
A Query-Based Constraint Acquisition Approach for
Enhanced Precision in Program Precondition Inference
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Université Paris-Saclay, CNRS, LISN, France

Abstract

Program annotations in the form of function pre/postconditions play a crucial role in
various software engineering and program verification tasks. However, the frequent un-
availability of these annotations necessitates manual retrofitting. This paper shows how
constraint acquisition, a learning framework derived from constraint programming and
version space learning, can be extended for automatically inferring program preconditions.
Our approach performs this inference in a black-box manner through automatic query gen-
eration and input-output observations of program executions. We introduce PreCA, the
first-ever precondition inference framework leveraging query-based constraint acquisition.
Notably, we specialize PreCA to handle memory-related preconditions on binary code,
which pose significant challenges in data and information management systems. In con-
trast to prior black-box techniques, PreCA provides well-defined guarantees. Specifically,
it employs a sound and complete method to generate preconditions consistent with all the
observed input-output relationships of the program. Furthermore, empirical evaluations on
our benchmark demonstrate that PreCA outperforms the results of state-of-the-art ap-
proaches, delivering comparable or superior results in 5s, as opposed to the 1-hour runtime
of existing approaches on identical machines. We also present two successful use cases from
the standard libc and the mbedtls cryptographic library. PreCA notably infers for the
former one a more precise precondition than specified in the documentation.

1. Introduction

Program annotations under the form of function pre/postconditions (Hoare, 1969; Floyd,
1993; Dijkstra, 1968) are crucial for the development of correct-by-construction systems
(Meyer, 1988; Burdy, Cheon, Cok, Ernst, Kiniry, Leavens, Leino, & Poll, 2005) and pro-
gram refactoring (Ernst, Cockrell, Griswold, & Notkin, 2001). They can benefit both a
human and automated program analyzers, typically in software verification where they en-
able scalable (modular) analysis (Kirchner, Kosmatov, Prevosto, Signoles, & Yakobowski,
2015; Godefroid, Lahiri, & Rubio-González, 2011). Unfortunately, annotations are rarely
available and must be retrofitted by hand into the code, limiting their interest – especially
for black-box third-party components.
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Precondition Inference. Efforts have been devoted to automatically infer preconditions
from the code, and contract inference is an important topic in program analysis and formal
methods (Cousot, Cousot, Fähndrich, & Logozzo, 2013; Ernst et al., 2001; Padhi, Sharma,
& Millstein, 2016; Astorga, Srisakaokul, Xiao, & Xie, 2018; Gehr, Dimitrov, & Vechev,
2015). The C code shown in Listing 1 illustrates how difficult it can be to generate precise
preconditions even for simple functions. In this example, determining the precondition
requires reasoning over memory layout, handling loops, sub-function calls, and disjunctive
behaviors. Since the precondition inference problem is undecidable (Rice, 1953), the goal is
to design principled methods with good practical results. Yet, the State of the Art is still
not satisfactory. While white-box approaches leveraging standard static analysis (Hoare,
1969; Floyd, 1993; Dijkstra, 1968; Cousot et al., 2013) can be helpful, they quickly suffer
from precision or scalability issues, have a hard time dealing with complex programming
features (e.g., nested loops, dynamic jumps, dynamic data structures) and cannot cope
with black-box, third-party, components. On the other hand black-box methods, leveraging
test cases to dynamically infer (likely) function contracts (Ernst et al., 2001; Padhi et al.,
2016; Gehr et al., 2015), overcome static analysis limitations on complex codes and have
drawn attention from the software engineering community (Zhang, Yang, Rungta, Person,
& Khurshid, 2014). Yet, they heavily depend on the quality of the underlying test cases,
which are often simply generated at random, given by the users (Ernst et al., 2001) (passive
learning), or automatically generated during the learning process but without any clear
coupling between sampling and learning (Padhi et al., 2016; Gehr et al., 2015) – and so,
show no clear guarantee on the inference process.

int find(int* t, int n, int val) {

for (int i = 0; i < n; i++)

if (t[i] == val) return i;

return n;

}

int find_first_of(int* a, int m, int* b, int n) {

for (int i = 0; i < m; i++)

if (find(b, n, a[i]) < n) return i;

return m;

}

Listing 1: Example of C code returning the index of the first element in a, which is also in b. To
execute find_first_of without runtime errors (i.e., postcondition “true”), a, m, b, and n must satisfy
the precondition: (m > 0⇒ valid(a)) ∧ (m > 0∧n > 0⇒ valid(b)), where valid(a) ≡ (a ̸= NULL).
For instance, if a and b are valid addresses, and m=-3, n=2, find_first_of executes without a runtime
error. On the other hand, if a = b = NULL, and m=1 and n=2, it does not.

Constraint Acquisition. Constraint programming (CP) (Rossi, Van Beek, & Walsh,
2006) has made considerable progress over the last forty years, becoming a powerful paradigm
for modeling and solving combinatorial problems. However, modeling a problem as a con-
straint network remains a challenging task that requires expertise in the field. Among
the constraint acquisition (CA) systems that have been introduced to support the uptake
of constraint technology by non-experts (Bessiere, Carbonnel, Dries, Hebrard, Katsirelos,
Lazaar, Narodytska, Quimper, Stergiou, Tsouros, & Walsh, 2023), Conacq acquires a set
of constraints that correctly represent as solutions all examples classified as positive by
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the user and reject as non-solutions all examples classified as negative (Bessiere, Koriche,
Lazaar, & O’Sullivan, 2017). The system is presented both in passive and active versions.
In the former, the examples are given by the user, while in the latter, they are generated by
Conacq and classified by the user. Despite the robust theoretical foundations of Conacq,
its practical implementation faces challenges. The system may require the submission of
thousands of queries to a user, making it challenging to apply in real-world scenarios with
humans as oracles. In automated program analysis, a substantial number of queries is vi-
able because the program acts as an automated oracle, provided that the program execution
terminates promptly.

Contributions. The contributions of this paper can be summarized in three points:

• PreCA: We introduce PreCA, the first-ever framework based on CA for inferring
preconditions (Section 4). We establish that PreCA exhibits theoretical correctness
properties compared to previous black-box approaches. Specifically, when the learning
language is expressive enough, and the program execution terminates, PreCA is
guaranteed to infer the so-called ”weakest precondition.”

• Memory-Oriented Application: In Section 5, we illustrate the application of
PreCA in the context of inferring memory-related preconditions. For that, we intro-
duce a specialized constraint language, including memory constraints. Additionally,
we present domain-based strategies using background knowledge, including facts over
memory constraints, and a preprocessing step based on the intuition that simple input
memory layouts generally result in positive classifications. These combined strategies
enable us to infer 2.2 times more weakest preconditions in 1 second.

• Empirical Evaluation: In Section 6.1, we empirically evaluate the effectiveness of
our method on various benchmark functions. The results demonstrate that PreCA
outperforms previous precondition learners, whether they are black-box or white-box.
Notably, even with a 5-second budget per sample, PreCA outperforms the state-of-
the-art approaches, even when they are allocated a 1-hour time budget per sample.

To the best of our knowledge, it is the first application of CA to program analysis.
Tackling precondition inference problem using CA is advantageous, resulting in favourable
theoretical properties and interesting results compared to the existing approaches. Hence,
program analysis emerges as a valuable application for CA, bypassing specific limitations
and opening the door to new challenges and opportunities for the CA community.

This article extends the content presented in the paper Automated Program Analysis:
Revisiting Precondition Inference Through Constraint Acquisition (Menguy, Bardin, Lazaar,
& Gotlieb, 2022), published at IJCAI-ECAI 2022. It extends the core technical material
in five significant ways. Firstly, we provide a revised version of PreCA in Algorithm 2
to enhance its autonomy in constructing the search space and its efficiency in terms of
generating test cases and convergence. Consequently, we have also revised all the related
propositions and proofs. Secondly, we give a detailed presentation of each component of
PreCA. This includes the description of the memory representation used by PreCA and
how it impacts its various components, notably the oracle. Thirdly, we extend the constraint
language by introducing new constraints related to strings. Fourthly, we explore two more
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research questions in our experimental evaluation of PreCA (RQ5 and 6). Finally, we
present the results of PreCA over two use-cases from the libc and the mbedtls libraries
to highlight its practical utility.

