
Attacker Control and Bug Prioritization

Guilhem Lacombe
Université Paris-Saclay, CEA, List, France

guilhem.lacombe.97@gmail.com

Sébastien Bardin
Université Paris-Saclay, CEA, List, France

sebastien.bardin@cea.fr

Abstract
As bug-finding methods improve, bug-fixing capabilities are
exceeded, resulting in an accumulation of potential vulner-
abilities. There is thus a need for efficient and precise bug
prioritization based on exploitability. In this work, we explore
the notion of control of an attacker over a vulnerability’s pa-
rameters, which is an often overlooked factor of exploitability.
We show that taint as well as straightforward qualitative and
quantitative notions of control are not enough to effectively
differentiate vulnerabilities. Instead, we propose to focus anal-
ysis on feasible value sets, which we call domains of control,
in order to better take into account threat models and expert
insight. Our new Shrink and Split algorithm efficiently ex-
tracts domains of control from path constraints obtained with
symbolic execution and renders them in an easily processed,
human-readable form. This in turn allows to automatically
compute more complex control metrics, such as weighted
Quantitative Control, which factors in the varying threat lev-
els of different values. Experiments show that our method
is both efficient and precise. In particular, it is the only one
able to distinguish between vulnerabilities such as cve-2019-
14192 and cve-2022-30552, while revealing a mistake in the
human evaluation of cve-2022-30790. The high degree of au-
tomation of our tool also brings us closer to a fully-automated
evaluation pipeline.

1 Introduction

Over the past decades, program analysis research has pre-
dominantly focused on expanding and refining bug-finding
methods. As a result, automated techniques such as fuzzing,
symbolic execution and data-flow analysis have improved
significantly. Fuzzing in particular is very prolific nowadays,
with efforts such as Syzbot [1, 2] uncovering thousands of
bugs. In addition, the popularization of open-source devel-
opment models led to even greater bug-finding capabilities
as third parties are able to contribute additional man- and
processing-power.

The problem. Unfortunately, bug-fixing capabilities have not
seen the same level of development and thus unfixed bugs
tend to accumulate over time. This tendency is especially
striking when looking at Syzbot’s bug reports for the Linux
kernel: 1561 open bugs as of December 2024, the oldest being
over seven years old. Furthermore, there are 51 mentions
of "out-of-bounds" and 120 of "use-after-free". Fuzzing of
smaller scale projects as performed by Google’s OSS-fuzz [3]
also discovers large amounts of bugs, with over 1500 labeled
"vulnerability" in 2024 alone, including 427 buffer overflows,
all of uncertain security impact.

This poses a severe security risk as overwhelmed develop-
ers are unable to identify true vulnerabilities and thus dispatch
adequate bug-fixing efforts. Thus a need for precise yet effi-
cient bug prioritization arises.

Due to the diversity of requirements and challenges inher-
ent to different development projects, the choice of criteria
for bug prioritization is ultimately up to the developers. For
example, bugs causing infinite loops may be of higher priority
in a server than in an offline application due to the greater
focus on availability. However this choice is limited by the
capabilities of current analyzers and error detectors, which
typically focus on detecting classes of vulnerabilities, such as
use-after-free and out-of-bounds memory accesses in the case
of the Linux kernel sanitizer KASAN [4]. For this reason,
current bug prioritization practices often amount to simply
attributing varying threat levels to different classes of vulner-
abilities and are thus very coarse-grained.

In order to establish finer-grained prioritization criteria, one
may consider using Automated Exploit Generation (AEG)
[8, 34] to automatically check for exploitability. Ignoring the
technical challenges that would be involved, there are still
major issues with this approach, such as the fact that AEG
gives no guarantees if no exploits are found. Indeed, a lack of
generated exploit only indicates incompatibility with the AEG
method. There is also a fundamental divergence in objectives:
the goal of AEG is first and above all to build functional
exploits, not necessarily reusing the same exact bug given
as input. Most AEG engines only use input bugs as starting

points, some even only use them as seeds in their own bug
search [16, 66, 69].

On the other hand, there are lessons to be learned from
the inner workings or AEG engines. In particular, many have
some variant of a rating system for vulnerabilities in order to
select the most adequate ones for the exploit being built. Typ-
ically, vulnerabilities offering some level of control are pre-
ferred. For example, KOOBE [16] compares out-of-bounds
write vulnerabilities based on obtainable offsets, sizes and
written values, and prioritizes those with a wider range of ca-
pabilities. However its approach only allows for very limited
partial ordering and is thus inadequate for generic bug priori-
tization. An attacker’s control over the value of vulnerability
parameters is thus an important factor of exploitability.

Our goal. We aim to develop fine-grained bug prioritization
methods based on automatically estimating attacker control
over vulnerability parameters.

While attacker control over a variable or expression is gen-
erally understood to refer to the ability of an attacker to in-
fluence its value through program inputs, the lack of formal
definitions renders this concept ambiguous. Taint and sym-
bolic bytes are often implicitly considered as qualitative indi-
cators of control during taint analysis and symbolic execution
respectively [34, 57, 69], despite a lack of formal guarantees.
On the other hand, Newsome et al. [53] define a quantitative
notion of control related to channel capacity, which assumes
all values are equally dangerous and can thus be misleading.
For example, very large write sizes in a buffer overflow write
will likely result in a crash, while smaller ones are more likely
to hit critical data such as pointer or return addresses. Fur-
thermore, applicable algorithms scale poorly and the authors
did not explore applications to bug prioritization. Overall,
attacker control lacks a unified theoretical framework as well
as reasonably scalable approaches able to capture nuances
such as the varying threat levels of different values.

Our proposal. We propose to focus control analysis on the
domains of control, i.e., the sets of feasible values for vulner-
ability parameters. Our approach consists in deriving the path
constraint corresponding to program execution on a known
vulnerability-triggering input using single-path symbolic ex-
ecution, then use our Shrink and Split algorithm to measure
domains of control for a variable or expression in an analysis-
friendly form. In particular, the absence of path exploration
eliminates the risk of path explosion, bringing our symbolic
execution more in line with dynamic taint analysis [57] in
terms of scalability. Finally, vulnerabilities can be scored with
control metrics based on these domains of control, such as
weighted Quantitative Control, the sum of the threat levels of
the different feasible values according to some weight func-
tion. For example, we can compute a score for out-of-bounds
write vulnerabilities by combining the weighted quantitative
control over the write offset, size and data.

While this work mainly focuses on vulnerabilities involving

well defined data-flows, in particular out-of-bound memory
bugs, we discuss applicability to other vulnerabilities as well.

Contributions. We claim the following contributions:

• We provide a generic, unified and analysis-method-agnostic
theoretical framework for the notion of attacker control over
the value of a given expression. We define the domain of
control as the set of obtainable values (Section 5.1). Then
we define weak control as the ability of an attacker to change
the value through inputs and strong control as the existence
of inputs leading to every possible value (Section 5.2). Fi-
nally, we define quantitative control (Section 5.3) based
on existing notions and expand it into weighted quantita-
tive control (Section 5.4). We then argue that taint analysis
can only ensure the absence of weak control (Section 6.1),
strongly limiting its usefulness for control analysis;

• We propose Shrink and Split (Section 6.3), a novel algo-
rithm able to efficiently determine domains of control as
a set of intervals with weak and strong control guarantees.
It extracts them from logical formulas representing path
constraints, which can be obtained with standard techniques
such as symbolic execution or bounded model checking.
Shrink and Split is a refinement process entirely based on
qualitative analysis and yields approximate results when
interrupted. Additional regularity constraints, such as fixed
bits, can also be taken into account to improve precision.
We also provide algorithms for measuring weak, strong and
quantitative control;

• We implemented Shrink and Split and our other algorithms
into a new dynamic analysis tool with symbolic execution
capabilities. Measuring control with Shrink and Split is
significantly more precise than using taint analysis. Our
algorithm also performs significantly better than the closest
one from the literature (Newsome et al. [53], see Section
7). Furthermore, Shrink and Split is more robust and more
informative than counting algorithms. Our tool also im-
plements various utilities enabling automatic end-to-end
analysis;

• We perform a ground-truth evaluation on real-world vulner-
abilities (Section 7.6) which shows that our approach gives
a more precise exploitability assessment than CVSS scores
and quantitative information flow analysis. In particular, we
are able to clearly differentiate vulnerability capabilities,
match identical ones and even help to correct previous hu-
man evaluation in the case of cve-2022-30790. The high
degree of automation of our tool also allowed us to evalu-
ate memory out-of-bounds bugs from the Magma fuzzing
benchmark [33] in an end-to-end manner and realistic field
conditions (Section 7.7). We were additionally able to show
that the results from this experiment match the tendencies
of coarse-grained human expectations.

This work constitutes a step toward precise, fully-
automated exploitability assessment. While exploitability as
a concept is difficult to formally grasp and may not be re-

ducible to a single catch-all notion, control is definitively an
interesting part of it. Combinations with other indicators is an
interesting research direction.

2 Motivating Example

1 # d e f i n e HEADER_SIZE 40
2
3 u i n t 6 4 _ t c h e c k _ h e a d e r (char * i n p u t ,
4 u i n t 6 4 _ t i n p u t _ s i z e)
5 {
6 / / 2) i n p u t [0 − >7] w r i t t e n on t h e s t a c k
7 u i n t 6 4 _ t h e a d e r = * ((u i n t 6 4 _ t *) i n p u t) ;
8 re turn h e a d e r <= 296 ;
9 }

10
11 void get_msg (char * buf , u i n t 6 4 _ t b u f _ s i z e ,
12 char * i n p u t , u i n t 6 4 _ t i n p u t _ s i z e)
13 {
14 / / 3) n o t i n i t i a l i z e d => s i z e = h e a d e r
15 u i n t 6 4 _ t s i z e ;
16 i f (i n p u t _ s i z e <= b u f _ s i z e + HEADER_SIZE)
17 / / 4) i n p u t _ s i z e < 40 => i n t e g e r u n d e r f l o w
18 s i z e = i n p u t _ s i z e − HEADER_SIZE ;
19 / / 5) b u f f e r o v e r f l o w ! ! !
20 / / a . i n p u t _ s i z e < 40
21 / / => 2^64 − 40 <= s i z e < 2^64
22 / / b . i n p u t _ s i z e > 296 => s i z e = h e a d e r
23 memcpy (buf , i n p u t + HEADER_SIZE , s i z e) ;
24 }
25
26 i n t main (. . .)
27 {
28 / / 1) i n p u t s : c h a r * i n p u t , u i n t 6 4 _ t i n p u t _ s i z e
29 . . .
30 char buf [2 5 6] ;
31 i f (c h e c k _ h e a d e r (i n p u t , i n p u t _ s i z e))
32 get_msg (buf , 256 , i n p u t , i n p u t _ s i z e) ;
33 . . .
34 }

Listing 1: Motivating example

In order to illustrate the problem of bug prioritization, con-
sider the program from Listing 1, which exhibits two similar
vulnerabilities with different levels of exploitability.

Explanation. We assume that input_size and input are in-
dependently provided by the attacker, thus input_size is not
constrained by input. However the program assumes that it
is and that input has a header of size HEADER_SIZE that
must be removed. This leads to unintended behaviour when
passing malformed inputs.

Vulnerability a is triggered when input_size is smaller than
HEADER_SIZE. In this scenario, the branch condition on
line 16 is true, leading to an integer underflow on line 18. A
buffer overflow then occurs at line 23 with 264−40≤ size <
264, the size of bu f being only 256.

Vulnerability b occurs when input_size is greater than
bu f _size+HEADER_SIZE. This time, the branch condition
on line 16 is false and size remains uninitialized. Its value
is therefore equal to the first 8 bytes of input which were
written on the stack on line 7. The attacker can thus obtain
257≤ size≤ 296 on line 23 and cause a buffer overflow.

Discussion. While the main impact of both vulnerabilities is
a buffer overflow allowing an attacker to overwrite the stack,
their levels of exploitability differ greatly. Indeed vulnera-
bility a always results in a crash as the program attempts to
overwrite roughly 264 bytes of memory. On the other hand,
vulnerability b allows an attacker to overwrite at most 40
bytes of memory with data they provide. This level of control
makes vulnerability b easier to exploit. For example, the at-
tacker can overwrite the return address of the main function
and hijack control-flow.

In the context of security-aware bug prioritization, vulner-
ability b should be fixed before vulnerability a. However
it would be difficult to recognize this fact in practice when
only vulnerability types are reported. In this case, information
about how controllable vulnerabilities a and b are is required
to give them the correct level of priority. Our experimental
evaluation shows that this scenario can indeed happen in prac-
tice (see Table 5 in Section 7).

Prior work. Commonly used indicators of control such as
taint and symbolic bytes [57, 69] are not helpful here: size
would be tainted and symbolic on line 23. It also can take
the same number of values in both vulnerabilities thus quan-
titative information flow analysis [46] is equally unhelpful.
Correctly handling such cases requires a new approach, which
we detail in Sections 5 and 6.

