
Code Deobfuscation:
Intertwining Dynamic, Static and Symbolic
Approaches

Robin David & Sébastien Bardin
CEA LIST

Who are we ?

#Robin David
● PhD Student

at CEA LIST

#Sébastien Bardin
● Full-time researcher

at CEA LIST

Where are we ?

Atomic Energy Commission (CEA LIST), Paris Saclay

● Software Safety & Security Lab

○

○

Context & Goal

Challenges ?

Analysis of obfuscated binaries and malware
(potentially self-modifying)

Locating and removing obfuscation if any

Recovering high-level view of the program (e.g CFG)

Static, dynamic and symbolic analyses are not
enough used alone

Scalability, robustness, “infeasibility queries”

Our proposal

Achievements

A combination of approaches to handle obfuscations
impeding different kind of analyses

A set of tool to analyse binaries (instrumentation,
binary analysis and IDA integration)

Detection of several obfuscations in packers

A new symbolic method for infeasiblity-based
obfuscation problems

Deobfuscation of the X-Tunnel malware (for which
obfuscation is stripped)

Long term objectives

Takeaway message

 static
disassembly

dynamic
disassembly

Partial safe
CFG

dynamic
symbolic
execution

Obfuscation
information

Execution
trace

◦ disassembling highly obfuscated codes is challenging
◦ combining static, dynamic and symbolic is promising

(accurate and efficient)

new input

Agenda

Background
1. Disassembling obfuscated codes
2. Dynamic Symbolic Execution

Our proposal
3. Backward-Bounded DSE
4. Analysis combination

Binsec
5. The Binsec platform

Case-studies
6. Packers
7. X-Tunnel

Disassembling obfuscated codes
Getting an exploitable representation of the program

1

An essential task before in-depth
analysis is the CFG disassembly
recovery of the program

Disassembly issues

Non-code bytes

Missing symbols (function
addr)

Instruction overlapping

Indirect control-flow

Non-returning functions

Function code sharing

Non-contiguous function

Tail calls

Code
discovery

CFG
reconstruction

CFG
partitioning

(aka. Decoding
opcodes)

(aka. Building the
graph, nodes & edges)

(aka. Finding functions,
bounds etc)

*segmentation proposed in Binary Code is Not Easy, Xiaozhu Meng, Barton P. Miller

Obfuscation
Any means aiming at slowing-down the analysis process
either for a human or an automated algorithm

Obfuscation diversity

Target Against

Control Data Static Dynamic

CFG flattening ⚫ ⚫

Jump encoding
(direct → indirect/computed)

⚫ ⚫

Opaque predicates ⚫ ⚫

VM (virtual-machines) ⚫ ⚫ ⚫ ⚫

Polymorphism(self-modification,
resource ciphering)

⚫ ⚫ ⚫

Call/Stack tampering ⚫ ⚫

Anti-debug / anti-tampering ⚫ ⚫ ⚫

Signal / Exception ⚫ ⚫

Control
function calls, edges

Data
strings, constants..

Vs

and so many others….

Opaque predicates

Definition: Predicate always
evaluating to true (resp. false).
(but for which this property is
difficult to deduce)

Corollary:

◦ the dead branch allow to
▫ growing the code (artificially)
▫ drowning the genuine code

eg: 7y2 - 1 ≠ x2

(for any value of x, y in
modular arithmetic)

mov eax, ds:X
mov ecx, ds:Y
imul ecx, ecx
imul ecx, 7
sub ecx, 1
imul eax, eax
cmp ecx, eax
jz <trap_addr>

↧

Taxonomy:

◦ Arithmetic based
◦ Data-structure based
◦ Pointer based
◦ Concurrence based
◦ Environment based

Call stack tampering

Definition: Alter the standard
compilation scheme of calls
and ret instructions

In addition, able to characterize the tampering with
alignment and multiplicity

Need to handle the tail call optimization..