2. Motivating Example

The focus of this paper is on memory-related preconditions, such as predicates specifying
the inputs for which a function can execute without causing a memory violation, and this is
done in a black-box manner. Inferring these preconditions is crucial to ensure the error-free
execution of the program. As motivating example, we consider the function find_first_of

in Listing 1 from the Frama-C code verification platform’s test suite (Kirchner et al., 2015).
In this case, the expected result is (m > 0 ⇒ valid(a)) ∧ (m > 0 ∧ n > 0 ⇒ valid(b)).
The precondition is expressed as a condition involving a, m, b, and n, ensuring a successful
execution of the function with an output that satisfies the postcondition true. Our objective
is to acquire preconditions in a black-box manner (i.e., by executing test cases), without
analysing the source code.

White-Box vs. Black-Box Methods. When available, using the source code to infer
preconditions is interesting in white-box analyses (e.g., P-Gen (Seghir & Kroening, 2013)).
Yet, several practical issues prevent the software engineer from fully exploiting white-box
analyses. First, having the whole source code is often unrealistic (many projects embed
third-party binary components). Second, in practice, program analyzers focus on a single
programming language where many projects use combinations of them (e.g., inline assem-
bly in C code). Third, despite the progress achieved in recent years, white-box program
analysis still fails on complex codes (containing unbounded or input-bounded loops, recur-
sion, dynamically allocated data structures, etc.), possibly leading to serious scalability or
precision issues. Fourth, code obfuscation (Nagra & Collberg, 2009) used in some applica-
tion domains (e.g., video games, android and web applications or military systems) renders
white-box analyses impossible or extremely hard to apply (Ollivier, Bardin, Bonichon, &
Marion, 2019a, 2019b). To cope with these issues, black-box methods can be employed
because they only require the availability of the executable code. Yet, as generalization
occurs, black-box methods can return preconditions which are correct only with respect
to a set of test cases. In other words, these are true predicates but not necessarily actual
preconditions of the considered function.

Black-box analysis through passive learning. Black-box methods should exercise the
function under analysis on a representative set of test cases to infer relevant preconditions.
A solution is to assume that users can provide such tests and leverage passive learning for
precondition inference. Yet, the specification being unavailable, assuming that the user can
provide meaningful test cases is often unrealistic – especially when the source code is also
unavailable. Another solution would be to generate test cases randomly, but this is rarely
satisfactory. Indeed, it ensures no guarantee and requires running many test cases. For
example, on find_first_of, Daikon (Ernst et al., 2001) cannot infer the precondition even
with 10, 000 random test cases, which already takes more than 1h to monitor. Conversely,
PIE (Padhi et al., 2016) only succeeds with 10, 000 test cases, which take 900s to run.
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Active learning. Gehr et al. (Gehr et al., 2015) performs active learning, by generating
test cases automatically. This approach is more actionable and needs less user expertise.
Still, active learning methods developed so far lack theoretical guarantees. Indeed, they
cannot ensure that all useful test cases have been considered. The Gehr et al. method
infers in ≈ 700s an incorrect precondition for find_first_of, generating 177 test cases.

PreCA insights. Our method performs black-box precondition inference through CA
(Bessiere et al., 2017). Unlike previous active approaches, PreCA mixes pertinent test case
generation and learning, resulting in robust theoretical properties. When generating a test
case, PreCA directly observes the function’s behavior and updates its search space accord-
ingly. Consequently, given a set of constraint candidates, PreCA generates all pertinent
test cases, ensuring convergence. Therefore, if the execution of all test cases terminates, and
the set of constraint candidates is expressive enough, PreCA infers the weakest, i.e., opti-
mal, precondition. Regarding our example, PreCA infers the (non-trivial) weakest precon-
dition (m > 0⇒ valid(a))∧ (m > 0 ∧ n > 0⇒ valid(b)),1 where valid(p) ≡ (p ̸= NULL),
in 172s, with 45 test cases.

Alg. Active? Success. #Test cases Time Result

Daikon (100) no ✗ 100 39s n ̸= 0 ∧m ̸= n
Daikon (1k) no ✗ 1,000 409s true
Daikon (10k) no ✗ 10,000 >1h true
PIE (100) no ✗ 100 34s ((n ≤ 1 ∨ valid(b)) ∧ valid(a)) ∨m ≤ 1
PIE (1k) no ✗ 1,000 282s m ≤ 0 ∨ ((n ≤ 1 ∨ valid(b)) ∧ valid(a))
PIE (10k) no ✓ 10,000 900s (valid(b) ∨m ≤ 0 ∨ n ̸= 1) ∧ (m ≤ 0 ∨ n ≤ 1 ∨ valid(b)) ∧ (m ≤ 0 ∨ valid(a))
Gehr et al. yes ✗ 177 700s m ≤ 0 ∨ (valid(a) ∧ (n = 0 ∨ ((valid(b) ∧ n > 0))))

PreCA yes ✓ 45 172s (m > 0⇒ valid(a))∧ (m > 0 ∧ n > 0⇒ valid(b))

Daikon and PIE perform both passive learning. Thus, Daikon/PIE (100), (1k) and (10k) stand for 100, 1,000, and 10,000 randomly generated
test cases. Note that “Time” includes the test case generation, execution, and inference.

Table 1: find_first_of results, no source code (CPUs: 6 Intel Xeon E-2176M CPUs; RAM: 32 GB)

3. Background

This section provides essential background on constraint acquisition and program analysis.
We explore the constraint acquisition framework, with a particular focus on Conacq.2
(Bessiere et al., 2017), which forms the basis of PreCA. Following that, we formally define
the concept of a precondition using the operational semantics.

3.1 Constraint Acquisition

Active Constraint Acquisition is a process where a CA-learner interacts with an oracle
through queries (Bessiere et al., 2017, 2023). To enable communication, both the CA-learner
and the user use a shared vocabulary, which consists of a finite set of variables X taking
values from a finite domain D. A constraint network is built over this shared vocabulary
⟨X,D⟩, with a set C of constraints. Each constraint c in C is denoted as ⟨var(c), rel(c)⟩,
where var(c) is a tuple of variables from X, known as the constraint scope. The relation
rel(c) is defined over Dvar(c), where tuples in rel(c) indicate valid combinations of value
assignments for the variables in var(c). The arity of a constraint c is the size |var(c)| of

1We do not consider constraints over array sizes as C does not trigger out-of-bound errors. We focus on
validity and alias/overlapping problems.
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its scope. Given a vocabulary ⟨X,D⟩, an example e is an element of DX . An example e
satisfies a constraint c if the projection of e onto the scope var(c) is in rel(c). An assignment
e violates a constraint c, or in other words, the constraint c rejects e, if e does not satisfy c.
Therefore, an example e satisfies a constraint network C if it satisfies every constraint c in C.
Such an example is called a solution of C. A non-solution of C is an example that violates
at least one constraint from C. The set of all solutions of a constraint network C is denoted
sol(C). C is satisfiable if sol(C) ̸= ∅ and unsatisfiable otherwise. If sol(C) ⊆ sol(C ′) for two
constraint networks C and C ′, then C entails C ′ (i.e., C |= C ′). Finally, if sol(C) = sol(C ′),
then C and C ′ are equivalent (i.e., C ≡ C ′).

Example 1. Consider the constraint network C1 = {c1 : x×y > 0, c2 : x+y > 0} expressed
using the vocabulary ⟨X,D⟩ = ⟨{x, y}, {−5, ..., 5}⟩.

• e1 = ⟨−3,−1⟩, where x← −3 and y ← −1, is an example that satisfies c1 and violates
c2, that is, e1 /∈ sol(C1).