3 Background

Let P be a program. An execution of P is a sequence of
states each associated with a location corresponding to the
current instruction. Let SP be the set of possible states of
P, LP the set of locations of P and λ(s) ∈ LP the program
location associated with a state s. We note →: SP× SP the
transition relation between states during execution of P and
→∗ its transitive closure.

Sequences of states are called traces and sequences of
locations paths. A path π = (li)i is said to be feasible iff there
exists a possible trace t = (si)i of P following π, i.e., forall i,
λ(si) = li. If π starts with s and ends with s′, we note s→π s′.

Let VP be the set of variables of P and IP its set of possible
inputs. We note s(v) the value of a variable v in a state s
and Dom(v) the set of values that v can take a priori (e.g.,
considering its type). To simplify notations, we assimilate
expressions over variables as implicit variables. For any input
i ∈ IP and state s ∈ SP, we note i→∗ s iff s0→∗ s with s0 the
initial state corresponding to input i.

3.1 Taint Analysis
Taint analysis [57] refers to the static or dynamic propagation
of tags associated to data to qualitatively track data-flows. An
expression introducing a tag is referred to as a source while
program locations where the presence of tags is checked are

called sinks. This technique has the advantage of being fairly
lightweight at the cost of limited precision and guarantees. A
common application is the verification and enforcement of
non-interference properties [31]. Some prior works use taint
analysis to detect attacker control [34, 45].

3.2 Symbolic Execution

Symbolic Execution (SE) [57] refers to the exploration of
execution paths in a program while computing the associated
constraints on inputs and other variables such as registers and
memory locations. These constraints usually take the form of
a Satifiability Modulo Theory (SMT) formula and are used
to check whether paths are feasible. Variables dependant on
inputs are referred to as symbolic variables while constant
values are said to be concrete. While SE excels at covering
edge-case paths and allows to generate inputs triggering them,
it may suffer from path explosion , i.e., an exponential increase
in the number of paths being followed. Some constraints may
also be too difficult to solve (typically, cryptography). SE
engines include KLEE [13] at LLVM-IR level as well as
Angr [61] and BINSEC [21, 24] for binary analysis.

Choice of SMT theory. We assume that symbolic states are
expressed in the ABV theory (arrays and bitvectors), with
variables represented as bitvectors and memory as a logical
array. As a consequence, the values of variables are finite.

Notations. We note SE(π) the symbolic state obtained at
the end of the symbolic execution of a path π, with program
inputs initially symbolic. Let φ be a symbolic state. We define
the following notations:
• φ(x)≜ True if x satisfies φ, False otherwise
• sat(φ)≜ True if ∃ x : φ(x), False otherwise
• val(φ,v) a feasible value of v in φ, nil if none exists
• val(φ(x),v) the value of v for the input x if φ(x), else nil
• duplicate(φ,v) ≜ φ′,v′ with φ′ a copy of φ with separate

variables, v′ being equivalent to v

3.3 Quantitative Information Flow

Quantitative information flow analysis consists in evaluating
the quantity of information flowing through a channel, often
by measuring channel capacity [23]. This is usually done to
quantify the leakage of secret information [18, 37, 51].

Projected Model Counting (PMC). While model counting
counts the number of solutions of a formula, PMC counts the
number of values a subset of free variables can take within
a SAT formula [10]. It can be used to measure QIF by con-
verting SMT formulas generated with symbolic execution or
model checking into SAT formulas [11, 46]. We note SEPMC
the algorithm combining SE and PMC.

While the precision of current exact PMC solvers such as
D4 [47] and Ganak [60] is high, scalability is an issue and they

may even fail on trivial examples as shown in Section 7. Ap-
proxMC [15, 62, 63] is an efficient approximated PMC solver
with probably approximately correct guarantees, i.e., results
are within a given error margin with a given probability.

Quantitative Influence. Newsome et al. [53] defined the no-
tion of quantitative influence, derived from channel capacity,
as the logarithm of the number of feasible values for a vari-
able. We integrate this notion into our control framework as
quantitative control in Section 5.3. They also proposed an
algorithm for measuring quantitative influence based on statis-
tical sampling, which we discuss in Section 6.3 and evaluate
against in Section 7.

4 Problem Statement

Our goal is to rank vulnerabilities according to how control-
lable their parameters are, with as little assumptions on the
goal of a potential attacker as possible, and as little human
effort as possible.

4.1 Requirements

Vulnerability information. We assume that the type of vul-
nerability (e.g., out-of-bounds write, use-after-free, pointer
corruption, etc.) is known. We also assume that we have a
triggering input. These parameters can be expected to be
available for most discovered vulnerabilities as proof of exis-
tence and for debugging purposes. Our method can also be
paired with automated bug finding methods such as symbolic
execution [57] or fuzzing [50] to directly find inputs.

Human expertise. Identifying vulnerability parameters,
which we refer to as target variables, may require some hu-
man expertise, although they can be identified automatically
in most cases as shown in Section 7.7. These parameters vary
depending on vulnerability types: size and data of a buffer
overflow write, value of a corrupted pointer, etc. They can be
implicit, meaning that the value itself is not stored anywhere
at runtime, such as the overall write size from a strcpy call.

4.2 Archetypal Control Problems
Notions of control can relate to a wide array of vulnerabilities
in many ways. Rather than considering individual types of
vulnerabilities, we define archetypal control problems:

Data control problem. This problem is the most straight for-
ward: the vulnerability allows an attacker to control the value
of a well-defined structure, such as a pointer or a used-after-
free object. In this case, we only need to analyze the degree
of control of the attacker over the value of this structure.

This archetype fits vulnerabilities such as some use-after-
frees, use-before-initialization and pointer corruption.

Memory range control problem. This problem covers vul-
nerabilities allowing an attacker to read or write variable size
data at variable memory addresses, without any explicit struc-
ture. Here the vulnerability’s parameters are the address, size
and written data when applicable. As variable-size data can
be difficult to handle, one may resort to extrapolating from
fixed-size analysis.

This archetype fits most out-of-bounds read / write vulner-
abilities, such as vulnerabilities a and b from Listing 1.

What about vulnerabilities without explicit data-flows?
Control is inherently tied to data-flows. However, the effect
of those data-flows are not always materialized into an ex-
plicit value. For example, attackers may control the number
of memory allocator interactions in order to achieve heap
layout manipulation [35, 36, 67]. In such cases, parameters
must be made explicit at the code level or within the analysis,
for example with counters.

Scope. We choose to mostly focus on memory range problems
in this work (e.g., buffer overflows) to avoid scope creep
and since they match the typical bugs found by fuzzers. Our
benchmark nevertheless also contains examples of the data
problem (e.g., pointer corruption after a use-after-free).

5 Formally Defining Control

In order to explicitly define various aspects of the notion of
control, we first need to precisely identify the meaning of
controlling a variable from a natural language standpoint.
We consider attackers interacting with a program through its
inputs, with the goal to take advantage of a given vulnera-
bility (e.g., buffer overflow) with several variable parameters
(e.g., the size of a buffer overflow write), for some malicious
purpose (e.g., rewriting a return address or a function pointer).

The weakest level of control attackers are looking for is the
ability to influence the value of the vulnerability parameters
through inputs, i.e., to obtain different values for them. In
other words, attackers are not satisfied with simply knowing
of the existence of a data-flow from inputs to the targeted (pa-
rameter) variables, it must also be influenceable. On the other
hand, the strongest level of control the attacker is seeking is
the ability to obtain any value for the vulnerability parameters.

We propose hereafter a hierarchy of notions of control with
precise formal definitions. All will be relevant in Section 6
when we propose algorithms for control evaluation.

5.1 Domain of Control
First let us define our key notion of Domain of Control, from
which we derive all our other notions of control.

Given a program P, we define the Domain of Control of
variable v at location l as the set of feasible values for v at this
location, i.e., the set of values e of v for which we can find

some input i such that executing P on i leads to a program
state s (at location l) in which v evaluates to e. More formally,
we have the following definition:

Definition 1 (Domain of Control).

DoC(v, l)≜ {e ∈ Dom(v)/∃i ∈ IP : i→∗ s ∈ SP

with λ(s) = l, s(v) = e}

5.2 Qualitative Control

We now define Weak Control – resp. Strong Control – as
the attacker’s ability to find inputs of the program leading to
different values – resp. leading to any value – of v at l.

Definition 2 (Weak Control (WC)). Given a program P, a
variable v∈VP is weakly controlled at location l ∈ LP if there
exists i, i′ ∈ IP two inputs such that i→∗ s and i′→∗ s′ with
s,s′ ∈ SP, s(v) ̸= s′(v) and λ(s) = λ(s′) = l. We note WC(v, l).

Note that v is weakly controlled at l iff |DoC(v, l)| > 1,
hence iff v can indeed take at least two values, depending on
the input chosen by the attacker.

Definition 3 (Strong Control (SC)). We say that (v, l) is
strongly controlled if for all e ∈Dom(v), there exists an input
i ∈ IP such that i→∗ s ∈ SP with s(v) = e and λ(s) = l. We
note SC(v, l).

In this case, v is strongly controlled at l iff |DoC(v, l)| =
|Dom(v)|, hence iff v can take any value from its definition
domain. Intuitively, SC is a stronger property than WC.

Proposition 1. Strong control is stronger that Weak control,
i.e., for any program P and target (l,v), SC(v, l)⇒WC(v, l).

1 i n t x = i n p u t ;
2 / / h e r e x i s s t r o n g l y c o n t r o l l e d
3 i f (x)
4 / / h e r e x i s weakly b u t n o t s t r o n g l y c o n t r o l l e d
5 i f (! x)
6 / / h e r e x i s n e i t h e r weakly nor s t r o n g l y
7 / / c o n t r o l l e d

Listing 2: Examples of Weak and Strong Control

The main drawback of these definitions is a lack of nuance,
as weak and strong control guarantee the lowest and highest
amount of control possible respectively as shown on Listing
2. In the case of our motivating example (Listing 1), the out-
of-bounds write size is weakly but not strongly controlled
for both vulnerabilities, thus these notions cannot be used to
distinguish between them. Nevertheless, we show in Section
6.3 that WC and SC can be used as formal guarantees within
more subtle approaches.

5.3 Quantitative Control
Shifting to quantitative measurement is a common approach
when attempting to overcome the limits of qualitative analysis
[9,26,32,37]. Following this trend and similarly to Newsome
et al. [53], we define Quantitative Control as the (normalized)
channel capacity [23] of v.

Definition 4 (Quantitative Control (QC)). (similar to New-
some et al. [53])

QC(v, l)≜
ln(|DoC(v, l)|)
ln(|Dom(v)|)

The value of QC relates intuitively to WC and SC.

Proposition 2. WC(v, l) ⇐⇒ QC(v, l)> 0

Proposition 3. SC(v, l) ⇐⇒ QC(v, l) = 1

While QC allows for a level of precision well beyond WC
and SC, measuring it in practice is challenging due to the poor
scalability of counting algorithms (see Section 7). In addition,
QC remains a one-dimensional measure of control: it assumes
that all possible values are equally dangerous. However, this
is often not the case as in our motivating example (Listing
1), where both vulnerabilities have the same number of write
sizes but the larger write sizes of vulnerability a lead to a
crash and thus have a lower threat level.

5.4 Weighted Quantitative Control
In light of the limitations of WC, SC and QC, we argue that
fine-grained evaluation of attacker control should focus on the
domains of control and account for expert insight into which
values are more dangerous.

For instance, in our motivating example (Listing 1), we
see that buffer overflow write sizes for vulnerability a are too
large to be useful as they will lead to crashes, while those for
vulnerability b allow to overwrite nearby stack data only and
are therefore more useful for the attacker. Generally, smaller
overflow write sizes / offsets should be worth more due to
the lower variability of near targets and their potential inter-
est for the attacker (chunk metadata, adjacent objects, return
addresses and other stack data, etc.).

One way to automatize such reasoning is to compute a
weighted quantitative control metric.

Definition 5 (Weighted Quantitative Control (wQC)). Let
ωv : Dom(v)→ R be a weight function.

wQC(v, l,ω)≜
∑n∈DoC(v,l) ω(n)

∑n∈Dom(v) ω(n)

This may be difficult to compute in practice, however in
some instances it is possible to efficiently approximate.

