := a + b`
- Concrete memory state: `{a ↦ 3; b ↦ 5}`
- Symbolic memory state: `{a ↦ a; b ↦ b^9}`

Standard evaluation, no C/S: $\llbracket a + b \rrbracket \mapsto a^2 + b^9$

Evaluation with propagation: $\llbracket a + b \rrbracket_{cs=P} \mapsto (a^2 + b^9, \top)$

Evaluation with symbolization: $\llbracket a + b \rrbracket_{cs=S} \mapsto (\text{fresh}, \top)$

Evaluation with concretization: $\llbracket a + b \rrbracket_{cs=C} \mapsto (8, a^2 + b^9 = 8)$
Rule-based language \(guard \Rightarrow \{C, S, P\} \)

Guard of the form \(\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \)

- predicates on the location, instruction, expression, concrete memory state
- \(\pi_{ins} \) and \(\pi_{expr} \) mostly based on pattern matching and subterm checking
- predicates checked sequentially
- limited communication: meta-variables \((?x, ?\star)\) and placeholders \((!x, !\Box)\)

Set of rules

- checked sequentially, the first fireable rule returns
- presence of a default rule
Technical keys

Example of specifications (1)

\[\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{C, S, P\} \]

Meaning

- concretize result of a read value
- or: "if we are evaluating an expression e built with @, then e is concretized, otherwise it is propagated."

Examples

- \(x := a + @b \): @b is concretized
Technical keys

Example of specifications (2)

\[\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{C, S, P\} \]

\[
\begin{array}{c c c c c c c}
* & : : & \langle @?e := ?\star \rangle & : : & \langle !e \rangle & : : & * & \Rightarrow C; \\
\text{default} & & & & & & & \Rightarrow P;
\end{array}
\]

Meaning

- concretize write addresses
- or: “if we are evaluating an expression \(e \) in the context of an assignment where \(e \) is used as the write address, then \(e \) is concretized, otherwise it is propagated.”

Examples

- \(x := a + @b \): nothing is concretized
- \(@x := a + @b \): \(x \) is concretized
Consider instruction \(x := @a \times b \), suppose at runtime: \(a = 7 \), \(b = 3 \)

- **Minimal concretization of r/w expressions [CS2]**
 \[
 * :: \langle ?i \rangle :: (@ !\Box) \prec !i :: * \Rightarrow C
 \]

- **Recursive concretization of r/w expressions**: [concretize \(a \times b \), \(a \), \(b \)]
 \[
 * :: \langle ?i \rangle :: !\Box \prec (@ ?\star) \prec !i :: * \Rightarrow C
 \]

- **Atomic concretization of r/w expressions [CS3]** [concretize \(a \), \(b \)]
 \[
 * :: \langle ?i \rangle :: \text{var}(!\Box) \land !\Box \prec (@ ?\star) \prec !i :: * \Rightarrow C
 \]

- **Incorrect concretization of r/w expressions [CS1]** [replace \(a \times b \) by 21]
 \[
 * :: \langle ?i \rangle :: (@ !\Box) \prec !i :: * \Rightarrow S_{eval\Sigma(!\Box)}
 \]
Technical keys

CSML good properties

Well-defined

- any CSML spec defines a C/S policy
- only C and P : keeps correctness
- only S and P : keeps completeness

Expressive enough

- sufficient for all examples from literature [systematic review]
- yet, still limited [say something about current C/S ?]

Implementable : see after
Technical keys

CSML good properties

Well-defined

- any CSML spec defines a C/S policy
- only C and P: keeps correctness
- only S and P: keeps completeness

Expressive enough

- sufficient for all examples from literature [systematic review]
- yet, still limited [say something about current C/S ?]

Implementable: see after

About the language itself

- we describe the inner engine, not the user view
- syntax can be improved
- complexity can be hidden (predefined options, patterns)
Experiments

Implementation and experiments

CSML implemented in BINSEC/SE [binary-level dse tool]
- first DSE tool with generic C/S support

Experiment 1: evaluate CSML overhead
- vs: no C/S, C/S encoded via callbacks
- result: CSML does yield a cost, yet negligible wrt. solving time

Experiment 2: experimental comparison of C/S policies
- five C/S policies for memory accesses: CC, CP, PC, PP*, PP
- result: PP* better on average, yet no clear winner: need different C/S!
- first time such a C/S comparison is performed!
Experiments

CSML Overhead

Bench

- 167 programs (100 coreutils, 17 malware, 50 nist samate/verisec)
- ≈ 45,000 queries

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>base (PP)</td>
<td>0.04%</td>
<td>3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>rule-based</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/S policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.1%</td>
<td>17%</td>
<td>1.2%</td>
</tr>
<tr>
<td>CP</td>
<td>0.1%</td>
<td>23.5%</td>
<td>1.45%</td>
</tr>
<tr>
<td>PC</td>
<td>0.08%</td>
<td>12.8%</td>
<td>0.85%</td>
</tr>
<tr>
<td>PP*</td>
<td>0.08%</td>
<td>12.3%</td>
<td>0.95%</td>
</tr>
<tr>
<td>PP</td>
<td>0.05%</td>
<td>4%</td>
<td>0.48%</td>
</tr>
<tr>
<td>hard-coded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/S policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.05%</td>
<td>8.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>CP</td>
<td>0.05%</td>
<td>8.2%</td>
<td>0.5%</td>
</tr>
<tr>
<td>PC</td>
<td>0.05%</td>
<td>8%</td>
<td>0.45%</td>
</tr>
<tr>
<td>PP*</td>
<td>0.05%</td>
<td>6%</td>
<td>0.45%</td>
</tr>
<tr>
<td>PP</td>
<td>0.04%</td>
<td>3%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Reported figures

- ratio between cost of formula creation and creation + solving
- note: solving time does not depend on the way C/S is implemented

Bardin et al.