• e2 = ⟨2, 1⟩ is an example that satisfies both c1 and c2, that is, e2 ∈ sol(C1).

The CA-learner uses a constraint language Γ, containing relations of bounded arity.
The constraint bias, denoted as B, is a set of constraint candidates generated from Γ using
the vocabulary ⟨X,D⟩. The CA-learner uses B to build constraint networks. A constraint
network C is said representable by B if C ⊆ B.

For a given vocabulary ⟨X,D⟩, a concept is a Boolean function f over DX that assigns
either {true, false} to each example e ∈ DX . A representation of a concept f is a constraint
network C for which f−1(true) = sol(C).

A “target concept” is the concept fT intended to be learned through the constraint
acquisition process. The “target network” is a network T that satisfies T ⊆ B and represents
fT . Thus, we can say that the target concept fT is representable by B.

A membership query, or simply a query, requests the oracle to classify a given example
e as either positive or negative. The answer is “yes” if e is a solution of the target concept
and “no” otherwise. An example e is classified as positive if the query answer is “yes”
(resp., classified as negative if the answer is “no”). The oracle is supposed to consistently
provide correct answers to queries, without any mistakes.

A constraint network is said to agree with a set of examples E ⊂ DX if and only if
it accepts all positive examples in E and rejects all negative examples in E. For a given
example e, κ(e) represents the set of all constraints in B that reject e. Given a subset of
variables Y ⊂ X, e[Y ] is the projection of e on Y .

Learning a constraint network using queries involves finding the shortest query sequence
that converges to a constraint network representing the target concept fT .

Definition 1 (Identification problem). Given a bias B defined on a vocabulary ⟨X,D⟩, the
identification problem for a target-concept fT representable by B involves finding a sequence
of queries ⟨qi1, qi2, . . . , qim⟩ that leads to the discovery of a constraint network C representing
the target-concept fT .
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Algorithm 1: Conacq.2 (Bessiere et al., 2017)

In : a bias B;
Out : A constraint network or collapse;

1 begin
2 Ω← ⊤
3 while true do
4 e← queryGeneration(B,Ω) // generates an informative example

5 if e = nil then
6 if Ω is SAT then return network(Ω) // convergence

7 else return “collapse” // collapse

8 if Ask(e) = no then Ω← Ω ∧
(∨

c∈κ(e) a(c)
)

// expansion

9 else Ω← Ω ∧
(∧

c∈κ(e) ¬a(c)
)

// expansion

Conacq.2 (Algorithm 1). Conacq.2 (Bessiere et al., 2017) is a CA-learner that employs
membership queries to interact with an oracle. Internally, each constraint c ∈ B is linked
to a Boolean atom a(c) that indicates whether c should be included in the learned network.
Subsequently, using a sequence S of generated and classified examples, Conacq.2 constructs
a compact representation of the learner’s search space in the form of a clausal formula Ω:

Ω =
∧

e∈E+

 ∧
c∈κ(e)

¬a(c)

 ∧ ∧
e∈E−

 ∨
c∈κ(e)

a(c)


where E+ (resp., E−) represents the set of positive (resp., negative) examples generated
in the sequence S. At the beginning, both the sequence S and the clausal formula Ω are
empty. The expansion of Ω is performed iteratively in a step-by-step process. During each
iteration, Conacq.2 generates an example and presents it to the oracle. The generated
example e is carefully chosen to provide valuable information for pruning the learner’s search
space, regardless of the oracle’s response. In other words, e is intended to be informative
regarding the examples generated so far in the sequence S.

Definition 2 (Informative Example). Given a bias B and a sequence of queries S, an
example e is informative with respect to S if there exist two constraint networks C1, C2 ⊆ B
such that both networks agree with S, and (e |= C1 ⇔ e ̸|= C2).

To ensure both termination and correctness, the query generation process must satisfy
the following properties:2

queryGeneration(B,Ω) terminates (1)(
∃e ∈ DX , e is informative w.r.t. S

)
⇒ queryGeneration(B,Ω) ̸= nil (2)

queryGeneration(B,Ω) ̸= nil⇒ queryGeneration(B,Ω) is informative wrt. S (3)

2The queryGeneration procedure proposed by (Bessiere et al., 2017) satisfies all these 3 properties.
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When no informative example remains, the inference process terminates. If Ω is satisfiable,
it indicates convergence, and Otherwise, Conacq.2 determines that the target concept
cannot be represented by B and returns collapse. By generating all informative examples
within a finite time, Conacq.2 is correct and terminates (Bessiere et al., 2017).

Example 2. Let us apply Conacq.2 to learn the target network T = {x×y > 0, x+y > 0}
from Example 1. We have the variable set X = {x, y} defined over the domain {−5, . . . , 5},
and a bias B = {x > 0, x ≤ 0, y > 0, y ≤ 0, x = y, x ̸= y}. The execution of Conacq.2
is detailed in Table 2, where only informative examples are generated. For instance, after
e1, no example violating a subset of x ≤ 0, y ≤ 0, and x ̸= y is generated because these
constraints are already forbidden by Ω. After generating four examples, no other informative
example remains, and the resulting theory is Ω4, which simplifies to ¬a(x ≤ 0) ∧ ¬a(y ≤
0) ∧ ¬a(x ̸= y) ∧ ¬a(x = y) ∧ a(y > 0) ∧ a(x > 0). Therefore, Conacq.2 has converged to
{x > 0, y > 0}, which is equivalent to T .

Iterations
Membership Queries

Version space (Ω)
Examples ⟨x, y⟩ Classification

1 e1 = ⟨1, 1⟩ yes Ω1 = ¬a(x ≤ 0) ∧ ¬a(y ≤ 0) ∧ ¬a(x ̸= y)
2 e2 = ⟨2,−1⟩ no Ω2 = Ω1 ∧ (a(x ≤ 0) ∨ a(y > 0) ∨ a(x = y))
3 e3 = ⟨1, 3⟩ yes Ω3 = Ω2 ∧ ¬a(x = y)
4 e4 = ⟨−1, 3⟩ no Ω4 = Ω3 ∧ (a(x > 0) ∨ a(y ≤ 0) ∨ a(x = y))

Table 2: Example of Conacq.2 execution.

3.2 Program Analysis: Operational Semantics

To reason about program executions, it is essential to establish a formal framework for
defining programs and their execution. For this purpose, various formalisms, such as deno-
tational and axiomatic semantics (Schmidt, 1986; Winskel, 1993; Nepomniaschy, Anureev,
& Promskii, 2003), have been proposed. Among such formalisms, we use the operational
semantics description (Plotkin, 2004), which characterizes program execution as a sequence
of elementary steps. This standard formalism fits well our context presented in Section 4.
Indeed, our approach runs binary code (i.e., sequence of assembly instructions), which has
a direct interpretation in operational semantics (Bardin & Herrmann, 2011). Hence, this
formalism simplifies the presentation of CA for precondition inference.

In operational semantics, a program p is a finite sequence i1; ...; in of instructions operat-
ing on a memory state s. The special instruction skip signifies the computation termination
without modifying the memory state. The combination of a program p and a memory state
s is termed a configuration, noted p/s, which represents the current memory state and the
remaining instructions to be executed. To further clarify the operational semantics, we
formalize an execution step, which corresponds to the execution of a single instruction.

Definition 3. (Operational semantics) An operational semantics is a transition func-
tion “⇝” specifying transitions between pairs of configurations.

Next, we define the reflexive closure ⇝∗, which captures the successive execution steps.
This closure allows us to describe the complete execution of a program and analyze reach-
ability properties such as end, diverge, or stuck.
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Definition 4. (End/diverge/stuck) A configuration p/s:

• ends if and only if it exists s′ s.t. p/s⇝∗ skip/s′ ;

• diverges if and only if it can be derived infinitely, noted p/s⇝∗ ;

• is stuck if and only if there is no p′/s′ s.t. p/s⇝ p′/s′.