Proposition 4. Let Dom(v) = Ja,bK⊂ N, P be a set of inter-
vals in N and a partition of DoC(v, l). Let Ω : R→ R be an
integrable function on [a,b] and ω = Ω|Dom(v).

wQC(v, l,ω)≈
∑Ji, jK∈P

∫ j+1
i Ω(x)dx∫ b+1

a Ω(x)dx
(1)

If we have additional constraints on intervals1, with ρ(I)
the actual number of feasible values in I ∈ P, we get:

wQC(v, l,ω)≈
∑Ji, jK∈P

ρ(Ji, jK)
j−i

∫ j+1
i Ω(x)dx∫ b+1

a Ω(x)dx
(2)

For example, for buffer overflow / underflow write vulnera-
bilities such as in our motivating example, we can use ω : x 7→

1
ln(2)x for out-of-bounds write sizes and offsets, in order to
introduce bias toward smaller values, i.e., tampering of local
data. This way, the weighted quantitative control value for the
overflow size, i.e., the write size minus the size of the buffer, is

approximately
∫ 264−256

264−296
ω(x)dx∫ 264

1 ω(x)dx
= log2(264−256)−log2(264−296)

log2(264)
≈ 0

for vulnerability a and
∫ 41

1 ω(x)dx∫ 264
1 ω(x)dx

= log2(41)
log2(264)

≈ 0.0837 for vul-

nerability b, thus giving a clear order of priority.

Exact, constraint-based domain of control representations,
such as SMT formulas, are often too complex to perform
such analysis. We present a solution to provide a simplified
representation of DoC(v, l) in Section 6.

5.5 Variants
Control under assumption. So far, we have defined control
over the entirety of Dom(v). However it can be useful to
verify control properties over a subset E ⊂Dom(v) of feasible
values, as it would allow to factor in assumptions such as v
being always even or within a given range. We thus define
notions of control over a subset of values similarly to their
regular counterparts with Dom(v) reduced to E, denoted with
the suffix |E . In practice, we make use of the notion of strong
control under assumption in Algorithm 4 in Section 6.3.

Restriction to a single path. Reasoning over a single path
is advantageous in the context of program analysis as it elim-
inates loops. We define DoCπ, WCπ, SCπ, QCπ and wQCπ

similarly to their non-single-path counterpart, with the con-
straint that values are obtainable through a single path π, i.e.,
→∗ is replaced with→π.

While this approach comes at the cost of completeness,
many vulnerabilities can still be adequately analyzed this way.
Furthermore, domains of control for different paths can be
merged without loss of precision. The limits of this approach
and potential solutions are further discussed in Section 8.

1For example, x≡ 0[2]

5.6 Conclusion
To sum up, weak and strong control are too extreme to be
insightful on their own. Quantitative control allows for more
precision, however it still remains uni-dimensional. This is
an issue since control is a complex, multi-dimensional notion
with different values potentially having different threat levels.
We propose to focus more on this aspect by directly analyz-
ing domains of control and distilling them down with more
expressive metrics, such as weighted quantitative control.

6 Evaluating Control

Assuming vulnerability-triggering inputs are available, we
choose to employ dynamic analysis methods at binary level
in order to precisely follow complex program behaviour at
the cost of restricting analysis to a single execution path π.

We will first discuss why taint is a poor indicator of control,
before detailing symbolic-execution-based solutions.

6.1 Taint Analysis Cannot Guarantee Control
A typical taint policy consists in propagating taint to the out-
puts of an instruction if at least one of its inputs is tainted
(see Appendix I for an example). While one may be tempted
to interpret taint as an indicator of control, it unfortunately
cannot give much guarantees.

Proposition 5 (Taint is limited for control evaluation). Taint
only guarantees that ¬tainted⇒¬WC.

1 i n t x = i n p u t ; ← tainted
2 i n t y = i n p u t ;
3 i n t z = x + y ;
4 i f (x >= 0)
5 {
6 i f (x <= 0) ← x tainted but can only be equal to 0
7 }
8 i n t w = z − x ; ← w tainted but can only be equal to y

Listing 3: Weak Control false positives with taint analysis

If a variable is tainted, there is no guarantee that its value
can change depending on inputs, i.e., that it is weakly con-
trolled. While taint can be removed when a single instruction
restricts a variable to a single value (e.g., i f (!x)), this can
also happen due to arbitrarily complex constraints imposed
by multiple instructions (lines 6 and 8 on Listing 3). Han-
dling those cases with precision thus requires some form of
constraint tracking, i.e., symbolic execution or other similar
techniques. This issue is reflected in the literature with works
using lightweight symbolic execution to refine dynamic taint
propagation [52, 65].

In conclusion, taint analysis cannot prove weak control, the
lowest level of control in our framework. It is thus insufficient
for evaluating control with any degree of precision.

6.2 Verifying Weak and Strong Control with
SMT Solvers

As discussed previously, we need to analyze path constraints
in order to properly evaluate control, hence our reliance on
symbolic execution. The following algorithms check Weak
and Strong Control for a variable v in a symbolic state φ.

Algorithm 1 SEWC

Require: v a variable, l a location, π a path ending at l
Ensure: returns true ⇐⇒ WCπ(v, l)

φ← SE(π)
φ′,v′← duplicate(φ,v)
return sat(φ∧φ′∧ v ̸= v′)

Algorithm 1 checks WC by checking satisfiability for two
different values of v. It is correct and complete for WCπ.

Proposition 6. SEWC(v, l,π) ⇐⇒ WCπ(v, l)

Algorithm 2 SESC

Require: v a variable, l a location, π a path ending at l
Ensure: returns true ⇐⇒ SCπ(v, l)

φ← SE(π)
procedure SC(v, l,φ,E) ▷ E ⊆ Dom(v)

φ′←∃ y ∈ E: ∀ x, φ(x)⇒ val(φ(x),v) ̸= y
return sat(φ′), val(φ′,y)

end procedure
res,y← SC(v, l,φ,Dom(v)) ▷ y: counterex. if not nil
return ¬res

Algorithm 2 checks SC by searching for a counterexample,
i.e., an infeasible value. It is correct and complete for SCπ.

Proposition 7. SESC(v, l,π) ⇐⇒ SCπ(v, l)

Algorithm 3 SESC|E
Require: v a variable, l a location, π a path ending at l, E ⊆

Dom(v)
Ensure: returns true ⇐⇒ SCπ|E(v, l)

φ← SE(π)
res,y← SC(v, l,φ,E) ▷ y: counterexample if not nil
return ¬res

Similarly, Algorithm 3 checks SC over E ⊆Dom(v) (SC|E)
by limiting the search for an infeasible value to E.

Solver requirements. While SEWC can be verified by any
SMT solver, SESC requires quantifier support. In addition,
obtaining the counterexample y requires the ability to extract
models in quantified SMT formulas.

6.3 Extracting Domains of Control with
Shrink and Split

Giving a simple characterization of DoCπ(v, l) as a set of
intervals would greatly help further analysis, for example al-
lowing to compute weighted quantitative control as discussed
in Section 5. To achieve this, we propose the Shrink and Split
approach detailed in Algorithm 4, which consists in repeatedly
shrinking and splitting Dom(v) until we reach DoCπ(v, l).

Algorithm 4 SES&S

Require: v a variable, l a location, π a path ending at l
Ensure: returns DoCπ(v, l)

φ← SE(π)
procedure S&S(v, l,φ, i,c) ▷ c: additional constraints

- Shrinking -
φ← φ∧ v ∈ i
lo← min(val(φ,v))
hi← max(val(φ,v))
i← [lo;hi]
φ← φ∧ v ∈ i

- Checking for Strong Control -
sc,y← SC(v, l,φ,{y ∈ i/c(y)})
if sc then

- No need to split -
return i

else
- Splitting around y -

return S&S(v, l,φ, [lo;y[,c)
∪ S&S(v, l,φ,]y;hi],c)

end if
end procedure
return S&S(v, l,φ,Dom(v),True)

Shrinking. Intervals are shrunk by finding their feasible
bounds. To achieve this, we need a min and a max direc-
tive. In practice we use the SMT solver Z3’s optimization
modules, which rely on MaxSMT solvers in the case of bitvec-
tors [12]. Alternatively, feasible bounds can be determined us-
ing a binary-search-like method, requiring O(log(|Dom(v)|))
calls to the solver. As a result, infeasible values outside of
those feasible bounds are eliminated.

Checking for Strong Control. We then check whether v is
strongly controlled over the shrunk interval i. An affirmative
result indicates that i is a subset of DoC(v, l), otherwise we
know of at least one infeasible value y.

Splitting. If infeasible values remain in i, we split it around y
and repeat the S&S process on both halves.

Since variables are represented as finite bitvectors, all infea-
sible values are eventually eliminated and we are left with a
union of intervals exactly matching DoC(v, l).

Proposition 8. DoCπ(v, l) = SES&S(v, l,Dom(v),π)

Practical Limits. In practice, we observe that proving strong
control or finding a counterexample can fail, due to the com-
plexity of constraints, time-outs, solver limitations or bugs...
In this case, weak control at least is guaranteed on the current
interval as feasible bounds were found. In the worst case,
S&S may only be able to show weak control over the entire
domain, although this never happens in our experiments.

In addition, S&S has an obvious flaw: when the domains of
control contains a lot of holes, the number of splits required
may be impractically large.

Mitigation 1: limited splitting. One way to avoid excessive
splitting is to set a limit and interrupt S&S when it is reached.
This can be a good solution as intermediate results get more
precise over time, although it sacrifices exactness.

Mitigation 2: fixed bits. Another possible mitigation is to
identify fixed bits and take them into account with an addi-
tional constraint, preventing splitting caused by them.

Algorithm 5 SES&SFB: SES&S with a fixed bits constraint

Require: v a variable, l a location, π a path ending at l
Ensure: returns DoCπ(v, l)

φ← SE(π)
φ′,v′← duplicate(φ,v)
φ′′,v′′← duplicate(φ,v)
φ′′← φ∧φ′∧φ′′∧mask =∼ (v′ ˆv′′))
∧bits = v′&v′′ ▷ (a)

φ′′← φ′′∧ (¬∃x: φ′′(x)
∧val(φ′′(x),v)ˆmask ̸= bits)) ▷ (b)

if sat(φ′′) then
mask← val(φ′′,mask)
bits← val(φ′′,bits)

else
mask← 0
bits← 0

end if
return S&S(v, l,φ,Dom(v),y 7→ yˆmask = bits)

Algorithm 5 shows how we compute fixed bits and incorpo-
rate them into S&S. (a) and (b) ensure that mask corresponds
to at least and at most all fixed bits respectively, while bits
contains their value.

There exist corner cases where two feasible values always
have more common bits than the number of overall fixed bits,
in which case this algorithm fails with mask and bits null.
However we expect such cases to be rare. Alternatively we
could evaluate each bit individually, however we observe that
our approach is more efficient in practice.

Once the fixed bits constraint is determined, we incorporate
it within S&S by checking strong control over values satisfy-
ing it in the shrunk interval. This implicitly eliminates holes
and prevents excessive splitting.

This variant of S&S is also evaluated in Section 7 and
shown to improve precision with no noticeable overhead.

Other possible mitigations. Other types of constraints such
as congruences or polyhedra could be similarly considered in
lieu of fixed bits. This is left as future investigation.

Approximation. When an exact results cannot be computed,
Shrink and Split still gives an over- and under-approximation
of the domains of control, respectively by taking all resulting
intervals and only those where strong control is proven.

Solver requirements. Both SES&S and SES&SFB incur the
same solver requirements as SESC, with the addition of the
min and max directives.

Comparison with Newsome et al.’s algorithm [53]. Our
S&S algorithm bears some similarities with Newsome et al.’s
feasible value set estimation algorithm. Both give a represen-
tation of what we call domains of control as a set of intervals,
with a distinct splitting operation. Both also require min and
max solver directives. However their algorithm splits inter-
vals around random feasible values, which is fairly inefficient.
Finally, they perform statistical sampling and compute a con-
fidence interval on the density of each interval rather than
proving strong control, leading to weaker guarantees.

On the other hand, our algorithm requires solving quantified
SMT formulas and optimization queries, while theirs only
issues standard quantifier-free SMT queries.

6.4 Conclusion

Table 1: Comparison of analysis methods for attacker control

Algorithm TA SEWC SESC SEPMC Newsome SES&S
underlying - QF SMT Q SMT PMC QF SMT, Q SMT,
problem(s) min / max min / max
¬WC ✓ ✓ ✗ ✓ ✓ ✓
WC ✗ ✓ ✓* ✓ ✓ ✓
SC ✗ ✗ ✓ ✓ ∼ ✓
QC ✗ ✗ ✗ ✓ ∼ ✓
DoC ✗ ✗ ✗ ✗ ∼ ✓
wQC ✗ ✗ ✗ ✗ ∼ ✓

QF SMT = Quantifier Free SMT, Q SMT = Quantified SMT, PMC = Projected Model
Counting, min / max = directives for min and max values. ✓ means that an exact result
can be given, ∼ that only approximation can be given and ✗ that no result can be given.
* implicit when strong control is proven, but limited

As summed up in Table 1, we have shown that taint analysis
cannot give much guarantees on attacker control. In compari-
son, all of our control properties can be proven or measured
using algorithms based on symbolic execution. In particular,
SES&S is able to compute domains of control, from which all
other notions are derived.