Corollary:

◦ real ret target hidden, and
returnsite potentially not code

◦ Impede the recovery of
control flow edges

◦ Impede the high-level function
recovery

address instr

80483d1 call +5

80483d6 pop edx

80483d7 add edx, 8

80483da push edx

80483db ret

80483dc .byte{invalid}

80483de [...]

Deobfuscation

◦ Revert the transformation (sometimes impossible)

◦ Simplify the code to facilitate later analyses

Standard approaches

Disassembly

static dynamic symbolic

scale ⚫ ⚫ ⚫

robust (obfuscation) ⚫ ⚫ ⚫

correct ⚫ ⚫ ⚫

complete ⚫ ⚫ ⚫

Notations
◦ Correct: only genuine (executable)

instructions are disassembled
◦ Complete: All genuine instructions

are disassembled

Standard approaches
◦ Static disassembly

Disassembly

jmp
eax

static dynamic symbolic

scale ⚫ ⚫ ⚫

robust (obfuscation) ⚫ ⚫ ⚫

correct ⚫ ⚫ ⚫

complete ⚫ ⚫ ⚫

dynamic jump

Notations
◦ Correct: only genuine (executable)

instructions are disassembled
◦ Complete: All genuine instructions

are disassembled

Standard approaches
◦ Static disassembly
◦ Dynamic disassembly

Disassembly

jmp
eax

static dynamic symbolic

scale ⚫ ⚫ ⚫

robust (obfuscation) ⚫ ⚫ ⚫

correct ⚫ ⚫ ⚫

complete ⚫ ⚫ ⚫

dynamic jump input dependent

Notations
◦ Correct: only genuine (executable)

instructions are disassembled
◦ Complete: All genuine instructions

are disassembled

Dynamic Symbolic Execution
a.k.a Concolic Execution

2

Dynamic Symbolic Execution

Definition: Symbolic Execution is the mean of
executing a program using symbolic values (logical
symbols) rather than actual values (bitvectors) in order to
obtain in-out relationship of a path.

Source Code (C)

int f(int a, int b) {

 if (a < 10) {

 if (a > b) {

printf(“Ok”);

 }

 }

}

How to reach “OK” ?

Formula:
a < 10 ∧ a > b

a < 10

a > b

print(“OK”)

Solution:
a=5, b=1

Why using DSE ?

More difficult to hide the semantic of
the program than its syntactical form.

Intermediate Representation (IR)

Advantages:
◦ bitvector size

statically known
◦ side-effect free
◦ bit-precise

→ Encode the semantic of a
machine instruction

Shortcomings:
◦ no floats
◦ no thread modeling
◦ no self-modification
◦ no exception
◦ x86(32) only

Many other similar IR: REIL, BIL, VEX, LLVM IR, MIASM IR, Binary
Ninja IR

Language DBA

bv bitvector (constant value)

l := loc (addr + offset)

e := v | bv | ⊥ | ⊤
@ [e] (read memory)
e ◇ e | ◇ e

lhs := v (variable)
v{i,j} (extraction)
@[e] (write memory)

inst := lhs := e
goto e | goto l
ite (c)? goto l1; goto l2
assert e | assume e ..

DBA example

Decoding: imul eax, dword ptr[esi+0x14], 7

res32 := @[esi(32) + 0x14(32)] * 7(32)

temp64 := (exts @[esi(32) + 0x14(32)] 64) * (exts 7(32) 64)

OF := (temp64(64) ≠ (exts res32(32) 64))

SF := ⊥

ZF := ⊥

CF := OF(1)

eax := res32(32)

x86 assembly Symbolic Execution
(input:esp, ebp, memory)

push ebp @[esp] := ebp

mov ebp, esp ebp1 := esp

cmp [ebp+8], 3
 @[ebp1+8] < 3

ja @ret

mov eax, [ebp+8] eax1 := @[esp+8]

shl eax, 2 eax2 := eax1 << 2

add eax, JMPTBL eax3 := eax2 + JMPTBL

mov eax, [eax] eax4 := @[eax3]

jmp eax eax4 == 2 (C)

[...]