Intuitively, these three cases describe the possible behaviors of a program. The end case
means the program was successfully executed (execution terminated without crashing). The
diverge case means the execution never terminates (i.e., infinite loop or infinite recursion).3

Finally, the stuck state enables the description of runtime errors (RTE). Especially, a
configuration p/s leads to an RTE if and only if p/s ⇝∗ p′/s′ where p′/s′ is stuck. In the
following, we are only interested in the high-level behaviors of the code (ends, diverges, is
stuck) and rely only on the ⇝∗ operator. Still, for the sake of completeness, Appendix B
presents an example of a full operational semantic for a simple imperative language.

3.3 Program Analysis: Preconditions and Weakest Preconditions

Given a program function F and a predicate Q over F output called a postcondition, Hoare
logic (Hoare, 1969) defines the precondition (a predicate over F inputs) of F w.r.t. Q.

Definition 5 (Precondition). Given a function F and a postcondition Q, P is a precondition
of F with respect to Q if, for all states s such that s |= P , it holds that F/s⇝∗ skip/s′ and
s′ |= Q. Thus, we denote {P}F{Q}.

A function F may have multiple preconditions for a given postcondition Q. The weak-
est precondition holds special importance in software engineering and formal verification
(Hoare, 1969; Floyd, 1993). The challenge of automatically computing the weakest precon-
dition of F w.r.t. Q has been extensively investigated since the 1970s. However, due to the
undecidability of the problem (Rice, 1953), conventional approaches are limited to manual
annotations or approximations.

Definition 6 (Weakest precondition). Let a function F and a postcondition Q. The weakest
precondition of F with respect to Q noted WP(F,Q) is the most generic precondition i.e.
for all P s.t. {P}F{Q}, P ⇒WP(F,Q).

Example 3. Consider the function under analysis F :int foo(int a) { return a + (1/a); }.
Note that F is undefined when a = 0. Hence, for a postcondition (Q1 = True), possible
preconditions could be (P1 : a = 5), (P2 : a > 10), or (P3 : a < 0). However, such
preconditions are overly restrictive as they discard a significant set of values for a where
the execution of F terminates and the output satisfies Q1. The less restrictive precondition,
i.e., the weakest precondition, is the one that discards only inputs for which the execution
of F does not terminate, crashes, or in case of termination, the output does not satisfy
the postcondition Q1. In this example, WP(F,Q1) is a ̸= 0. Now, let’s consider a second
postcondition Q2 as ”the return value must be ≥ 0.” In this case, WP(F,Q2) is a > 0. For
a detailed example of WP calculus over a simple imperative language, refer to Appendix C.

3Deciding program termination is undecidable in general.
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4. Precondition Inference Through Constraint Acquisition

We aim to infer the weakest precondition of a function F under analysis, for a given post-
condition Q using query-based CA. To the best of our knowledge, this represents the first
instance of employing CA for program analysis.

4.1 Precondition Acquisition

In this section, we illustrate how precondition inference can be formulated as a CA problem,
as presented in Fig. 1. Here, the traditional user role is replaced by an automated oracle,
able to automatically classifying examples by executing the program on specified inputs
and checking if the output satisfies the postcondition Q. The target concept is the weakest
precondition WP(F,Q). The variable set X corresponds to M , where M represents the
initial memory state required to run F . M is a mapping from symbols, such as F arguments
and global variables, to their respective values. The domain D of M represents the finite
set of all possible mappings, indicating that DM defines the domain of F . The constraint
language Γ and the bias B are sets of constraints over M . A detailed description of Γ and B
is provided in Section 5.1. Lastly, a membership query e ∈ DM is a test case, representing
a comprehensive assignment of M that enables the execution of F over e.

Constraint Acquisition Precondition Inference

Target network → Weakest precondition
Variables → Program memory

User → Automated oracle
Constraint language → Constraints over memory
Membership query → Test case

Figure 1: From Constraint Acquisition to Precondition Inference

4.2 Description of PreCA

We depict in Fig. 2 the full PreCA framework. In the following, we provide a detailed
presentation of PreCA, which primarily consists of the oracle and the acquisition module.

Oracle. A membership query involves presenting an example e to the oracle for classifica-
tion as positive or negative. In other words, considering a function F and a postcondition
Q,4 the oracle, implemented by runOracle, must determine within a finite timeframe
whether e |= WP(F,Q) – that is, whether F/e ⇝∗ skip/s and s |= Q. However, the
execution termination problem is generally undecidable (Rice, 1953), making our classifi-
cation problem similarly undecidable. Acknowledging this, expecting the oracle to classify
all examples may be unrealistic. Therefore, we allow the oracle to respond with ukn (i.e.,
“unknown”) when it cannot verify whether e |= WP(F,Q) or not (typically due to an ex-

4The postcondition can be any decidable property over the output memory state. Decidability is required
to be able to check in finite time if the output verifies Q. This is not a restrictive assumption as most used
postconditions are decidable.
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ecution timeout).5 This necessitates a revision of the Conacq framework since Conacq
can only handle yes and no classifications.

In summary, runOracle must adhere to the following specifications:

• runOracle terminates and returns yes, no or ukn

•
(
runOracle(F,Q, e) = yes

)
⇒ e |=WP(F,Q)

•
(
runOracle(F,Q, e) = no

)
⇒ e ̸|=WP(F,Q)

(4)

Note that an oracle always answering ukn would fit our definition. However, if the or-
acle provides only ukn response, PreCA might infer the unhelpful empty concept (i.e.,
false). In practice, the oracle should minimize the use of ukn responses to yield more
insightful preconditions. A detailed implementation of the oracle to handle memory-related
preconditions is given in Section 5.

Figure 2: PreCA framework: Firstly, it extracts the bias B from the constraint language Γ and the
function F . Then, it generates a test case from the bias and queries the oracle for classification. The
oracle runs F over the test case and evaluates its behavior w.r.t., the postcondition Q. Based on the
classification, the learner updates its search space. On convergence, PreCA returns a precondition.

Acquisition Module. The PreCA (Algorithm 2) acquisition module first invokes the
Extract function to obtain the vocabulary ⟨X,D⟩ and the bias B from the function F
and the constraint language Γ at line 2. The Extract function also returns a set of
constraints R ̸⊂ B, which represents a set of mandatory constraints in program analysis.
These constraints must be satisfied during the query generation process to guarantee that
the returned example is a feasible test case. An example of such constraints is the one
ensuring that aliasing pointers cannot reference strings of distinct sizes.

Then, the GetHints function at line 3 collects the “hint” constraints from B. This is
a subset of B where each constraint c is likely inconsistent with WP(F,Q) (i.e., if e |= c,
runOracle(F,Q, e) likely returns no). Its choice does not affect correctness, but we ob-
serve in Section 5.3 that hint constraints can accelerate the acquisition process through the

5If F always terminates, the classification problem becomes decidable, and the timeout can be disre-
garded, eliminating the need for a ukn answer.
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Algorithm 2: PreCA

In : A function F ; a postcondition Q; a constraint language Γ;
Out : A constraint network over F input or collapse;

1 begin
2 (⟨X,D⟩, B,R)← Extract(F,Γ)
3 H ←GetHints(B)
4 Ω←

∧
c∈R a(c)

5 Θ← ∅
6 while true do
7 e← GenTestcase(B,X,Ω,H,Θ)
8 if e = nil then
9 if Ω is SAT then return network(Ω) \ R

10 else return “collapse”

11 if runOracle(F,Q, e) ̸= yes then Ω← Ω ∧ (
∨

c∈κ(e) a(c))

12 else Ω← Ω ∧ (
∧

c∈κ(e) ¬a(c))

Algorithm 3: GenTestcase

In : A bias B; a variables set X; a theory Ω; finite sets of constraints H, Θ;
Out : A query

1 begin
2 C ← {c | a(c) ∈ Ω}
3 ∆← C ∪Θ ∪ {bc ⇔ c | c ∈ H} ∪

∑
c∈H bc ≤ 1;

4 if sol(∆) ̸= ∅ then
5 pick e ∈ sol(∆);
6 if e ̸|=

∨
c∈H c then Θ← Θ ∪ {

∨
c∈H bc}

7 else Θ← Θ ∪ {bc | e[bc] = 1}
8 return e[X]

9 return queryGeneration(B,Ω)

generation of examples with a high probability of being classified positively. The implemen-
tation details of Extract and GetHints functions depend on the application context, and
Section 5 gives a detailed presentation on how to implement them to infer memory-related
preconditions at the binary level.