7 Experimental Validation

We will now evaluate our approach and compare the charac-
teristics of Shrink and Split with the other algorithms.

7.1 Implementation
We have implemented all the different techniques mentioned
so far in a new generic binary-level dynamic analysis engine
designed for flexibility and quick prototyping. We build on
the Intel PIN binary instrumentation framework [5], the BIN-
SEC symbolic execution engine [21, 24] and several external
solvers. Our prototype is currently limited to x86_64 due to
the use of PIN tools. Additionally:
• We perform taint analysis at the BINSEC IR level, allowing

us to precisely track intra-instruction data-flows;
• SMT solving is performed via a portfolio approach with

Z3 [22], Bitwuzla [54] in conjunction with various SAT
solvers and Q3B [43];

• We support the exact PMC solvers d4 [47] and ganak [60]
and the approximate solver approxmc [15, 62, 63] with
P (result = truth±20%) = 0.95 as a guarantee;

• We set a limit of k=100 splits for S&S2;
• We reimplemented Newsome et al’s algorithm based on the

details provided in their paper [53].
The choice of precise yet architecture-specific binary-level

analysis limits approximation in path constraints and thus en-
sures that the precision of control algorithms can be properly
evaluated. However it is not an integral part of our method as
any other way of deriving path constraints can be used, such
as source level symbolic execution.

Automatically detecting and analyzing out-of-bounds
memory accesses. We implemented an analysis based on
taint which tracks pointers toward stack, heap and global ob-
jects. The taint information contains the bounds of the object
and allows to check for violations during memory accesses.
This allows to automatically identify and analyze the target
variables for such vulnerabilities.

7.2 Benchmark
Our benchmark is split into a set of programs with well-
understood vulnerabilities and another, more realistic one.

Ground-truth benchmark (B1). This benchmark is com-
posed of the 14 real-world vulnerabilities from Table 2, plus
8 synthetic examples from Newsome et al. [53] and 17 new
ones. The bugs in these programs were manually analyzed
and are thus well understood. The purpose of this benchmark
will be to demonstrate the correctness of our approach.

The real-world vulnerabilities in this benchmark were se-
lected from the literature (cve-2019-19307 and cve-2019-
14192 [28], heartbleed) and CVE databases. Regarding the
latter, our requirements for open-source and reproducibility
are surprisingly rarely fulfilled. The size of this benchmark is
further limited by the need to establish ground truths manually
and the lack of reuseable examples from the literature.

2The study in Appendix V shows a negligible impact of k on performance
and precision above a certain threshold.

Table 2: Real-world vulnerabilities from the ground-truth
benchmark B1 (see Appendices II and III for more details)

Program Vulnerability Executed Instructions
name type Symbolic Total

libjpeg cve-2023-37837 OOBR 56 261k
libsndfile cve-2021-3246 OOBW 432 47k
mongoose cve-2019-19307 IOF 104 67k
u-boot cve-2019-14192 OOBW 38 4k
u-boot cve-2019-14202 OOBW 38 4k
u-boot cve-2022-30790 OOBW 161 3k
u-boot cve-2022-30790-2* OOBW 34 3k
u-boot cve-2022-30552 OOBW 91 2k
openssl heartbleed OOBR 33 165 mil.
faad2 cve-2021-26567 CFH 14 12k
perl-dbi cve-2020-14393 CFH 2491 60 mil.
sdop cve-2024-41881 CFH 60 657k
xfpt cve-2024-43700 CFH 271 179k
mjs cve-2023-43338 CFH 99 51k

OOBR/W = Out-Of-Bounds Read / Write, IOF = Integer OverFlow, CFH = Control-
Flow Hijacking
*side effect of cve-2022-30790

Table 3: Realistic benchmark B2 (see also Appendix IV)

Program # of Vulnerabilities Executed Instructions
Symbolic Total (million)

poppler 5 0 - 6671 5 - 15
openssl 91 91 - 5019 1 - 30
libtiff 52 274 - 1086 0.1 - 1
libxml 4 0 - 417 0.1 - 7
php 1 196 6
libpng 1 0 0.02
sqlite3 1 0 0.25

1including 6 variants not caught by Magma’s ground truth oracles
2including 2 variants with different capabilities

Realistic benchmark (B2). This benchmark is composed of
26 out-of-bounds memory vulnerabilities from the Magma
state-of-the-art fuzzing benchmark [33], in programs such as
openssl, libtiff and libxml (see Table 3). They include buffer
overflows, use-after-frees and various other invalid memory
accesses. We picked these vulnerabilities based on whether
they were triggered during the original evaluation of Magma.

These vulnerabilities were analyzed based solely on the
available reproducing input and ASAN reports. Contrary to
B1, no manual instrumentation was performed, hence the
increase in realism toward in-the-field analysis of large, com-
plex programs. Yet we lack a clear ground-truth for these
vulnerabilities. The purpose of this benchmark will thus be to
demonstrate the practicality of our approach.

7.3 Research Questions
We structure the experimental evaluation of our bug prioriti-
zation approach around the following research questions:

RQ1. How precise is Shrink and Split and how does it com-
pare to other algorithms?

RQ2. How scalable is Shrink and Split and how does it com-
pare to other algorithms?

RQ3. How effective is our approach at prioritizing bugs com-
pared to others?

RQ4. How does our approach fare in realistic end-to-end
scenarios?

We chose a limit of 100 splits for S&S in our experiments.
See Appendix V for a study of the split limit’s impact.

7.4 RQ1: Precision
We first compare the precision of S&S against other qualita-
tive and quantitative methods.

of

 p
ro

bl
em

s

(1) S&S (100 max splits) (2) S&SFB (100 max splits)

Taint WC SC Newsome
18

6

16
2

17
0

13
5

65

89 81

10
5

0 0 0 11

Taint WC SC Newsome

18
6

16
2

17
0

14
0

65

89 81

10
5

0 0 0 6

S&S better Equal S&S worse no control

Improvements in cases without control are due to 24 false positives
for taint analysis and the fact that non-SC does not mean absence of
control for SC.

Figure 1: Precision of domains of control with S&S compared
to other applicable algorithms

20 216 232 248 264

(1) S&S (100 max splits)

weak
strong

20 216 232 248 264

(2) S&SFB (100 max splits)

weak
strong

From top to bottom: cve-2021-3246.of_size, cve-2022-30790.wlen,
cve-2022-30790_2.woff2, grub.canary, mul.j. See Appendix III for
more examples. The dotted lines represent maximal value ranges
based on variable sizes.

Figure 2: Examples of approximate results with S&S

Qualitative methods. The results are compared based on
the inclusion of the returned domains of control, with smaller
ones being considered better. Figure 1 shows that S&S is
more precise than other applicable algorithm for measur-
ing domains of control in most instances. In particular, it

is strictly better than Newsome et al’s algorithm on 135 (140
with S&SFB) cases out of 251, and worse in only 11 cases
(6 with S&SFB). This is partly due to the loss of precision
when the domains contain too many holes, which is mitigated
by S&SFB (see Figure 2). On the other hand, S&S always
improves upon WC when there is control, i.e., in 162 cases
out of 251. It also beats taint analysis in these instances –
note that tainting suffers from 24 false positives here. Finally,
S&S can show absence of control while SC cannot, and also
improves upon the latter in 81 cases with control.

of

 p
ro

bl
em

s

(1) S&S (100 max splits) (2) S&SFB (100 max splits)

d4 ganak approxmc

5 6 12

23
7

23
6

22
6

9 9 90 0 4

d4 ganak approxmc

5 6 15

24
1

24
0

22
7

5 5 50 0 4

S&S better Equal S&S worse Not comparable

Results from approxmc cannot be compared without an exact count.

Figure 3: Precision of quantitative control with S&S com-
pared to model counters

Quantitative methods. We compare S&S to counting meth-
ods by reducing the domains to a single value count. It must
be clear that S&S provides more information than quantita-
tive methods by design, yet this comparison is restricted to
counting only. Figure 3 details how S&S fares against d4
and ganak, as well as the approximate PMC solver approxmc.
Overall S&S performs well in most instances, while S&SFB
improves precision in 4 cases. Both algorithms also beat d4
and ganak on some problems due to them timing out. Finally,
S&S and S&SFB beat approxmc in 12 and 15 cases.

Conclusion RQ1. While S&S may lose precision in some
cases, it overall improves upon Newsome et al.’s algorithm
and is even competitive against PMC solvers.

7.5 RQ2: Performance
Bug-prioritization methods can afford to be slower than bug-
detection methods, as they only need to analyze buggy execu-
tions. Nevertheless, scalability always benefits usability.

Table 4 shows that S&S is competitive in terms of perfor-
mance, with no time-outs and a total runtime of 11 minutes
for both variants, beating its direct competitor Newsome et
al.’s algorithm by a very large margin (2h09, 1 TO), with
an average speedup of 73× for S&S and 77× for S&SFB3.
This also shows that the additional fixed bits constraints does

3without the 5% top and bottom outliers

Table 4: Cumulative runtimes for each algorithm on B1+B2

Algorithm Notion Time-outs1 Runtime2

Taint WC 0 < 0.1s
WC WC 0 3s
SC SC 0 46s
d4 QC 5 36m
ganak QC 6 33m
approxmc QC 1 15m
Newsome DoC 1 2h09m
S&S3 DoC 0 11m
S&SFB3 DoC 0 11m

15 minutes — 2including time-outs — 3100 maximum splits

not meaningfully degrade performance. Counting approaches
also suffer from time-outs.

Conclusion RQ2. Both S&S and S&SFB are significantly
faster than the existing state-of-the-art and more robust than
projected model counting algorithms.

7.6 RQ3: Bug priorization
So far we have evaluated the precision and scalability of
Shrink and Split in relation to expectations and other algo-
rithms. We will now show how our approach allows to pre-
cisely prioritize vulnerabilities via weighted quantitative con-
trol, with a case study on the 8 real-world buffer out-of-bounds
vulnerabilities and our motivating example from our ground-
truth benchmark B1. In addition, we also present a case study
on 5 real-world control-flow hijack primitives (code pointer
corruption). Its purpose is to illustrate the more simple data
control problem.

20 216 232 248 264

motex2.of_wsize <1>
motex1.of_wsize <1>

heartbleed.payload_size <11>
cve-2023-37837.read_off <0>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790.of_woff <7>

cve-2022-30790.of_wsize <5>
cve-2022-30552.of_woff <3>

cve-2022-30552.of_wsize <1>
cve-2021-3246.of_size <1>

cve-2019-14202.of_wsize <1>
cve-2019-14192.of_wsize <1>

(1) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

Figure 4: Domains of control for the OOB vulnerabilities

Distinguishing between different vulnerabilities. Table 5
details the CVSS, QC and wQC scores for each of the vul-
nerabilities in our study. These results show that weighted

Table 5: Using control to rate vulnerabilities

Out-Of-Bounds (memory range problem). We rate control over
memory ranges as the sum of the QC or wQC scores for offsets and
sizes, multiplied by variable sizes. Non-out-of-bounds values are
excluded and offsets are relative to the closest relevant bound for
OOB write vulnerabilities. For wQC, we use the weight function ω :
x 7→ 1

ln(2)x as in Section 5.4. Other similar functions yield equivalent
results, see Appendix VII for more details.
Control-Flow Hijacking (data problem). We rate control over a
corrupted code pointer. Since variable sizes are always 8 bytes,
scores are normalized. When string parsing is involved, analysis
takes into account individual byte constraints. For wQC, we give a
null weight to invalid addresses, i.e., those corresponding to non-
executable or unmapped memory. In particular, in 64-bit Linux,
addresses with two non-null high bytes are invalid in user-space.

Score categorization:
(low capabilities): CVSS < 5, OOB < 1, CFH < 0.01
(medium capabilities): CVSS < 7, OOB < 10, CFH < 0.1
(high capabilities): CVSS ≥ 7, OOB ≥ 10, CFH ≥ 0.1

Vulnerability CVSS QC Score wQC Score Human2

OOB writes

motex1 - 5.32 0

motex2 - 5.32 5.36
cve-2021-3246 8.8 17.6 14.14
cve-2019-14192 9.8 15.97 15.97
cve-2019-14202 9.8 15.97 15.97

cve-2022-30790 7.8 15.6 0.51

cve-2022-30552 5.5 15.6 0.51

cve-2022-30790-2 - 15.94 2.37
OOB reads

cve-2023-37837 6.5 16 16
heartbleed 7.5 16 16

CFH

cve-2021-26567 7.8 0.97 0
cve-2020-14393 7.1 0.99 1

cve-2024-41881 8.8 0.94 0

cve-2024-43700 7.8 0.78 0

cve-2023-43338 9.8 10−5 1
Total Correct 6/12 7/15 15/15

17 for CVSS — 2manual analysis performed by us

quantitative control, and by extension domain of control anal-
ysis, is able to clearly differentiate between vulnerabilities
with different capabilities, such as motex1 and motex2 (resp.
vulnerabilities a and b from Section 2) or cve-2022-30552
and cve-2019-14192, with the former only allowing for very
large write sizes (see Figure 4) and thus being less dangerous.