ret

DSE on a switchSource Code (C)

enum E = {A, B, C}

int myfun(int x) {

 switch(x) {

 case A: x+=0; break;

 case B: x+=1; break;

 case C: x+=2; break;

} }

Path predicate φ :
@[ebp1+8] < 3 ∧ eax4 == 2

@[esp+8] < 3 ∧ @[(@[esp+8]≪ 2) + JMPTBL] == 2

push ebp
mov ebp, esp
cmp [esp+8], 3

ja @ret

jmp eax

mov eax, [ebp+8]
shl eax, 2
add eax, JMPTBL
mov eax, [eax]

ret

>

≤

0 1
2

DSE Vs Static & Dynamic approaches

Advantages:

◦ sound program execution (thanks to dynamic)

◦ path sure to be feasible (unlike static)

◦ next instruction always known (unlike static)

◦ loops are unrolled by design (unlike static)

◦ can generate new inputs (unlike dynamic)

◦ guided new paths discovery (unlike dynamic)

◦ thwart basic tricks (cover-overlapping etc)

static dynamic symbolic

scale ⚫ ⚫ ⚫

robust (obfuscation) ⚫ ⚫ ⚫

correct ⚫ ⚫ ⚫

complete ⚫ ⚫ ⚫

The challenge for DSE is to make it scale on huge path length and
to cover all paths...

Backward-Bounded DSE
Complementary approach for infeasibility-based
problems

3

BB-DSE: Example of a call stack tampering

ret

mov eax, edx

inc edxmov edx, 0

jnz XX

cmp edx, [esp+4]

add [esp], 9

call XX

◼ false negative: miss the
tampering (too small bound)

◼ correct: find the tampering

◼+◼ complete: validate the
tampering for all paths

Goal
Checking that the return address
cannot be tampered by the
function

paths
lost in
computation

Backward-Bounded DSE (new)

backward
bounded
DSE

paths over
approximated

Infeasibility query: Query aiming at
proving the infeasibility of some
events or configuration.
(while traditional SE performs
feasibility requests (paths, values) to
generate satisfying inputs)

Properties:

◦ backward approach
◦ solve infeasibility queries
◦ goal-oriented computation
◦ bounded reasoning
◦ bound modulable for the need

(forward) DSE bb-DSE

feasibility queries ⚫ ⚫

infeasibility queries ⚫ ⚫

scale ⚫ ⚫

Not FP/FN free, but very low rates

Combination
Intertwining Dynamic, Static and Symbolic

4

Combination: Principles

Goal: Enlarging a safe dynamic CFG by static disassembly
guided by DSE to ensure a safer and more precise
disassembly handling some obfuscation constructs.

The ultimate goal is to provide a semantic-aware disassembly
based on information computed by symbolic execution.

 static
disassembly

linear, recursive
in Binsec

dynamic
disassembly

instrumentation
 in Pinsec

Partial safe
CFG

dynamic
symbolic
execution
bb-dse in
Binsec/SE

Obfuscation
related data

Execution
trace

new
input

Combination: Principles

Features:

◦ ◼ enlarge partial CFG on
genuine conditional jump

◦ ◼ use dynamic jumps found
in the dynamic trace

◦ ◼ do not disassemble dead
branch of opaque predicate

◦ ◼ disassemble the target of
tampered ret

◦ ◼ do not disassemble the
return site of tampered ret

Promising results 10 to 32% less instructions in obfuscated
programs (with opaque predicates, call stack tampering).

jl

jmp
eax

jnz

ret
call

SMC Layer #1

SMC Layer #2

5

Binsec platform architecture

main binary
analysis platform

DSE, BB-DSE
static

dynamic analysis
instrumentation

IDA plugin for
result exploitation

execution
trace

analysis
results

new
inputs

queries

Open source and available at:

◦ Binsec+Pinsec: http://binsec.gforge.inria.fr

◦ IDASec: https://github.com/RobinDavid/idasec

Pintool based on Pin 2.14-71313

Features:

◦ Generate a protobuf execution trace (with all runtime values)

◦ Can limitate the instrumentation time / space
◦ Working on Linux / Windows
◦ Configurable via JSON files
◦ Allow on-the-fly value patching
◦ Retrieve some function parameters on known library

functions
◦ Remote control (prototype)

◦ Self-modification layer tracking

Still lacks many anti-debug countermeasures..