PreCA initializes Ω to a theory enforcing the mandatory constraints inR and iteratively
expands it by processing examples generated at line 7. PreCA submits these examples to
the oracle for classification (runOracle call at line 11). If the oracle answers yes, we
discard all constraints in κ(e) from B, those rejecting e, by expanding Ω with negative unit
clauses (line 12). However, if the oracle answers no or ukn, Ω is expanded with a clause
consisting of all literals a(c) s.t. c ∈ κ(e) (line 11). Throughout the acquisition, Ω represents
the set of candidate solutions, i.e., the possible constraint networks from the bias that agree
with observed queries. If there is no example to return, indicating no informative examples
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remaining, and Ω is not satisfiable, a ”collapse” message is returned at line 10—we say
that PreCA collapsed. This may occur when the concept to learn is not representable
by B or if an example classified as ukn conflicts with another example classified as yes.
Otherwise, we return the constraint network encoded by Ω through the network function,
and we remove the mandatory constraints in R, which are implicit in program analysis and
are unnecessary to be part of a precondition (line 9). It is important to note that the oracle
clearly distinguishes between a negative response and an unknown response, whereas the
PreCA algorithm chooses to handle them the same way to ensure the correctness.

The GenTestcase function, as presented in Algorithm 3, extends the queryGener-
ation function from (Bessiere et al., 2017) with additional steps at lines 2-8. The purpose
of this extension is to generate examples that accept at most one constraint from H, antic-
ipating that these examples might be classified as positive. For that, the function needs to
generate an example that satisfies C, the set of all the already learned constraints, along
with the mandatory constraints in R (line 2). A constraint network ∆ is constructed to
produce an example satisfying C, differing from all previous examples (encoded in Θ), and
guaranteeing the acceptance of at most one hint constraint in H (line 3). To do so, each
constraint c from H is reified with a boolean variable bc, used to compel the number of
constraints from H that are verified. After handling the set H, the query generation pro-
cess follows the standard process of the queryGeneration function. The specific use and
rationale behind H and Θ are explained in Section 5.3. It is worth noting that, unlike
queryGeneration, GenTestcase may generate redundant (non-informative) examples
at lines 2-8. Such non-informative examples may lead the acquisition process to a col-
lapse state if, for instance, an example e1 is classified as ”yes,” and a second example e2,
now non-informative, is classified as ukn. However, our experimental evaluation indicates
a significant speed-up due to the examples generated through the heuristic based on hint
constraints in GenTestcase, and zero collapse occurrences due to conflicting answers.

4.3 Theoretical Analysis

In this section, we discuss key properties of PreCA, including consistency, termination,
soundness, and correctness. Consistency, a fundamental property, ensures that the acquired
constraint networks agree with the generated and classified examples. Soundness and cor-
rectness naturally follow. Soundness guarantees that PreCA obtains a precondition when
the weakest precondition is representable by the bias. The correctness property holds under
the additional assumption that the oracle never returns ukn during the acquisition process.
In such cases, PreCA returns the expected weakest precondition. Throughout this section,
we assume the termination of the Extract, GetHints and runOracle functions.

Proposition 1 (Consistency). Given a function F , a postcondition Q, and a constraint
language Γ, if PreCA does not collapse, then the learned network L accepts all positive
examples and rejects all negative and unknown examples.

Proof. Let L be the learned network returned by PreCA, and let S be the sequence of all
examples generated and classified as positive, negative, or unknown during the acquisition
process. For each positive example e ∈ S, PreCA adds all ¬a(c) at line 12 where e ̸|= c.
Given that L is a model of Ω where a(c) encodes the presence of c in L, L accepts all
positive queries in S. Moreover, for each example classified as negative or unknown e ∈ S,
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PreCA adds
∨

c∈κ(e) a(c) to Ω at line 11. Considering that L is a model of Ω where a(c)
encodes the presence of c in L, L contains at least one constraint from κ(e). Therefore, L
rejects e as a solution.

Proposition 2 (Termination). Let F be a function, Q a postcondition, and Γ a constraint
language. The PreCA algorithm terminates.

Proof. Since the Extract, GetHints, and runOracle functions terminate, proving the
termination of PreCA involves proving two key points: (i) the termination of GenTest-
case and (ii) showing that a given call of GenTestcase eventually returns nil.
(i) Generating an example using GenTestcase is a terminating process, reducing to find-
ing a solution to a constraint network within a finite set of variables and values.
(ii) At line 8, GenTestcase produces a finite set of examples as H is finite. Subsequently,
the next GenTestcase calls are equivalent to queryGeneration calls, and returning
only informative examples (Bessiere et al., 2017). Within any sequence of examples S gen-
erated by queryGeneration, each example e ∈ S has a unique κ(e). However, as B is
finite, the number of possible κ(e) is also finite. Therefore, queryGeneration explores
all possibilities in the worst case and eventually returns nil.

Proposition 3 (Soundness). Let F be a function, Q a postcondition, and Γ a constraint
language such that WP(F,Q) is representable by the bias generated through Extract(F,Γ).
If PreCA does not collapse, then the resulting constraint network L is a precondition of F
with respect to the postcondition Q.

Proof. Let B be the bias generated through Extract(F,Γ), L the resulting network of
PreCA, and S the sequence of generated examples. We aim to prove that L⇒WP(F,Q)
(Definition 6). Suppose that there exists e ∈ sol(L) such that e ̸|=WP(F,Q). AsWP(F,Q)
is representable by B, there is c ∈ B such that e ̸|= c. However, we know that c ̸∈ L
(as e |= L). So, there is a positive example e∗ ∈ S such that e∗ ̸|= c, which added
¬a(c) to Ω at line 12. But e∗ is positive, so e∗ |= WP(F,Q) and e∗ |= c, leading to a
contradiction. Therefore, WP(F,Q) cannot reject an example accepted by L, which proves
that L⇒WP(F,Q).

Theorem 1 (Correctness). Let F be a function, Q a postcondition, Γ a constraint language
such that WP(F,Q) is representable by the bias generated through Extract(F,Γ), and
S ⊂ DX the sequence of generated examples. If there is no example in S classified as ukn
by the oracle, then PreCA converges to a network L ≡ WP(F,Q).

Proof. PreCA terminates (Proposition 2) and is sound (Proposition 3). To prove the
correctness of PreCA, which can only be done under the assumption that no examples
are classified as ukn during the acquisition process, we need to prove the completeness
of PreCA under that assumption (i.e., WP(F,Q) ⇒ L). Let us assume there exists
e |= WP(F,Q) and e /∈ sol(L). Therefore, there exists at least one constraint c ∈ L
rejecting e and learned by PreCA. Since no example is classified as ukn, the only place
where c can be added as a candidate to learn is at line 11 after classifying the example e as
a negative example. Moreover, this implies that from κ(e), c is one of the constraints that
PreCA decides to include in the returned precondition L. It’s important to note that if e
is classified negatively by the runOracle function, this indicates that executing F with e
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results in an output violating the postcondition Q. Therefore, e ̸|=WP(F,Q), leading to a
contradiction. Therefore, adding a constraint to a precondition L cannot reject an example
accepted by WP(F,Q), which proves that WP(F,Q)⇒ L.