Identical capabilities. Additionally, domains of control allow
to recognize vulnerabilities sharing the same capabilities, i.e.,
those with the same target variables and domains of control,
such as cve-2019-14192 and cve-2019-14202 or cve-2022-
30790 and cve-2022-30552 (see Figure 4).

Correcting human analysis. In the case of cve-2022-30790,
we found previous human analysis to be incorrect. It was
discovered together with cve-2022-30552 [6] and was thought

to grant an arbitrary write primitive by overwriting metadata
in a linked list. In contrast, the other can only be used for DOS
attacks due to a very large write size caused by an integer
underflow. However, our results contradict this interpretation
as both vulnerabilities are found to have the same capabilities,
matching the analysis of cve-2022-30552. Inspecting the code
reveals that some security checks prevent most out-of-bounds
writes, which must have been missed by previous evaluators
(see Appendix VIII). Using our tool could have helped them
realize their mistake and thus improve human analysis.

Comparing control-flow hijacking primitives. The main
point of interest regarding these vulnerabilities is the fact that
QC is particularly misleading. This is due to the fact that the
two upper bytes of the corrupted code pointer must be set to
zero in order to prevent a crash. As a result, vulnerabilities
with high QC such as cve-2021-26567 and cve-2024-41881
are not exploitable since the data overwriting the code pointer
comes from a string, hence bytes cannot be null.

In contrast, cve-2023-43338 has low QC but is very control-
lable since any value between 0 and 248−1 can be obtained
(see Appendix III).

Comparison with other methods. CVSS and quantitative
control scores are not so useful as differences are too minor
to be meaningful. This is to be expected for the former as it
is only a loose indicator assuming worst case. On the other
hand, quantitative control cannot account for differing value
threat levels. Weak and strong control alone are also not very
useful as in most cases control is weak but not strong. Overall,
weighted QC scores are the only ones to match our expecta-
tions, with 12/12 matches for the vulnerabilities with CVSS
scores, against 6/12 for the latter and QC.

Conclusion RQ3. Our approach allows to prioritize vulner-
abilities more precisely than the existing state-of-the-art in
our case study. It would also have improved human analysis
for cve-2022-30790.

7.7 RQ4: Realistic end-to-end scenarios
To demonstrate the practicality of our approach, we automat-
ically analyzed and rated the Magma vulnerabilities from
benchmark B2, starting from a single input only and with
practically no human effort. Figure 5 displays the resulting
scores, which clearly differentiate vulnerability capabilities.
Overall, our wQC scores match expectations and allows us
to derive interesting knowledge of the vulnerabilities (see
Appendix IX for a more in-depth discussion).

OOB writes. We observe a correlation with the 11 available
CVSS scores, with 9 out of 11 close matches with our wQC
score and a clear distinction between highly and less control-
lable vulnerabilities. Regarding the two mismatches, SSL001
and TIF001, we show that despite their high CVSS scores,

0.0 0.2 0.4 0.6

SQL018
XML002
XML001
XML006
TIF001

SSL001
TIF008_2

TIF008
TIF002

TIF002_2
SSLNEW002
SSLNEW004
SSLNEW006
SSLNEW005

SSL002
SSLNEW003
SSLNEW001

Memory Write Bugs

Base
Size
Data

0.0 0.2 0.4 0.6

PNG007
PDF018
PDF010
PDF004

TIF002_2
TIF002

XML012
SSL009
TIF001

TIF008_2
SSL001
TIF008

PDF003
PHP011
PDF019

Memory Read Bugs

Base
Size

Score

Scores are computed for base addresses and sizes using weighted
quantitative control biased toward local OOBs. Our weight function
is x 7→ 1

ln(2)d(x) with d the distance between x and the nearest buffer
bound for addresses or minimum out-of-bounds size for sizes. Data
scores are given as an average of quantitative control over the first
eight written bytes.

Figure 5: OOB capability scores for the Magma bugs

their capabilities are actually very limited, since they consists
in repeated non-contiguous single byte writes, with no control
over any parameters.

We also observe a similarity between the SSLNEW vulner-
abilities’ capabilities and those of SSL002. The fact that they
are fixed by the same patch suggests that they are indeed most
likely derived from the same bug.

OOB reads. We observe the same trend as OOB writes, al-
though some CVSS scores are influenced by the occurrence
of OOB writes in the same execution, complicating the inter-
pretation. Additionally, our analysis suggests that PDF010,
which does not have an associated CVE, has the same capa-
bilities as three other vulnerabilities with CVEs.

Conclusion RQ4. Our approach can be fully automated and
still clearly differentiate highly controllable vulnerabilities
from others in realistic fuzzing targets.

8 Discussion

Handling Other Types of Vulnerabilities. In our experimen-
tal validation, we focused on memory out-of-bounds vulnera-
bilities. However our method can be applied to other types of
vulnerabilities as well. In particular, vulnerabilities resulting
in control over well-defined data value (data control problem
model) can be handled by computing weighted quantitative
control over said value with an appropriate weight function.
For example, regarding pointer corruption and assuming a 64-
bit architecture, the weight function should attribute a weight

of zero to any value greater or equal to 248, since those ad-
dresses are invalid.

On the other hand, our tool could also be used to mea-
sure information leakages, since they are typically evaluated
using data-flow analysis. For example, in our heartbleed ex-
periment, we analyzed 8 bytes of unencrypted data leaked
from a previous server interaction. Yet indirect leakages (e.g.,
side-channels) would be difficult to handle.

Finally, our method may not be applicable to some kinds of
vulnerabilities (e.g., DoS caused by infinite loops) and may be
difficult to leverage for others (e.g., heap layout manipulation,
although we discussed some possibilities in Section 4).

Multi-path analysis and implementation. While single path
analysis simplifies symbolic execution and greatly improves
scalability by avoiding path explosion, it can result in a loss of
completeness. A possible mitigation is to explore additional
paths and merge those reaching the same vulnerability, yet it
should be done with care in order to avoid any significant per-
formance cost. Another solution would be to explore multiple
paths separately, then merge the domains of control.

Note that our framework, algorithms and general approach
does not rely on any particular constraint computation tech-
nique, thus other implementations may choose to sacrifice
performance for more completeness with multi-path analy-
sis. We also investigated how standard symbolic execution
optimizations impact our approach. As expected, constraint
relaxation [55] (over-approximation) yields wider domains
(see Appendix XI) while partial input concretization [20, 30]
(under-approximation) induces tighter ones (see Appendix
XII). Both may reduce computation time but also impact bug
evaluation. A systematic evaluation is left as future work.

Interpreting results. While weighted quantitative control can
help to automatize vulnerability evaluation, expert insight is
still required in order to define a suitable weight function. This
can also arguably be an advantage, as it allows to tailor the
method toward the specific needs and constraints of different
projects, hardware or environments.

On a different note, weak intervals in domains computed
by Shrink and Split can be difficult to interpret, as they may
have very different densities (see Appendix X). Fortunately,
our threat classification from Table 5 is unaffected, but this
may not always be the case.

Limits of automation. Our tool automation is enough to han-
dle many situations, as illustrated in Section 7.7. However,
it cannot track some implicit properties, such as constraints
on the length of strings. Repeated memory accesses inside
loops can also be tricky to properly analyze, as some parame-
ters may overall be tied to the looping condition. These are
universal problems in binary-level analysis.

Limits of control for exploitability evaluation. Exploitabil-
ity is a fundamentally hard to capture concept. As such, one
can only aspire to identify and evaluate some of its aspects,

such as control. This also means that any formal exploitabil-
ity assessment technique is limited by the scope of its target
property. In our case, control measurements may be too nar-
row or approximate due to the technical limitations of our
implementation, but factors other than control may also be at
play, such as a lack of robustness [29].

Binary vs. source code analysis for prioritization. Given
the variety of existing platforms, environments and building
tools, source-level analysis may appear a good choice for
generic bug evaluation. Yet, bugs of the types we consider
here are often found at the binary level (e.g., ASAN detections
during fuzzing) and their exploitation often depends on low-
level concepts such as memory layouts. They are thus difficult
to precisely characterize at source level.

9 Related Works

Bug Impact Evaluation. Manual bug prioritization efforts
such as CVSS scores tend to always assume worst case sce-
narios, regardless of the actual capabilities of vulnerabilities.
In addition, human error is an ever-present risk as illustrated
by the case of cve-2022-30790 (Section 7.6).

On the other hand, automated bug prioritization practices
usually consist in attributing different priority levels to differ-
ent types of vulnerabilities. In the case of fuzzing, sanitizers
such as ASAN [59] or KASAN [4] provide information on
bug impacts. While it works well for coarse-grained prioriti-
zation, it does not allow to distinguish between vulnerabilities
of the same type.

Syzscope [71] refines this approach by allowing the exe-
cution to continue after a first issue is detected, potentially
leading to more serious ones. While this allows to identify
dangerous bugs which would otherwise be considered benign,
it still does not allow to distinguish between vulnerabilities
of the same type.

Evocatio [42] uses targeted fuzzing to discover additional
bug capabilities, such as different sizes or offsets of out-of-
bounds writes, but does not score nor rank them.

KOOBE [16] characterizes out-of-bound reads and writes
using symbolic execution in order to identify the most promis-
ing ones to automatically build exploits. It ranks capabilities
only when their associated constraints are either identical,
or one of them is a constant value and solution of the other
(partial order). While useful in an automatic exploit genera-
tion setting, this approach is too simple for full-fledged bug
prioritization: no two vulnerabilities from Table 5 could be
compared with it. Despite its limitations, KOOBE is to our
knowledge the closest existing work to offering a generic
fine-grained vulnerability capability metric.

ML-based methods. Existing works attempt to predict the
exploitability of vulnerabilities using deep learning tech-
niques [19, 41, 48, 64]. While these approaches scale well
once trained, the lack of transparency in the results as well

as the over-reliance on human analysis (bug reports, CVSS
scores, etc.) currently hinder their usability.

Automatic Exploit Generation (AEG). One way to prove
the exploitability of a bug is to build an exploit around it.
However, building exploits manually is difficult, hence the
interest in automatic exploit generators (AEG). While first
attempts focused on shellcode injection exploits [8, 14, 34],
more recent works focus on heap exploitation [25, 35, 36, 56,
66, 67, 70], kernel exploitation [16, 17, 49, 68, 69] or gadget
chain synthesis [38–40, 58].

While a priori close in goals, AEG is not well suited for
bug priorization. Indeed, AEG tools tend to be highly spe-
cialized, so that while building an exploit is the strongest
possible proof of exploitability, failure is less conclusive, as
the vulnerability could require a type of exploit not covered
by the AEG engine at hand. AEG may also involve fuzzing
for similar-yet-different vulnerabilities [16, 66, 69].

Robust Reachability. Another aspect of the exploitability of
bugs besides their security impact is how reliably they can
be triggered. Girol et al. [27–29] proposed robust reachabil-
ity to formally capture this notion that complements but is
orthogonal to bug impact analysis for prioritization.

Quantitative Information Flow. Measuring channel capac-
ity and thus quantitative information flow has mainly been
developed for the purpose of quantifying leakage of secret in-
formation [11,37,51]. These works consider notions similar to
quantitative control, while we argue that qualitative domains
of control are a much better tool for bug prioritization.

Newsome et al. [53] use quantitative information flow meth-
ods to measure quantitative control. Their algorithm internals
share similarities with S&S, even though their goal is purely
quantitative and they do not identify the key notion of do-
mains of control. Additionally, their algorithm has not been
designed nor used for bug prioritization, and our experiments
show that S&S performs much better for our needs.

10 Conclusion

We focused on the problem of precise and efficient bug priori-
tization, with the expressed goal of distinguishing more or less
security-critical bugs. Our work on the evaluation of attacker
control over vulnerability parameters to distinguish between
vulnerabilities constitutes a step in this direction, yielding a
theoretical framework and efficient analysis methods. In sum-
mary, we argue that attacker control analysis should focus on
domains of control, as it allows to account for finer-grained
threat models. Our "Shrink and Split" algorithm yields said
domains of control in a scalable and flexible manner with
strong formal guarantees, lending itself to practical use as
shown in our experiments on real-world programs. Future
efforts could focus on applying our approach to a wider array
of vulnerabilities.