Features:

◦ Front-end: x86 (+simplification)
◦ Disassembly: linear, recursive, linear+recursive
◦ Static analysis: abstract interpretation

Binsec/SE (symbolic execution engine)

Features:

◦ generic C/S policy engine
◦ path selection for coverage (thanks Josselin ʠ)

◦ configurable via JSON file
◦ (basic) stub engine for library calls (+cdecl, stdcall)

◦ analysis implementation
◦ path predicate optimizations
◦ SMT solvers supported: Z3, boolector, Yices, CVC4

Binsec (main platform)

Many other DSE engines: Mayhem (ForAllSecure), Triton (QuarksLab),
S2E, and all DARPA CGC challengers

Features:

◦ DBA decoding of an instruction
◦ reading an execution trace
◦ colorizing path taken
◦ dynamic disassembly (following the execution trace)

◦ triggering analyses via remote connection to Binsec
◦ exploiting the results depending of the analysis

triggered

Python plugin for IDA (from 6.4)

Goal:

◦ triggering analyses remotly from IDA and retrieving
the results for post-processing

◦ leveraging Binsec features into IDA

Packers study6
Packers & X-Tunnel

Packer: deobfuscation evaluation

Evaluation of 33 packers
(packed with a stub binary)

Looking for (with BB-DSE):

◦ Opaque predicates
◦ Call stack tampering
◦ record of self-modification layers

Settings:

◦ execution trace limited to 10M
instructions

Goal: To perform a systematic and fully
automated evaluation of packers

◦ Several don’t have such obfuscation, NeoLite, nPack, Packman, PE Compact ….

◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….

◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

Packer: Analysis results

Packer
Trace
len. #proc #th #SMC

opaque predicates
 (OK) (OP)

Call/stack tampering
 (OK) (tamper)

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

◦ Several don’t have such obfuscation, NeoLite, nPack, Packman, PE Compact ….

◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….

◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

Packer: Analysis results

Packer
Trace
len. #proc #th #SMC

opaque predicates
 (OK) (OP)

Call/stack tampering
 (OK) (tamper)

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

The technique scales
on significant traces

◦ Several don’t have such obfuscation, NeoLite, nPack, Packman, PE Compact ….

◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….

◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

Packer: Analysis results

Packer
Trace
len. #proc #th #SMC

opaque predicates
 (OK) (OP)

Call/stack tampering
 (OK) (tamper)

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

Many true positives.
Some packers are
using it intensively

The technique scales
on significant traces

◦ Several don’t have such obfuscation, NeoLite, nPack, Packman, PE Compact ….

◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….

◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

Packer: Analysis results

Packer
Trace
len. #proc #th #SMC

opaque predicates
 (OK) (OP)

Call/stack tampering
 (OK) (tamper)

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

Packers using ret to
perform the final
tail transition to the
original entrypoint

Many true positives.
Some packers are
using it intensively

The technique scales
on significant traces

Packer: Tricks and patterns found

OP in ACProtect

1018f7a js 0x1018f92

1018f7c jns 0x1018f92

(and all possible variants
ja/jbe, jp/jnp, jo/jno..)

OP in Armadillo

10330ae xor ecx, ecx

10330b0 jnz 0x10330ca

CST in ACProtect

1001000 push 16793600

1001005 push 16781323

100100a ret

100100b ret

CST in ACProtect

1004328 call 0x1004318

1004318 add [esp], 9

100431c ret

10040fe: mov bl, 0x0
10041c0: cmp bl, 0x0
1004103: jnz 0x1004163

1004163: jmp 0x100416d
[...]

1004105: inc [ebp+0xec]
[...]