Discussion. The correctness of PreCA depends on the expressiveness of the bias B as
well as the termination of function execution. While we cannot formally prove that B repre-
sents the weakest precondition to learn, we consider such a correctness proposition valuable
in the black-box context. From a theoretical standpoint, previous black-box methods lack
some guarantees: Daikon (Ernst et al., 2001) doesn’t guarantee consistency (Proposition 1),
and methods like (Padhi et al., 2016; Gehr et al., 2015) ensure consistency but not correct-
ness (Theorem 1). From a user’s perspective, providing a bias might be more intuitive than
offering test cases, especially in scenarios where the source code is unavailable. Moreover,
enhancing the expressiveness of B contributes to increased confidence in the obtained result.
It’s worth noting that previous black-box methods restrict themselves to analyzing func-
tions that always terminate, whereas PreCA handles such cases with ukn classifications,
adding flexibility to its applicability. Table 3 summarizes PreCA properties and compares
it to other state-of-the-art black-box methods.

Alg. Mode Dependencies Consistency Soundness Correctness Guarantee if timeout

Daikon passive testcases + language no no no no
PIE passive testcases + language yes no no no
Gehr et al. active language yes no no no

PreCA active language yes yes yes yes

The Guarantee if timeout column specifies if the inference methods show guarantees even if the oracle answer ukn,
i.e., if the execution of the code under analysis does not always terminate within the time budget.

Table 3: Summary of the black-box methods properties

5. PreCA for Memory-Related Preconditions

We now configure PreCA for the case of memory-related preconditions, which are crucial
for the safety and security of low-level languages like C or binary code. First, we abstract
program memory to manipulate only relevant variables. For that, we introduce a new
constraint language specifically designed for preconditions over memory and detail how to
extract a finite bias from it. Second, we provide a comprehensive description of the oracle.
Third, we introduce two optimizations aimed at accelerating the acquisition process.

5.1 Constraint Acquisition Settings

Representing memory. Applying CA to precondition inference requires mapping the
initial memory state of a function to a set of acquisition variables. However, creating a vari-
able for each memory cell is impractical, as many would remain unconstrained. Therefore,
our approach involves abstracting each function input (arguments or global variables) with
a concise representation that summarizes all and only the necessary data. Specifically, in
the context of a function F under analysis, each input is represented as a Cell (defined in
Listing 2). A Cell can be either a GlobalCell (linked to a global variable) or an ArgCell
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(linked to a function argument). The ref field of global cells represents the address where
the associated global variable is stored. Each cell also has a stored field of type Store,
representing the data in the cell. This stored data can be of type Ptr (a pointer), SInt (a
signed integer), or UInt (an unsigned integer). Pointers can be general pointers (VoidPtr)
or null-terminated strings (StrPtr). Both types have a val field representing the address
pointed to by the pointer. The StrPtr type extends the VoidPtr type with a len field
representing the size of the string.

Vocabulary (X, D). With this formalization, we can systematically map each field (ref,
val, len) to a meaningful acquisition variable and define its domain. For instance, consider
a string global variable named str; we would create three acquisition variables: str.ref,
str.val, and str.len. Each of these variables is then associated with a specific domain.

Let r1, ..., rm represent the addresses of each global variable in scope, where a1 < ... < ak
denote k new valid addresses, ensuring that for all j < i, ai − aj > 1.6 Let NI (resp. NU )
be the number of signed (resp. unsigned) integer inputs (arguments or global variables)
used as inputs for the function under analysis (e.g., in Listing 1, the function find_first_of

takes two signed integers as arguments, so NI = 2) The operator dom(x), when applied to
a variable x, returns as follows:

• For a reference (Ptr.ref), its domain is a singleton subset of {ri}1≤i≤m, ensuring that
two distinct global variables have disjoint reference domains (i.e., G1.ref ̸= G2.ref).

• For Ptr.val, the domain is {NULL, r1, ..., rm, a1, ..., ak}.

• For StrPtr.len, the domain is {0, 1} ∪ {ai − aj | j < i}.

• For SInt.val and UInt.val, their domains respectively are [−NI , NI ] and [ 0 , NU ].

type Cell = GlobalCell | ArgCell

type GlobalCell = {ref: address; stored: Store }

type ArgCell = {stored: Store}

type Store = Ptr | SInt | UInt

type Ptr = VoidPtr | StrPtr

type VoidPtr = {val: address}

type StrPtr = {val: address; len: unsigned int}

type SInt = {val: int}

type UInt = {val: unsigned int}

type address = unsigned int

Listing 2: Cell type definition

6The constraint ai − aj > 1 is necessary to enable strings of non-null size.
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Language Γ. Over this vocabulary, PreCA operates within the constraint language Γ,
detailed in Fig. 3. Note that: (i) Conjunction of constraints is not listed, as the acquisition
process infers it. (ii) Γ includes disjunctions of arbitrary size, crucial for learning conditional
preconditions. For instance, the find first of weakest precondition in Listing 1 involves
the constraint ¬sle0(n) ⇒ valid(a).

Grammar of ΓΓΓ

C := C ∨ C | A | ¬A
A := valid(p) | alias(p, q) | deref(p, g)

| strleneq0(p) | stroverlap(p, q) | ptrgt(p, q)

| seq0(i) | ueq0(i) | slt0(i) | sle0(i)
| seq(i, j) | ueq(i, j) | slt(i, j) | ult(i, j)

Semantics of constraint over pointer cells

valid (p: Ptr) ≡ p.val ̸= NULL p points to valid memory

alias (p: Ptr) (q: Ptr) ≡ p.val = q.val p, q point to the same memory

deref (p: Ptr) (g: GlobalCell) ≡ p.val = g.ref p points to g

strleneq0 (p: StrPtr) ≡ p.len = 0 the string has a null size

stroverlap (p: StrPtr) (q: StrPtr) ≡ p.val ≤ q.val ≤ p.val + p.len

∨ q.val ≤ p.val ≤ q.val + q.len
the strings p and q overlap

ptrgt (p: Ptr) (q: Ptr) ≡ p.val > q.val p refers to a higher address than q

Semantics of constraint over integer cells

seq0 (i: SInt) ≡ i.val = 0 the signed integer equals 0

ueq0 (i: UInt) ≡ i.val = 0 the unsigned integer equals 0

slt0 (i: SInt) ≡ i.val<s 0 the signed integer is lower than 0

sle0 (i: SInt) ≡ i.val ≤s 0 the signed int is lower or equal to 0

seq (i: SInt) (j: SInt) ≡ i.val = j.val the two signed integers are equal

ueq (i: UInt) (j: UInt) ≡ i.val = j.val the two unsigned integers are equal

slt (i: SInt) (j: SInt) ≡ i.val <s j.val the signed integer i is lower than j

ult (i: UInt) (j: UInt) ≡ i.val <u j.val the unsigned integer i is lower than j

Each constraint, being an arithmetic constraint over integers, is negated by negating the arithmetic constraint itself. For
instance, ¬valid(p) is represented as p.val = NULL.