Ethical Considerations

All vulnerabilities discussed in this work are known and/or
patched in the corresponding software’s current version. On
the other hand, if efficient and precise bug prioritization would
be very beneficial to bug-fixing efforts by developers, it could
also be used by malicious actors to find more promising bugs
to exploit. Nevertheless, we argue that our approach consti-
tutes an improvement in that regard over automated exploit
generation, as it does not directly enable low-skill attackers
to wield ready-made exploits.

Acknowledgements

This work was partially supported by the “France 2030” gov-
ernment investment plan managed by the French National
Research Agency, under the references ANR-22-PECY-0009
and ANR-22-PECY-0005.

Availability

All our research artifacts are openly available at https:
//doi.org/10.5281/zenodo.14699098. This includes the
source code of our tool Colorstreams, nix-based packaging for
reproducible compilation and easy management of dependen-
cies such as BINSEC, a docker image for easy deployment,
both of our evaluation benchmarks with scripts automating
the reproduction of experiments and generating figures, user
tutorials and API documentation for developers.

References
[1] https://syzkaller.appspot.com/upstream. Online, accessed De-

cember 18th 2024.

[2] https://github.com/google/syzkaller. Online, accessed June
27th 2023.

[3] https://github.com/google/oss-fuzz?tab=readme-ov-file.
Online, accessed December 18th 2024.

[4] https://www.kernel.org/doc/html/v4.14/dev-tools/
kasan.html. Online, accessed June 27th 2023.

[5] https://www.intel.com/content/www/us/en/developer/
articles/tool/pin-a-dynamic-binary-instrumentation-
tool.html. Online, accessed June 28th 2023.

[6] https://research.nccgroup.com/2022/06/03/technical-
advisory-multiple-vulnerabilities-in-u-boot-cve-2022-
30790-cve-2022-30552/. Online, accessed October 4th 2023.

[7] https://github.com/u-boot/u-boot/blob/v2022.01/net/
net.c. Online, accessed December 13th 2024.

[8] Thanassis Avgerinos, Sang Cha, Brent Hao, and David Brumley. Aeg:
Automatic exploit generation. NDSS 2011.

[9] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton.
Verifying continuous time Markov chains. CAV 1996.

[10] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, and Peter Stuckey.
Projected model counting. SAT 2015.

[11] Fabrizio Biondi, Michael Enescu, Annelie Heuser, Axel Legay, Kuldeep
Meel, and Jean Quilbeuf. Scalable approximation of quantitative infor-
mation flow in programs. VMCAI 2018.

[12] Nikolaj S. Bjørner and Anh-Dung Phan. νz - maximal satisfaction with
z3. SCSS 2014.

[13] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. USENIX OSDI 2008.

[14] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing mayhem on binary code. S&P 2012.

[15] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorith-
mic improvements in approximate counting for probabilistic inference:
From linear to logarithmic sat calls. IJCAI 2016.

[16] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. KOOBE:
Towards facilitating exploit generation of kernel out-of-bounds write
vulnerabilities. USENIX Security 2020.

[17] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel. CCS 2019.

[18] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative
analysis of the leakage of confidential data. QAPL 2001.

[19] Siddhartha Shankar Das, Edoardo Serra, Mahantesh Halappanavar,
Alex Pothen, and Ehab Al-Shaer. V2w-bert: A framework for effective
hierarchical multiclass classification of software vulnerabilities. DSAA
2021.

[20] Robin David, Sébastien Bardin, Josselin Feist, Laurent Mounier, Marie-
Laure Potet, Thanh Dinh Ta, and Jean-Yves Marion. Specification
of concretization and symbolization policies in symbolic execution.
ISSTA 2016.

[21] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Jos-
selin Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A
dynamic symbolic execution toolkit for binary-level analysis. SANER
2016.

[22] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
TACAS 2008.

[23] Dorothy Denning. Cryptography and data security. SERBIULA (sistema
Librum 2.0), 1982.

[24] Adel Djoudi and Sébastien Bardin. BINSEC: binary code analysis with
low-level regions. TACAS 2015.

[25] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. Heaphopper: Bringing
bounded model checking to heap implementation security. USENIX
Security 2018.

[26] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic
symbolic execution. ISSTA 2012.

[27] Guillaume Girol, Benjamin Farinier, and Sébastien Bardin. Introducing
robust reachability. Formal Methodes in System Design (FMSD), 2022.

[28] Guillaume Girol, Benjamin Farinier, and Sébastien Bardin. Not all
bugs are created equal, but robust reachability can tell the difference.
CAV 2021.

[29] Guillaume Girol, Guilhem Lacombe, and Sébastien Bardin. Quantita-
tive robustness for vulnerability assessment. PLDI 2024.

[30] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed
automated random testing. PLDI 2005.

[31] J. A. Goguen and J. Meseguer. Security policies and security models.
S&P 1982.

[32] Hans Hansson and Bengt Jonsson. A logic for reasoning about time
and reliability. Formal Aspects of Computing, 6(5), 1994.

[33] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. Proc. ACM Meas. Anal. Comput.
Syst., 4(3), 2020.

https://doi.org/10.5281/zenodo.14699098
https://doi.org/10.5281/zenodo.14699098
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller
https://github.com/google/oss-fuzz?tab=readme-ov-file
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/
https://github.com/u-boot/u-boot/blob/v2022.01/net/net.c
https://github.com/u-boot/u-boot/blob/v2022.01/net/net.c

[34] Sean Heelan and Daniel Kroening. Msc computer science dissertation
automatic generation of control flow hijacking exploits for software
vulnerabilities. 2009.

[35] Sean Heelan, Tom Melham, and Daniel Kroening. Gollum: Modular
and greybox exploit generation for heap overflows in interpreters. CCS
2019.

[36] Sean Heelan, Tom Melham, and Daniel Kroening. Automatic heap
layout manipulation for exploitation. USENIX Security 2018.

[37] Jonathan Heusser and Pasquale Malacaria. Quantifying information
leaks in software. ACSAC 2010.

[38] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena,
and Zhenkai Liang. Automatic generation of data-oriented exploits.
USENIX Security 2015.

[39] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. Data-oriented programming: On the
expressiveness of non-control data attacks. S&P 2016.

[40] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. Block oriented programming: Automating data-only attacks.
CCS 2018.

[41] Yuning Jiang and Yacine Atif. An approach to discover and assess
vulnerability severity automatically in cyber-physical systems. SIN
2020.

[42] Zhiyuan Jiang, Shuitao Gan, Adrian Herrera, Flavio Toffalini, Lucio
Romerio, Chaojing Tang, Manuel Egele, Chao Zhang, and Mathias
Payer. Evocatio: Conjuring bug capabilities from a single poc. CCS
2022.

[43] Martin Jonás and Jan Strejcek. Solving quantified bit-vector formulas
using binary decision diagrams. SAT 2016.

[44] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and
Dawn Xiaodong Song. Dta++: Dynamic taint analysis with targeted
control-flow propagation. NDSS 2011.

[45] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D.
Ernst. Automatic creation of sql injection and cross-site scripting
attacks. ICSE 2009.

[46] Vladimir Klebanov. Precise quantitative information flow analysis— a
symbolic approach. Theoretical Computer Science, 538, 2014.

[47] Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf
compiler. IJCAI 2017.

[48] Triet H. M. Le, Huaming Chen, and M. Ali Babar. A survey on data-
driven software vulnerability assessment and prioritization. ACM Com-
put. Surv., 55(5), 2022.

[49] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nümberger,
Wenke Lee, and Michael Backes. Unleashing use-before-initialization
vulnerabilities in the linux kernel using targeted stack spraying. NDSS
2017.

[50] Sanoop Mallissery and Yu-Sung Wu. Demystify the fuzzing methods:
A comprehensive survey. ACM Comput. Surv., 56(3), 2023.

[51] Stephen McCamant and Michael D. Ernst. Quantitative information
flow as network flow capacity. SIGPLAN Not., 43(6), 2008.

[52] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu.
TaintPipe: Pipelined symbolic taint analysis. USENIX Security 2015.

[53] James Newsome, Stephen McCamant, and Dawn Song. Measuring
channel capacity to distinguish undue influence. PLAS 2009.

[54] Aina Niemetz and Mathias Preiner. Bitwuzla at the SMT-COMP 2020.
CoRR, abs/2006.01621, 2020.

[55] David A. Ramos and Dawson Engler. Under-Constrained symbolic
execution: Correctness checking for real code. USENIX Security 2015.

[56] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. Modular syn-
thesis of heap exploits. PLAS 2017.

[57] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). S&P 2010.

[58] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. Q:
Exploit hardening made easy. USENIX Security 2011.

[59] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker.
USENIX ATC 2012.

[60] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel.
Ganak: A scalable probabilistic exact model counter. IJCAI 2019.

[61] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. S&P 2016.

[62] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached, and
lazy CNF-XOR solving and its applications to counting and sampling.

[63] Mate Soos and Kuldeep S. Meel. Bird: Engineering an efficient cnf-xor
sat solver and its applications to approximate model counting. AAAI
2019.

[64] Octavian Suciu, Connor Nelson, Zhuoer Lyu, Tiffany Bao, and Tudor
Dumitras. Expected exploitability: Predicting the development of
functional vulnerability exploits. USENIX Security 2022.

[65] Chenghua Tang, Xiaolong Guan, Mengmeng Yang, and Baohua Qiang.
Taintse: Dynamic taint analysis combined with symbolic execution and
constraint association. ICSESS 2023.

[66] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xi-
aorui Gong, Bingchang Liu, Kaixiang Chen, and Wei Zou. Revery:
From proof-of-concept to exploitable. CCS 2018.

[67] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang, Xiaorui Gong,
and Wei Zou. MAZE: Towards automated heap feng shui. USENIX
Security 2021.

[68] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KEPLER: Facilitating
control-flow hijacking primitive evaluation for linux kernel vulnerabili-
ties. USENIX Security 2019.

[69] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou.
FUZE: Towards facilitating exploit generation for kernel use-after-free
vulnerabilities. USENIX Security 2018.

[70] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic techniques to
systematically discover new heap exploitation primitives. USENIX
Security 2020.

[71] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun
Qian. SyzScope: Revealing High-Risk security impacts of Fuzzer-
Exposed bugs in linux kernel. USENIX Security 2022.

Appendix I. Our taint propagation model

expression target taint value
basic rules (lattice: ⊥— ⊤)
v = op e v t(e)
v = e1 op e2 v t(e1)⊔ t(e2)
store(addr,e) mem[addr] t(e)
v = load(addr) v t(mem[addr])
source(v) v ⊤
(option) propagating control-flow dependencies*
i f (cond) do v = e v t(cond)⊔ t(e)
(option) over-approx memory operations when t(addr) =⊤
store(addr,e) mem t(e)
v = load(addr) v ⊔addrt(mem[addr])
(option) local taint suppression rules (non exhaustive)
v = e × 0 v ⊥
v = e − e v ⊥
i f (v = const) v ⊥

*Here we present a very straightforward version of control-flow dependency propagation
– more precise and practical approaches such as DTA++ only propagate taint in a few
selected relevant cases [44].

Variable and expressions are either untainted (⊥) or tainted
(⊤). ⊔ is the merge operator over taint values (⊤⊔⊥=⊤).
Taint is introduced at sources, such as program inputs. Mem-
ory is represented as an array named mem. Optionally, one
may propagate taint from jump conditions to subsequent as-
signments or from memory addresses to written or read data in
memory operations. Taint can also be suppressed when a sin-
gle instruction reduces a tainted expression to a single value.
The lack of constraint computation and the per-instruction
granularity does not allow to propagate taint based on multi-
instruction behaviours.