ISSTA 2016
Experiments

Quantitative comparison

Five policies for memory accesses

- CC, PC, CP, PP*, PP
- first letter \rightarrow read operation, second letter \rightarrow write operation

<table>
<thead>
<tr>
<th></th>
<th>samate opt</th>
<th>samate best</th>
<th>core opt</th>
<th>core best</th>
<th>malware opt</th>
<th>malware best</th>
<th>total opt</th>
<th>total best</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>20</td>
<td>0</td>
<td>44</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>69</td>
<td>1</td>
</tr>
<tr>
<td>PC</td>
<td>20</td>
<td>2</td>
<td>49</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>75</td>
<td>7</td>
</tr>
<tr>
<td>CP</td>
<td>23</td>
<td>1</td>
<td>61</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>PP*</td>
<td>36</td>
<td>12</td>
<td>71</td>
<td>24</td>
<td>10</td>
<td>5</td>
<td>117</td>
<td>41</td>
</tr>
<tr>
<td>PP</td>
<td>33</td>
<td>9</td>
<td>36</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>76</td>
<td>18</td>
</tr>
</tbody>
</table>

best (resp. opt) : number of programs for which the considered policy returns the strictly highest (resp. highest) number of SAT answers
Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

- three key ingredients: path predicate computation & solving, path search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

- many policies (one per tool), no systematic study of C/S
- undocumented, unclear
- tools: often a single hardcoded policy, no reuse across tools

Our goal: establish C/S as a proper field of study [focus first on specification]

- CSML, a specification language for C/S ✓
 - clear, non-ambiguous
 - tool independent
 - executable

- implemented in BINSEC ✓

- an experimental comparison of C/S policies ✓
Dynamic Symbolic Execution [Korel+, Williams+, Godefroid+]

- Interleave dynamic and symbolic executions
- Drive the search towards feasible paths for free
- Give hints for relevant under-approximations [robustness]

Concretization: force a symbolic variable to take its runtime value

- Application 1: follow only feasible path for free
- Application 2: correct approximation of “difficult” constructs [out of scope or too expensive to handle]
About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Unrealistic perfect symbolic reasoning
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(\text{int } x, \text{int } y) \{ z= x^2; \text{ if } (y == z) \text{ ERROR; else OK } \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>(z := x \times x)</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Unrealistic perfect symbolic reasoning
\[\top \land Z_1 = X_0 \times X_0 \]
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(\text{int } x, \text{int } y) \{ z=x*x; \text{ if } (y == z) \text{ ERROR; else OK} \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>(z := x \times x)</td>
</tr>
<tr>
<td>2</td>
<td>if ((z == y)) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Unrealistic perfect symbolic reasoning

\[\top \land Z_1 = X_0 \times X_0 \land Z_1 = Y_0 \]
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(int \ x, int \ y) \{ z=x^2; \text{if } (y == z) \text{ ERROR}; \text{else OK} \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Unrealistic perfect symbolic reasoning
OK, but how to solve? \(X \)
Bonus

About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(int \ x, int \ y) \{ z=x\times x; \ if \ (y == z) \ ERROR; \ else \ OK \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \ X_0 \ et \ Y_0) — Limited symbolic reasoning
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(\text{int } x, \text{int } y) \{ z = x \times x; \text{ if (} y == z \text{) ERROR; else OK} \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x, y)</td>
</tr>
<tr>
<td>1</td>
<td>(z := x \times x)</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate \((\text{input } X_0 \text{ et } Y_0) \) — Limited symbolic reasoning
\(T \land T \)
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(\text{int } x, \text{ int } y) \{ z = x \times x; \text{ if } (y == z) \text{ ERROR}; \text{ else } \text{ OK } \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x \times x</td>
</tr>
<tr>
<td>2</td>
<td>if \ (z == y) \ [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Limited symbolic reasoning
\[\top \land \top \land Z_1 = Y_0 \]
Goal = find input leading to **ERROR**
(assume we have only a solver for linear integer arith.)

```c
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Limited symbolic reasoning
Incorrect, may find a bad solution (ex : \(X_0 = 10, \ Y_0 = 34 \) ×
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(int x, int y) \{ z=x*x; \text{if (y == z) ERROR; else OK} \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Limited dynamic symbolic reasoning

\[\top \]
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(\text{int } x, \text{ int } y) \{ z=x \times x; \text{ if } (y == z) \text{ ERROR; else OK } \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>(z := x \times x)</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Limited dynamic symbolic reasoning
\[\top \land Z_1 = X_0 \times X_0 \] [assume runtime values : \(x=3, z=9 \)]
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\[f(int \ x, \ int \ y) \{ z=x*x; \ if \ (y == z) \ ERROR; \ else \ OK \} \]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Limited dynamic symbolic reasoning

\[\top \land Z_1 = 9 \land X_0 = 3 \]
Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

\(f(\text{int } x, \text{int } y) \{ z = x \times x; \text{if } (y == z) \text{ERROR}; \text{else } \text{OK} \} \)

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input \(X_0 \) et \(Y_0 \)) — Limited dynamic symbolic reasoning
\[\top \land Z_1 = 9 \land X_0 = 3 \land Z_1 = Y_0 \]
About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

```c
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

<table>
<thead>
<tr>
<th>Loc</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>input(x,y)</td>
</tr>
<tr>
<td>1</td>
<td>z := x * x</td>
</tr>
<tr>
<td>2</td>
<td>if (z == y) [True branch]</td>
</tr>
</tbody>
</table>

Path predicate (input X_0 et Y_0) — Limited dynamic symbolic reasoning
Correct, find a real solution (ex : $X_0 = 3$, $Y_0 = 9$) ✓