Figure 3: Grammar of constraint language Γ

Bias B. The bias B is a finite set of constraints extracted from Γ. Balancing the size of B
is crucial, as a larger bias is more expressive but can potentially slow down the acquisition
process. To optimize the bias size, we should especially take care of the disjunctions that
are included in the bias i.e., decide which constraints of the form c1 ∨ ...∨ cn, with ci being
atomic, must be considered. With Γn being the restriction of Γ to disjunctions of size up
to n,7 PreCA employs the heuristic: “Let i be the number of integer inputs in F , and
size = max(i, 1)+1. PreCA includes all constraints from Γsize in its bias.” This heuristic
is based on the observation that the validity of a pointer is often conditioned by constraints
over integer variables. The Extract function in Algorithm 4, called in Algorithm 2 at
line 2, implements this heuristic. The function Extract initializes ∆ as the set of all inputs
(arguments and global variables) of the function under analysis and categorizes them into
three disjoint sets: ∆I , ∆P , and ∆S , depending on their input types. It also populates ∆G

with the inputs representing global variables such that ∆G ⊂ (∆I ∪∆P ∪∆S). From line
8 to line 14, it adds to X the acquisition variables associated with each input. R is then
extended with mandatory constraints over these inputs (i.e., constraints that must hold to
run a function). At line 15, it determines the maximum disjunction size to include in the

7Γn being the maximal subset of constraints from Γ with disjunctions of size ≤ n, it is unique
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Algorithm 4: Extract

In : A function F ; a constraint language Γ;
Out : Vocabulary ⟨X,D⟩; Bias B; Mandatory constraints R;

1 begin
2 X ← ∅, D ← ∅, R ← ∅
3 ∆← F inputs;
4 ∆I ← {i ∈ ∆ s.t. i is a Integer}
5 ∆P ← {i ∈ ∆ s.t. i is a VoidPtr}
6 ∆S ← {i ∈ ∆ s.t. i is a StrPtr}
7 ∆G ← {i ∈ ∆ s.t. i is a GlobalCell}
8 foreach i ∈ ∆I ∪∆P do X ← X ∪ {i.val}
9 foreach i ∈ ∆S do

10 X ← X ∪ {i.val, i.len}
11 R ← R∪ {¬valid(i)⇒strleneq0(i)}
12 foreach i ∈ ∆G do X ← X ∪ {i.ref}
13 foreach (i, j) ∈ (∆S)

2 s.t. i ̸= j do
14 R ← R∪ {stroverlap(i, j)⇒ i.val + i.len = j.val + j.len}
15 size←Max(|∆I |, 1) + 1
16 D ←

∏
xi∈X dom(xi)

17 B ←Extension(Γsize, ⟨X,D⟩)
18 return (⟨X,D⟩, B,R)

bias. The domain for each variable in X is computed at line 16. Finally, it computes the
extension of Γsize on ⟨X,D⟩, representing all constraints c for which var(c) is a tuple of
variables of X, and there exists a relation r ∈ Γsize such that rel(c) = r∩D|var(c)| (line 17).

Mandatory constraints. Traditional CA considers all variable assignments as meaning-
ful. However, in program analysis and using PreCA, we must ensure that these assignments
align with the execution of the function under analysis. To do this, the Extract function
(Algorithm 4) returns a set of mandatory constraints denoted as R. These constraints
will be enforced during query generation. In the context of our memory representation, R
includes constraints for all pairs of strings (p, q), such as:

1. ¬valid(p) ⇒ strleneq0(p): This constraint ensures that if p is not a valid string,
its length should be zero.

2. stroverlap(p, q) ∧ ptrgt(p, q) ⇒ p.val − q.val = p.len − q.len: This con-
straint enforces that if PreCA generates overlapping strings (stroverlap(p, q))
with p a pointer greater than q (ptrgt(p, q)), as strings are null-terminated, their
end address must be equal: it is the address of the first 0 encountered.

5.2 Oracle for Memory-Related Preconditions

In this section, we present the process of defining an oracle to ensure that PreCA accurately
infers memory-related preconditions.
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Example classification. To verify if an example e satisfies the weakest precondition to
be learned, our oracle executes the function F under analysis with e as a test case. The
classification is determined based on the execution behavior by evaluating the output w.r.t.
the postcondition Q. Now, as the termination problem is undecidable (Rice, 1953), the
oracle can not classify an example leading to a diverge state (F/e ⇝∗) in finite time. To
ensure runOracle termination, the runOracle function is called with a time limit. If
the function execution reaches the predefined time limit, it is artificially halted to guarantee
termination, and the oracle responds with ukn. Choosing an appropriate execution time
limit is essential. If the time limit is too restrictive, all examples might be classified as ukn,
while an important time limit could slow down the acquisition process. If the execution
terminates within the time limit, the real function behavior is observed, and a precise
classification is returned. Specifically, if F/e⇝∗ skip/s and s |= Q, the oracle returns yes.
It responds with no if F/e ⇝∗ skip/s and s ̸|= Q, or if F/e ⇝∗ p/s where p/s is stuck,
meaning the execution triggers a runtime error.

Handling the examples. An example is expected to provide assignments for all function
inputs. However, providing a complete assignment for the entire initial memory is impracti-
cal. To tackle this, each function input is abstracted as a Cell (Section 5.1), capturing only
the relevant, i.e., constrained, part of the function input. The oracle acts as an emulator,
initializing all cells represented by variables in X using the example values (the test case).
The other memory cells, left unspecified and not in X, can be randomly initialized. In prac-
tice, if the weakest precondition is representable by the bias B (a fundamental assumption
of Proposition 3 and Theorem 1), the value of a non-represented cell in X does not impact
the observed execution behavior. Otherwise, it would be represented by a variable in X
and constrained in B. For example, when a function takes a string s as input, only its
value s.val and the referenced string size s.len are sent to the oracle. As no acquisition
variable in X represents the content of the referenced buffer, it can not be specified. Upon
receiving s.val and s.len, the oracle generates a random string of size s.len and writes
it at address s.val. During execution, if a non-represented memory cell in X is read, it is
assigned a random value.

The operational semantics. The definition of (weakest) preconditions relies on the
provided operational semantics, which outlines the potential behaviors of configurations
(termination, divergence, being stuck). The runOracle specification is also attached to
this operational semantics. In our context, the binary is executed solely for precondition
inference. We can easily identify access to invalid memory regions or division by zero errors
as they trigger signals. However, at the binary level, there is no information about variables
and their sizes. Consequently, a buffer overflow, often considered undefined behavior in the
C standard, typically does not result in a runtime error. Hence, it may not lead to a
negative answer. In practice, we adopt a straightforward operational semantics that only
detects errors in cases of division by zero and when accessing an address outside the readable
and writable address range.

5.3 Speeding up PreCA

We describe now two heuristics to speed up PreCA:

19



Leveraging background knowledge to accelerate CA convergence. A set of in-
ference rules, often simply called rules, over Γ forms a background knowledge K (Bessiere
et al., 2017). To illustrate this concept, a subset of these rules, focusing on pointer and
integer variable usage, is presented in Fig. 4. This subset includes typical boolean proper-
ties, transitivity relations over integers, and relationships over memory. For instance, if p1
is valid and p1 aliases with p2, then p2 is also valid.

Preprocessing. Understanding code behavior when pointers alias, overlap, or dereference
undesired variables is recognized as a challenging task. In such cases, functions are presumed
to be more likely to trigger runtime errors or violate postconditions, resulting in no or ukn
answers. However, examples classified as negative or unknown prune a smaller part of
the search space compared to positive ones. While a positive example e eliminates all
constraints in κ(e), an example classified as negative or unknown e′ only indicates that at
least one constraint from κ(e′) can be part of the precondition. The lines 2-8 are introduced
to tackle this in GenTestcase (Algorithm 3), which utilizes two sets of constraints, H
and Θ, to generate likely positive examples. The H set is populated with constraints likely
inconsistent with the precondition, i.e., constraints representing challenging input states.
In Algorithm 3, line 3 ensures that the generated example verifies at most one constraint
from H. When an example verifying a combination of hint constraints is generated, Θ is
updated at lines 6 and 7, preventing the generation of examples that verify exactly the same
hint constraints. This mechanism facilitates the generation of examples satisfying at most
one hint constraint. We believe such examples are less likely to be classified as negative
or unknown because they address at most one hard-to-comprehend case. In practice, the
set of hint constraints is generated by GetHints and should be tailored to the application
scenario. In our context, the set of hint constraints includes ¬valid, alias, overlap, and
deref constraints.

a(c) −→ ¬a(c̄), ∀c ∈ B
a(c1) −→ a(c1 ∨ c2) , ∀c1, c2 ∈ B
a(i1 = 0) ∧ a(i1 = i2) −→ a(i2 = 0)
a(i1 = i2) ∧ a(i2 = i3) −→ a(i1 = i3)
a(¬valid(p1)) ∧ a(¬alias(p1, p2)) −→ a(valid(p2))
a(valid(p1)) ∧ a(alias(p1, p2)) −→ a(valid(p2))
a(alias(p1, p2)) ∧ a(alias(p2, p3)) −→ a(alias(p1, p3))

Where pj (resp. ij) are pointer (resp. integer) variables.