Appendix II. Detailed ground-truth benchmark B1

Program Vulnerability Targets Control Executed Instructions
Type(s) Problem Symbolic Total

Toy examples from Newsome et al. [53]
copy - V D 2 22
ccopy - V D 6 27
mcopy - V D 3 23
mul - V D 3 23
div - V D 3 23
impflow - V D 3 40
mixdup - V D 13 33
popcnt - V D 39 59
Other toy examples
sum - V D 4 32
sub - V D 3 24
motex1 (vuln. a) IUF, OOBW S MRW 18 78
motex2 (vuln. b) UBI, OOBW S MRW 15 1848
koobe (Chen et al. [16]) TC, PC F D 12 4075
uafubi UAF, UBI, PC F D 11 2851
uafubi2 UAF, UBI, PC F D 2 2843
spray UBI D F 8 2224
spray2 UBI D F 16 2248
spray3 UBI D F 20 89
can OOBW, PC V, F D 2 2709
can2 OOBW, PC V, F D 3 2830
grub (∼ cve-2015-8370) OOBW V D 84 3868
cfi - F D 12 2249
cfi2 - F D 5 2218
minesweeper1 OOBW, PC R D 278 63903
minesweeper2 OOBW I MRW 254 103315
Real vulerabilities
cve-2023-37837 (libjpeg) OOBR I MRR 56 261512
cve-2021-3246 (libsndfile) OOBW S MRW 432 46872
cve-2019-19307 (mongoose) IOF V D 104 67345
cve-2019-14192 (u-boot) IUF, OOBW S MRW 38 4296
cve-2019-14202 (u-boot) OOBW S MRW 38 4296
cve-2022-30790 (u-boot) OOBW I, S MRW 161 3465
cve-2022-30790-2 (u-boot) OOBW I MRW 34 3173
cve-2022-30552 (u-boot) IUF, OOBW I, S MRW 91 1532
heartbleed (openssl) OOBR S MRR 33 165388032
cve-2021-26567 (faad2) OOBW, PC R D 14 12799
cve-2020-14393 (perl-dbi) OOBW, PC R D 2491 59435770
cve-2024-41881 (sdop) OOBW, PC R D 60 657357
cve-2024-43700 (xfpt) OOBW, PC R D 271 179369
cve-2023-43338 (mjs) PC F D 99 51401

vulnerability types: UAF = use-after-free, UBI = use-before-initialization, OOBR /
OOBW = out-of-bounds read / write, TC = type confusion, PC = pointer corruption,
IUF / IOF = integer underflow / overflow — targets: R = return address, F = function
pointer, V = stack variable, I = index / offset, S = size — control problems: D = data,
MRR / MRW = memory range read / write

Appendix III. Domains of control for the ground-truth benchmark B1 CVEs (single-bytes excluded)

20 216 232 248 264

heartbleed.outgoing_packet <12>
heartbleed.payload_size <11>

cve-2023-43338.Detection_0_CFH_Call <0>
cve-2023-37837.read_off <0>

cve-2022-30790_2.woff <8>
cve-2022-30790_2.wlen <6>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790_2.woff2 <4>
cve-2022-30790_2.woff <2>
cve-2022-30790_2.wlen <0>
cve-2022-30790.of_woff <7>

cve-2022-30790.woff <6>
cve-2022-30790.of_wsize <5>

cve-2022-30790.wlen <4>
cve-2022-30790.woff <2>
cve-2022-30790.wlen <0>

cve-2022-30552.of_woff <3>
cve-2022-30552.woff <2>

cve-2022-30552.of_wsize <1>
cve-2022-30552.wlen <0>

cve-2021-3246.of_size <1>
cve-2021-3246.blocksize <0>

cve-2019-19307.len <1>
cve-2019-19307.end <0>

cve-2019-14202.of_wsize <1>
cve-2019-14202.len <0>

cve-2019-14192.of_wsize <1>
cve-2019-14192.len <0>

(1) Taint
tainted

20 216 232 248 264

(2) WCSC
weak
strong

20 216 232 248 264

(3) QC

20 216 232 248 264

(4) S&S (100 max splits)
weak
strong

20 216 232 248 264

(5) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

Appendix IV. Detailed realistic benchmark B2

Bug Vulnerability Mapping Executed Instructions
Type(s) Symbolic Total

PDF003 OOBR stack 0 5099250
PDF004 OOBR other 6671 7371051
PDF010 OOBR other 0 14997856
PDF018 OOBR other 0 13291270
PDF019 OOBR heap 1463 7069344
PHP011 OOBR heap 196 6059203
PNG007 OOBR other 0 20971
SQL018 OOBW heap 0 251339
SSL001 OOBR, OOBW heap 5019 1448773
SSL002 UAFW heap 295 10384861
SSL009 OOBR heap 3580 6351194
SSLNEW001 UAFW heap 91 10408709
SSLNEW002 UAFW heap 104 12883298
SSLNEW003 UAFW heap 284 10374848
SSLNEW004 UAFW heap 105 29008645
SSLNEW005 UAFW heap 105 29024109
SSLNEW006 UAFW heap 105 29133273
TIF001 OOBR, OOBW heap 1086 218407
TIF002 OOBR, OOBW heap 624 981495
TIF002_2 OOBR, OOBW heap 274 960672
TIF008 OOBR, OOBW heap 508 169138
TIF008_2 OOBR, OOBW heap 734 238135
XML001 OOBW stack 417 612662
XML002 OOBW heap 0 147239
XML006 OOBW stack 0 639552
XML012 UAFR heap 0 7019269

vulnerability types: UAFR / UAFW = use-after-free read / write, OOBR / OOBW =
out-of-bounds read / write

Appendix V. Results of Shrink and Split with different split
limits on B1+B2

Algorithm Splits Notion Exact Approx. (<×2) Runtime
S&S 10 DoC 235 11 (6) 10m56s
S&S 50 DoC 237 9 (4) 11m12s
S&S 100 DoC 237 9 (4) 11m52s
S&S 500 DoC 237 9 (4) 15m20s
S&S 1000 DoC 237 9 (4) 19m33s
S&SFB 10 DoC 238 8 (7) 10m26s
S&SFB 50 DoC 240 6 (5) 10m45s
S&SFB 100 DoC 241 5 (4) 10m55s
S&SFB 500 DoC 241 5 (4) 13m05s
S&SFB 1000 DoC 241 5 (4) 15m29s

Increasing the split limit for Shrink and Split has a limited
impact on precision on our benchmark. Since holes are likely
to occur at regular intervals in cases where they are numer-
ous, other solutions such as taking fixed bits into account
improve precision more effectively. Higher split limits only
affect runtimes marginally.

Appendix VI. Cactus plot of all tested algorithms on B1+B2

0 30 60 90 120 150 180 210 240 270
of problems solved

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

103

104

105

cu
m

ul
at

iv
e

ru
nt

im
e

(s
)

WC
SC
d4
ganak
approxmc

Newsome
S&S (100 max splits)
S&SFB (100 max splits)
SE
Tracing

Tracing and symbolic execution are common to all other
algorithms. The sum of both indicates the time needed to
derive path constraints.

Appendix VII. Testing multiple weight functions for scoring
the OOB vulnerabilities from Table 5

Vulnerability ω : x 7→ 1
ln(2)x ω′ : x 7→ 1

x2 ω′′ : x 7→ 1√
x

OOB writes

motex1 0 0 0

motex2 5.36 15.23 7.9e-8

cve-2021-3246 14.14 5.33 6.5e-6
cve-2019-14192 15.97 16 0.12
cve-2019-14202 15.97 16 0.12

cve-2022-30790 0.51 1.75 8.4e-9

cve-2022-30552 0.51 1.75 8.4e-9

cve-2022-30790-2 2.37 8 1.3e-6
OOB reads

cve-2023-37837 16 16 16
heartbleed 16 32 0.12

Compared to ω, ω′ favors smaller values more while ω′′ is
less biased toward them. This results in some differences,
especially regarding motex2 and cve-2021-3246. However the
general tendency remains similar overall.

Appendix VIII. Manual Evaluation of cve-2022-
30790 and cve-2022-30552

Both vulnerabilities occur in uboot v2022.01, in the
__net_defragment function from net/net.c, line 900 [7]. This
function takes packets containing data fragments and puts
them back together into a static buffer. A linked list structure
is used to keep track of holes in the data and check if the
incoming fragments fit into them.

1 s t a t i c s t r u c t i p _ u d p _ h d r * _ _ n e t _ d e f r a g m e n t
2 (s t r u c t i p _ u d p _ h d r * ip , i n t * l e n p)
3 {
4 / * s t a t i c b u f f e r where t h e d a t a i s a s sembled * /
5 s t a t i c u c h a r p k t _ b u f f [IP_PKTSIZE] ;
6 . . .
7 / * h o l e l i n k e d l i s t m e t a d a t a s t r u c t * /
8 s t r u c t h o l e * pay load , * t h i s f r a g , *h , *newh ;
9 . . .

10 u c h a r * i n d a t a = (u c h a r *) i p ;
11 i n t o f f s e t 8 , s t a r t , l en , done = 0 ;
12 / * d a t a f r a g m e n t o f f s e t from p a c k e t h e a d e r * /
13 u16 i p _ o f f = n t o h s (ip −> i p _ o f f) ;
14
15 / * s t a r t o f d a t a i n p k t _ b u f f * /
16 p a y l o a d = (s t r u c t h o l e *) (p k t _ b u f f
17 + IP_HDR_SIZE) ;
18 o f f s e t 8 = (i p _ o f f & IP_OFFS) ;
19 / * s t a r t o f incoming f r a g m e n t i n p k t _ b u f f * /
20 t h i s f r a g = p a y l o a d + o f f s e t 8 ;
21 s t a r t = o f f s e t 8 * 8 ;
22 / * d a t a f r a g m e n t l e n g t h c o m p u t a t i o n * /
23 / * can go n e g a t i v e (cve −2022 −30552) * /
24 l e n = n t o h s (ip −> i p _ l e n) − IP_HDR_SIZE ;
25
26 / * Here t h e program c h ec ks i f t h e d a t a f r a g m e n t
27 would o v e r f l o w p k t _ b u f f . However a n e g a t i v e
28 l e n can p a s s i f s t a r t >= IP_HDR_SIZE . * /
29 i f (s t a r t + l e n > IP_MAXUDP)
30 re turn NULL;
31
32 . . .
33 / * Here t h e f u n c t i o n c h ec ks i f t h e p a c k e t i s
34 c o h e r e n t w i th a l r e a d y r e c e i v e d f r a g m e n t s , i . e . ,
35 i f i t f i t s i n t o a h o l e i n p k t _ b u f f . These h o l e s
36 a r e t r a c k e d v i a m e t a d a t a s t o r e d i n t o them a k i n
37 t o a l i n k e d l i s t . I f t h e r e i s a c o n f l i c t , t h e
38 f u n c t i o n a b o r t s . * /
39 / * The f u n c t i o n a l s o u p d a t e s t h e metada ta ,
40 which can be c o r r u p t e d (cve −2022 −30790) . * /
41 / * t h i s f r a g and l e n a r e NOT u p d a t e d . * /
42 . . .
43
44 / * t h i s f r a g and l e n a r e i n d e p e n d e n t from t h e
45 h o l e metada ta , which i s on ly used t o au th −
46 o r i z e t h e w r i t e . T h e r e f o r e an o v e r f l o w can
47 on ly happen i f l e n i s n e g a t i v e and u n d e r f l o w s
48 due t o an i m p l i c i t c a s t t o s i z e _ t
49 (cve −2022 −30552) . * /
50 memcpy ((u c h a r *) t h i s f r a g , i n d a t a + IP_HDR_SIZE ,
51 l e n) ;
52 . . .
53 }

Listing 4. Vulnerable __net_defragment function from uboot
v2022.01

Listing 4 gives a summary of the manual analysis of cve-
2022-30552 and cve-2022-30790 and explains why cve-2022-
30790 cannot lead to arbitrary writes outside of the target
buffer on line 50 as was previously thought [6]. In particular,
the linked list metadata corruption cannot lead to bypassing
the check on line 29. Our tool shows the same capabilities for

both vulnerabilities due to cve-2022-30552 being triggerable
within cve-2022-30790’s execution path.

On the other hand, cve-2022-30790 enables some limited
out-of-bounds writes during the linked list update, which were
not discussed in the original human analysis. We analyzed
those capabilities as cve-2022-30790-2.

Appendix IX. Magma Vulnerability Scores Dis-
cussion

Our results for the Magma vulnerabilities from RQ4 (Section
7.7) illustrate the benefits of our approach as well as areas of
possible improvements.