ZF = 0 ZF = 1

OP (decoy) in ASPack

0x10040ff
at runtime

0x1

CST in ASPack

10043a9 mov [ebp+0x3a8], eax

10043af popa

10043b0 jnz 0x10043ba

Enter SMC Layer 1

10043ba push 0x10011d7

10043bf ret

0x10043bb
at runtime

X-Tunnel
A dive into the APT28 ciphering proxy

7

Introduction: Sednit / APT28 / Pawn Storm

Nicknames: APT28, Fancy Bear, Sofacy, Sednit, Pawn Storm

Alleged attacks:

◦ NATO, EU institutions
◦ German Parliament

(Germany)

◦ TV5 Monde (France)

◦ DNC: Democratic National

Committee (US)

◦ Political activists (Russia)

◦ MH17 investigation team
(Netherlands)

◦ Many more ambassies and
military entities ….

0-days used:

◦ 2 Flash

◦ 1 Office (RCE)

◦ 2 Java

◦ 1 Windows (LPE)

Tools used:

◦ Droppers / Downloader
◦ X-Agent / X-tunnel
◦ Rootkit / Bootkit
◦ Mac OS X trojan (Komplex)
◦ USB C&C

Data collected from: ESET,
Trend Micro, CrowdStrike ...

[CVE-2015-7645]
[CVE-2015-3043]

[CVE-2015-2590]
[CVE-2015-4902]

[CVE-2015-2424]

[CVE-2015-1701]

[2015]

[2015]

[2015]

[2016]

[2015]

(delivered via their exploit
kit “sedkit” with many
existing exploits)

X-Tunnel

What it is ?
Ciphering proxy allowing X-Agent(s) not able to reach the
C&C directly to connect to it through X-Tunnel.

Features
Encapsulate any TCP-based traffic into a RC4 cipher stream
embedded into a TLS connection.

A huge thanks to ESET Montreal and especially to Joan Calvet ʟ

Samples
Sample #0 Sample #1 Sample #2

Hash 42DEE3[...] C637E0[...] 99B454[...]

Size 1.1 Mo 2.1 Mo 1.8 Mo

Creation date 25/06/2015 02/07/2015 02/11/2015

#functions 3039 3775 3488

#instructions (IDA) 231907 505008 434143

widely obfuscated with
opaque predicates

Are there new functionalities ?

Can we remove the obfuscation ?

Are there new functionalities ?

spoiler:

Can we remove the obfuscation ?

spoiler:

X-Tunnel: Analysis

Analysis context:

◦ full static analysis (because need to connect C2C, wait clients...)
◦ perform the backward-bounded DSE combined with IDA
◦ driven by IDASec

Combination divergence:

◦ without the dynamic component (ok because no SMC)
◦ the symbolic disassembly reduction performed “a-posteriori”

Goal: Detecting and removing all opaque predicates to extract a
clean CFG of the functions

Analysis procedure:

1. opaque predicate
detection

2. high-level predicate
recovery

3. dead and spurious
instruction removal

4. reduced CFG
extraction

IDASec features used:

1. custom CFG structure to
enumerate paths and
which support annotation

2. liveness propagation
3. custom SMT formula
4. CFG extraction based on

annotations

High-level predicate recovery (synthesis)

Behavior: Computes the dependency for a conditional jump,
and recursively replace terms in order to obtain the predicate.

Corollary: The algorithm is able to determine which
instructions are used for the computation of a conditional jump.

CFG SMT Formula

mov esi, dword_5D7A84 (define-fun esi2 (load32_at memory #x005d7a84))

mov edi, dword_5D7A80 (define-fun edi0 (load32_at memory #x005d7a80))

jz loc_44D9FA (assert (not (= ZF2 #b1)))

imul esi, esi (define-fun esi3 (bvmul esi2 esi2))

imul eax, esi, 7 (define-fun eax2 (bvmul esi3 #x00000007))

dec eax (define-fun eax3 (bvsub eax2 #x00000001))

imul edi, edi (define-fun edi1 (bvmul edi0 edi0))

cmp eax, edi
(define-fun res328 (bvsub eax3 edi1))
(define-fun ZF4 (bvcomp res328 #x00000000))

jnz loc_44D922 (assert (= ZF4 #b1))