Table 6: Detailed scores for the magma vulnerabilities (B2)

Bug CVE CVSS wQC Score
Base Size Data Overall

OOB writes
SSLNEW001 - - 0.00477 0.703 1 0.569
SSLNEW003 - - 0.00477 0.703 1 0.569
SSL002 CVE-2016-6309 9.8 0.00477 0.703 1 0.569
SSLNEW005 - - 0.00473 0.697 1 0.567
SSLNEW006 - - 0.00473 0.697 1 0.567
SSLNEW004 - - 0.00473 0.697 1 0.567
SSLNEW002 - - 0.00469 0.696 1 0.567
TIF002_2 CVE-2016-5314 8.8 0.022 0.643 1 0.555
TIF002 CVE-2016-5314 8.8 0.0223 0.00512 1 0.342
TIF008 CVE-2015-8784 6.5 0.0285 0.0587 0.00391 0.0304
TIF008_2 CVE-2015-8784 6.5 0.02 0.0587 0.00391 0.0275
SSL001 CVE-2016-2108 9.8 0.0208 0.0554 0.00391 0.0267
TIF001 CVE-2016-9535 9.8 0.0192 0.0554 0.00391 0.0262
XML006 CVE-2017-9048 7.5 0.0173 0.0342 0.00391 0.0185
XML001 CVE-2017-9047 7.5 3.27e-05 6.76e-05 0.0508 0.017
XML002 CVE-2017-0663 7.8 0.000912 0.0178 0.00391 0.00755
SQL018 CVE-2015-3414 7.5 0.00398 0.0102 0.00391 0.00602

OOB reads
PDF019 CVE-2017-9776 7.8 0.699 0.0535 0 0.376
PHP011 CVE-2018-14883 7.5 0.000181 0.447 0 0.224
PDF003 CVE-2017-9865 5.5 0.0303 0.0585 0 0.0444
TIF008 CVE-2015-8784 6.5* 0.0285 0.0587 0 0.0436
SSL001 CVE-2016-2108 9.8* 0.027 0.0554 0 0.0412
TIF008_2 CVE-2015-8784 6.5* 0.02 0.0587 0 0.0393
TIF001 CVE-2016-9535 9.8* 0.0192 0.0554 0 0.0373
SSL009 CVE-2017-3735 5.3 0.0287 0.0313 0 0.03
XML012 CVE-2016-1836 5.5 0.000277 0.0537 0 0.027
TIF002 CVE-2016-5314 8.8* 0.0223 0.00512 0 0.0137
TIF002_2 CVE-2016-5314 8.8* 0.022 0.00104 0 0.0115
PDF004 CVE-2019-10873 6.5 0 0 0 0
PDF010 - - 0 0 0 0
PDF018 CVE-2018-10768 6.5 0 0 0 0
PNG007 CVE-2013-6954 5 0 0 0 0

*likely based on OOB writes
grey lines represent score cutoff points

Contrast between different vulnerability capabilities. At
a glance, our results from Figure 5 and Table 6 show a clear
difference in OOB capabilities between the vulnerabilities.
While it is not feasible to analyze each vulnerability in depth,
we can still check that the scores are appropriate by manually
reviewing and interpreting the domains of control and other
readily available information.

On the side of OOB writes, we can see a clear discrepancy
between highly controllable and uncontrollable vulnerabili-
ties. In particular, SSL002 and the SSLNEW vulnerabilities
grant attackers the ability to write arbitrary data over a con-
trolled amount of bytes, starting at a static address. This alone

makes these vulnerabilities quite dangerous and grants them
a high score, but furthermore, we know that they are heap
use-after-frees, as shown in Appendix IV. Hence the base
address of the write could be indirectly influenced via heap
layout manipulation.

In comparison, TIF002 only grants control over the written
data, which could still be useful to an attacker, hence its mid-
dling score. However, other vulnerabilities such as TIF001
cannot be controlled much, if at all, and have a low score as
a result. They could only be exploited if, by luck, they align
perfectly with exploit requirements. TIF001 in particular is
an off-by-one OOB write which does not allow control over
the written data.

Regarding OOB reads, PDF019 and PHP011 offer the
widest capabilities, although this is arguably less important
for these vulnerabilities to be exploitable, since useful infor-
mation can be extracted from a large read and overwriting
critical data in a detrimental way is not a concern. Still, our
results show that PDF004, PDF010, PDF018 and PNG007
cannot be valid writes and thus can only be used to cause
crashes. Their score is, appropriately, zero.

Correlation with CVSS scores. While CVSS scores are
worst-case and qualitative at best, it is interesting to note that
we still observe a light correlation between them and our
scores, especially for OOB writes. For those, we only find
two outliers, SSL001 and TIF001, with high CVSS scores
but low wQC scores. Both analyzed writes are off-by-one
without controlled data, and thus would be difficult to exploit.
However, note that in both cases we only included results
for the first write out of several, which all exhibit roughly
the same characteristics and are not contiguous as could be
expected from a loop. Combining all information could re-
sults in higher capabilities, however the lack of control on the
written data is a hard limit on exploitability.

For OOB reads, some vulnerability also cause OOB writes,
which explains their higher scores. It is also interesting to
note that PDF010 grants the same capabilities as PDF004,
PDF018 and PNG007, the ability to cause crashes with an
invalid read, yet does not have an associated CVE.

Analysis of new vulnerabilities. The SSLNEW vulnerabili-
ties are not technically part of the magma benchmark. They
were triggered during the original Magma evaluation but not
caught by any of Magma’s bug oracles. From our results, we
can see that they have very similar capabilities to SSL002, as
well as the same type, namely heap use-after-free. Combined
with the detection reports from ASAN, this suggests that these
vulnerabilities are impacts of a same bug, though through dif-
ferent execution contexts. This intuition is validated by the
fact that all these vulnerabilities are fixed by the same patch.

Illustration of limitations. In some cases, it is possible that
vulnerabilities have greater capabilities than we were able to
measure. For example, the size of the OOB write in XML001
could be controlled implicitly via data as this vulnerability

occurs during the parsing of a file, which mainly consists in
string operations. Additionally, the repeated reads in XML012
suggest that they could occur within a loop, of which the
bounding condition could be controlled. Alas, detecting these
parameters and tracking their constraints remains challenging
for binary-level analysis, as discussed in Section 8.

Appendix X. Evaluation of Weak Interval Densi-
ties in Domains computed with Shrink and Split

In an ideal scenario, Shrink and Split yields exact domains of
control. However, in practice, analysis may be interrupted or
proving strong control on an interval may fail. This leads to
only weak control being guaranteed on some intervals, while
their actual density may change the interpretation of results.

To evaluate the impact of weak intervals on result interpre-
tation, we computed the densities of those occurring in our
analysis of benchmarks B1 and B2. We used ganak to count
feasible values, then divided the result by the width of the
interval to obtain its density. We then computed the average
of these densities for each case.

Table 7: Weak interval densities on benchmarks B1 and B2

Program S&S S&SFB Evaluation Impact*
uafubi 0.985 0.987 -
mul 0.5 no weak -
mixdup 1.81e-05 1.81e-05 -
grub 5.7e-06 no weak -
cve-2022-30790_21 0.125 no weak =
cve-2022-30790_22 0.25 no weak =
cve-2022-307903 1 1 =
cve-2022-307904 1 1 =
cve-2021-3246 timeout timeout timeout
heartbleed5 0.00117 6.04e-08 =
SSL0026 1 1 =
PDF0197 timeout timeout timeout
Average 0.486 0.664

* impact on the score category from Table 5 (/ /). ↑: up a category, =: no
change, ↓: down a category — 1of_woff2 <5>, 2woff2 <4>, 3of_wsize <5>, 4wlen <4>,
5outgoing_packet <12> (leak), 6write size, 7read base address

As shown in Table 7, the densities of weak intervals span
a wide range, with some almost empty and other completely
full. As such, a systematic way of correctly handling them in
practice seems out of reach. Nevertheless, in our experiments,
these refined results would not change our score categories,
solidifying our prior findings against the manual ground truth.

Appendix XI. Impact of Constraint Relaxation
on Domains of Control

One way to improve the scalability of symbolic execution is
to remove some constraints. This approach is called constraint
relaxation or under-constrained symbolic execution [55] and

may cause over-approximation. It may thus affect bug priori-
tization with our method if used.

To evaluate the impact of constraint relaxation on our
method, we computed domains of control with S&SFB (100
maximum splits) based on the constraints from the vulnerable
function only for each real-world vulnerability in benchmark
B1 (except those where the vulnerable function was already
the main analyzed function). We then computed their size
ratio compared to the domains obtained in our mainline ex-
periments.

Table 8: Domain size ratios with and without relaxation for
benchmark B1 (S&SFB, 100 max. splits)

Bug Eval. Sink Domain
Impact* Ratio

heartbleed = payload_size 1
cve-2024-43700 = Detection_0_CFH_Ret_byte_(7-0) <7-0> 1.01
cve-2024-41881 = Detection_0_CFH_Ret_byte_(7-0) <7-0> 1
cve-2021-3246 = of_size <1> 9.39e+13

blocksize <0> 3.3e+04
cve-2020-14393 = Detection_0_CFH_Jump_byte_(7-0) <7-0> 1
cve-2019-19307 = len <1> 1

end <0> 1
cve-2019-14202 = of_wsize <1> 6.67e+04

len <0> 6.61e+04
cve-2019-14192 = of_wsize <1> 6.67e+04

len <0> 6.61e+04

*impact on the score category from Table 5 (/ /). ↑ up a category, = no change,
↓ down a category

As expected, Table 8 shows that the domains of control with
relaxed constraints are always equal or larger than those for
the exact constraints (over-approximation). More precisely,
the domains are very similar in half the cases (6 out of 12), but
we observe very significant difference on the other half (6 out
of 12). Yet, interestingly, our score categorization from Table
5 would however not be affected by this approximation, as the
largest ratios occur here for vulnerabilities with already high
capabilities. In terms of performance, symbolic execution
runtime ranges from unaffected to substantially reduced (28x
faster), yet the overall analysis runtime is only marginally
affected (2x faster at best), since tracing takes the most time
due to the large difference between the size of the whole trace
and what is symbolically followed (see Appendix VI).

Appendix XII. Impact of Input Concretization
on Domains of Control

Another way of improving the scalability of symbolic exe-
cution is to concretize part of the symbolic inputs, in order
to reduce the complexity of the constraints and the number
of symbolic state updates [20, 30]. This approach may cause
under-approximation and thus affect bug prioritization.

To evaluate the impact of input concretization on our
method, we computed domains of control with S&SFB (100
maximum splits) for each real-world vulnerability from bench-
mark B1 with an arbitrary part of the input concretized. We

then computed the size ratio compared to the domains ob-
tained in our mainline experiments.

Table 9: Domain size ratios with and without partial input
concretization for benchmark B1 (S&SFB, 100 max. splits)

Bug Eval. Sink Domain
Impact* Ratio

cve-2024-43700 = Detection_0_CFH_Ret_byte_(7-4) <7-4> 0.00403
Detection_0_CFH_Ret_byte_(3-0) <3-0> 1

cve-2024-41881 = Detection_0_CFH_Ret_byte_(7-4) <7-4> 0.00394
Detection_0_CFH_Ret_byte_(3-0) <3-0> 1

cve-2023-37837 = read_off <0> 0.00391
cve-2022-30790_2 = woff <8> 1

wlen <6> 1
of_woff2 <5> 1
woff2 <4> 1
woff <2> 1
wlen <0> 1

cve-2022-30790 ↓ of_woff <7> 0**
woff <6> 0.995
of_wsize <5> 0**
wlen <4> 6.11e-05
woff <2> 1
wlen <0> 6.11e-05

cve-2022-30552 = of_woff <3> 0
woff <2> 0.000488
of_wsize <1> 0.000489
wlen <0> 0.00104

cve-2021-3246 ↓ of_size <1> 0.00288
blocksize <0> 0.00393

cve-2021-26567 = Detection_0_CFH_Ret_byte_(7-4) <7-4> 0.00392
Detection_0_CFH_Ret_byte_(3-0) <3-0> 1

cve-2020-14393 ↓ Detection_0_CFH_Jump_byte_7 <7> 1
Detection_0_CFH_Jump_byte_6 <6> 1
Detection_0_CFH_Jump_byte_5 <5> 0.00781
Detection_0_CFH_Jump_byte_4 <4> 0.00391
Detection_0_CFH_Jump_byte_3 <3> 0.00391
Detection_0_CFH_Jump_byte_2 <2> 0.00391
Detection_0_CFH_Jump_byte_1 <1> 0.5
Detection_0_CFH_Jump_byte_0 <0> 1

cve-2019-19307 = len <1> 0.545
end <0> 3.81e-06

cve-2019-14202 ↓ of_wsize <1> 1.55e-05
len <0> 1.54e-05

cve-2019-14192 ↓ of_wsize <1> 1.55e-05
len <0> 1.54e-05

*impact on the score category from Table 5 (/ /). ↑: up a category, =: no change,
↓: down a category — **here the feasible values do not even allow OOBs

As shown in Table 9, and as expected, the resulting partially
concretized domains of control are always equal or smaller
than the exact ones (under-approximation). More precisely,
the domains are very similar (> 0.99) in 14 out of 39 cases
and significantly different (< 0.1) in 22. For 5 out of 12 vul-
nerabilities, our assessment from Table 5 would have been
affected, with lower scores leading to a lower threat classi-
fication. Similarly to relaxation, symbolic execution can be
faster (up to 83x), although overall performance gains are
again small due to the tracing runtime.

	Introduction
	Motivating Example
	Background
	Taint Analysis
	Symbolic Execution
	Quantitative Information Flow

	Problem Statement
	Requirements
	Archetypal Control Problems

	Formally Defining Control
	Domain of Control
	Qualitative Control
	Quantitative Control
	Weighted Quantitative Control
	Variants
	Conclusion

	Evaluating Control
	Taint Analysis Cannot Guarantee Control
	Verifying Weak and Strong Control with SMT Solvers
	Extracting Domains of Control with Shrink and Split
	Conclusion

	Experimental Validation
	Implementation
	Benchmark
	Research Questions
	RQ1: Precision
	RQ2: Performance
	RQ3: Bug priorization
	RQ4: Realistic end-to-end scenarios

	Discussion
	Related Works
	Conclusion