((bvsub (bvmul (bvmul esi2 esi2) #x7) #x1) ≠ (bvmul edi0 edi0) ↦ 7x2 - 1 ≠ y2

Analysis: Results

#cond jmp bb-DSE Synthesis Total

C637 #1 34505 57m36 48m33 1h46m

99B4 #2 30147 50m59 40m54 1h31m

(only one path
per conditional
jump is analysed)

C637
#1

99B4
#2

◼ Ok ◼ Opaque predicate ◼ False positive ◼ OP missed

Only 2 different opaque predicate

7x2 - 1 ≠ x2 ≠ y2 + 32
x2 + 1

unseen
elsewhere

both present in the same proportions..

good
candidate for
signature ?

Analysis: Obfuscation distribution

Goal: Computing the percentage of conditional jump obfuscated
within a function

Very few function are obfuscated ~500 (due to statically linked library
not obfuscated OpenSSL etc..)

This allow nonetheless to narrow the post-analysis on these
functions (likely of interest) …

◼ C637 (Sample #1) ◼ 99B4 (Sample #2)

Analysis: Code coverage

C637 Sample #1 99B4 Sample #2

#Total
instruction 505,008 434,143

#Alive +279,483 +241,177

#Dead -121,794 -113.764

#Spurious -103,731 -79,202

#Delta with
sample #0 47,576 9,270

Results of the liveness propagation and identification of spurious
instructions

In both samples the difference with the un-obfuscated binary is
very low, and probably due to some noise

Analysis: Reduced CFG extraction

Algorithm:

◦ remove basic blocks marked dead
◦ remove spurious instructions (part of the computation of OP)
◦ recreate the CFG by concatenating instructions with a

single predecessor

Goal: Performing a-posteriori the static disassembly
sketch in the combined approach

Result:

Original CFG CFG marked CFG extracted

Demo !
X-Tunnel deobfuscation

X-Tunnel: Conclusion

Obfuscation: Differences with O-LLVM (like)

◦ some predicates have a great dependency (use local variables)

◦ some computation reuse between opaque predicates

Manual checking of difference to not appeared to yield
significant differences or any new functionalities…

Technique:

◦ Combination: Backward Symbolic Execution and “a-posteriori”
static disassembly reduction (without the dynamic aspect)

◦ very few FP / FN refined manually by predicate synthesized (due to
the low diversity of predicates)

Next:

◦ in-depth graph similarity (to find new functionalities)
◦ integration as an IDA processor module (IDP) ?

For more: [RECON 2016][Botconf 2016]

Joan Calvet, Jessy Campos, Thomas Dupuy
Visiting the Bear Den

https://recon.cx/2016/speakers/jessy_campos.html
https://recon.cx/2016/speakers/thomas_dupuy.html

Binsec Takeaways

Tip of what can be done with Binsec
dynamic symbolic execution, abstract
interpretation, simulation, optimizations,
simplifications, on-the-fly value patching …

Still a young platform
under heavy development, API not stabilized,
(considering rewriting IDASec with Binary Ninja)…

More is yet to come
documentation, ARMv7 support, code
flattening and VM deobfuscation…

Take part !

◦ Download it, try it, experiment it !
◦ Don’t hesitate contacting us for questions !

Open source and available at:
◦ Binsec+Pinsec: http://binsec.gforge.inria.fr

◦ IDASec: https://github.com/RobinDavid/idasec

Takeaways

More is not always better in terms of disassembly
on obfuscated programs

The combination yielded very good results
on X-Tunnel

The combination dynamic, static and
symbolic is the way to go on obfuscated
binaries and helped recovering a clean CFG on
X-Tunnel. Still under integration in Binsec with support
of different self-modification layers….

The backward bounded DSE scale well and
allowed to detect obfuscations considered on many
packers and X-Tunnel

Thank you !
Q & A

Robin David
robin.david@riseup.net

@RobinDavid1

Sébastien Bardin
sebastien.bardin@cea.fr