Figure 4: Background knowledge K (a subset): the two first rules are general logical rules, then
there are two rules over integer variables, and finally, rules over pointers.

5.4 Example

We run PreCA over the sum function (Listing 3) and postcondition Q = true. For
simplicity, we restrict Γ’s atomic relations to valid(l), ¬valid(l), ueq0(n), ¬ueq0(n)
and consider an empty background knowledge. The l input is mapped to type VoidPtr.
The function sum takes one integer input n, so the bias integrates disjunctions of size ≤ 2,
i.e., B = {valid(l), ¬valid(l), ueq0(n), ¬ueq0(n), ¬ueq0(n) ⇒ valid(l), ueq0(n)
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int sum(int* l, uint n) {

int res = 0;

for (unsigned int i = 0; i<n; i++) res = res + l[i];

return res;

}

Listing 3: Sum function

⇒ valid(l), ¬ueq0(n) ⇒ ¬valid(l), ueq0(n) ⇒ ¬valid(l)}. Note that B shows no
redundancies. For example, the constraint “valid(l)⇒ ¬ueq0(n)” is not in B as it would
be redundant with “ueq0(n) ⇒ ¬valid(l)”. Moreover, l.val and n.val take values in
{NULL, a1} and [0, 1] respectively.

The examples generated by PreCA are summarized in Table 4. At first, PreCA relies
on the preprocessing to generate the two first examples. The first one is classified positively
as sum(a1, 1) terminates without raising a runtime error. The second one, however, is clas-
sified negatively. Indeed, sum(NULL, 1) ⇝∗ (res += l[i]); p/s[ l ← NULL, i ← 0] which
is a stuck configuration – dereferencing a NULL pointer raises a runtime error. Finally, the
third one is classified positively as the loop is never executed and the NULL pointer is so
never dereferenced. Finally, the solution extracted from T3 is {¬ueq0(n) ⇒ valid(l)}.

Queries
Version Space (Ω)⟨l.val, n.val⟩ Answer

⟨a1, 1⟩ yes Ω1 = ¬a(¬valid(l)) ∧ ¬a(ueq0(n)) ∧ ¬a(¬ueq0(n))⇒ ¬valid(l)
⟨NULL, 1⟩ no Ω2 = Ω1 ∧ (a(valid(l)) ∨ a(ueq0(n)) ∨ a(¬ueq0(n)⇒ valid(l)))
⟨NULL, 0⟩ yes Ω3 = Ω2 ∧ ¬a(valid(l)) ∧ ¬a(¬ueq0(n)) ∧ ¬a(ueq0(n)⇒ valid(l))

Table 4: PreCA over the sum function

6. Experimental Evaluation

We implementedPreCA in Java, making use of theChoco constraint solver (Prud’homme,
Fages, & Lorca, 2014) and the MiniSat SAT solver (Eén, 2006). PreCA is fully avail-
able as an open-source project at the following address: https://github.com/binsec/preca.
To evaluate PreCA, we performed an experimental evaluation to answer the following
Research Questions:

RQ1 Can PreCA handle realistic functions? We evaluate PreCA capability to infer
weakest preconditions on our benchmark, including real C function from prior work
and standard libraries;

RQ2 How PreCA components influence results? We compare PreCA with and without
background knowledge, preprocess and active learning;

RQ3 Is PreCA competitive with black-box methods? We compare to black-box state-of-
the-art methods in terms of correctness and speed.

RQ4 Is PreCA competitive with white-box methods? We compare to the white-box
method P-Gen on clean C code, and also consider 3 “hard” scenarios: no source
code, obfuscated code, and presence of inline assembly.
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RQ5 How does PreCA behave with the bias size? We evaluate PreCA over our dataset
with three biases ordered by size.

RQ6 How does PreCA behave with the disjunctions size? We evaluate PreCA over our
dataset with increasingly big disjunctions.

6.1 Experimental Design

Benchmark. Our benchmark considers 50 real C functions. It contains all functions
from string.h, all functions from (Seghir & Kroening, 2013; Sankaranarayanan, Chaudhuri,
Ivančić, & Gupta, 2008) (except 2 functions from an old Xen version), functions from the
DSA benchmark (https://tinyurl.com/tvzzpvmm), Frama-C WP test suite (https://tinyurl.
com/ycxdbjf3), Siemens suite (Hutchins, Foster, Goradia, & Ostrand, 1994) and the book
Science of Programming (Gries, 2012). Functions range from 3 LoC to 250 (mean 59), have
up to 9 loops (mean 2.8, 47/50 functions with loops) and 2/50 with recursive calls.

Postconditions. For each function, we study two scenarios: with the implicit true post-
condition (dubbed “no postcondition”) and with explicit postcondition. In the latter case,
we manually choose relevant ones, e.g. Q = valid(ret) for pointers, and Q = ret ̸= 0 or
Q = ret > 0 for integers. Finally, six functions return no output and are discarded from
the explicit postcondition setting. In total, our benchmark contains 94 inference tasks, 50
with implicit postconditions and 44 with explicit postconditions.

Bias. To answer RQ1, RQ2, RQ3, and RQ4, we consider the bias presented in Sec-
tion 5.1. We include all the atomic constraints, except the ones on strings (stroverlap,
strleneq), which are used later to extend the evaluation of PreCA. Indeed, to answer
RQ5, we consider the different bias configurations presented in Table 5. The B1 configura-
tion considers biases with only constraints and variables requested to express the inferred
preconditions. The B2 configuration considers biases with only requested constraints but
applied to all combinations of variables. The B3 configuration considers all possible con-
straints from Γ – except the strings constraints – applied to all combinations of variables.
Finally, the B4 configuration considers all possible constraints from Γ – including the strings
constraints – applied to all combinations of variables. Thus, given a function under analysis,
we have that B1 ⊂ B2 ⊂ B3 ⊂ B4.

min size max size mean size

B1 2 14 4.6
B2 2 16 5.3
B3 2 42 11.1
B4 4 64 18.6

Table 5: Statisitics of the biases (in terms of atomic constraints) used for precondition inference

Setup. We run PreCA with different time budgets per function (from 1s to 1h) and an
oracle timeout of 1min (leading to the ukn answers). As passive learning approaches highly
depend on the given examples, we ran them 10 times, each time with 100 new random
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examples. Experiments are done on a machine with 6 Intel Xeon E-2176M CPUs and 32
GB of RAM.

6.2 Experimental Results

Results are summarized in Tables 6 and 7.

RQ1. We study now if PreCA can handle the realistic functions from our benchmark.
To evaluate it, we apply it to our dataset of real-world C functions and recorded the results
for different timeouts. We observe in Table 6 that with a time budget of 5min per example
and without postcondition, PreCA infers 46/50 weakest preconditions (29/50 for 1s, 38/50
for 5s). Two examples timeout, and two others return a constraint network not equivalent
to the weakest precondition – a manual inspection shows our bias is not expressive enough
in these cases, still it returns a (correct) precondition for one of them. With postconditions,
PreCA infers 18/44 weakest preconditions with < 5 min time budget each (11/44 for 1s,
16/44 for 5s) and never timeouts (in 7 other cases it still infers a correct precondition).
These results are far better than other state-of-the-art tools (RQ3, RQ4).

Conclusion: PreCA is able to handle real functions precisely (weakest precondition) in
a small amount of time. Especially, it is extremely accurate for implicit postconditions.

RQ2. We perform an ablation study to understand the impact of the different PreCA
components, especially, the background knowledge and the preprocess. First, we consider
PreCA in passive mode, with 100 random queries, to see the impact of active learning
(denoted

↰
Random in Table 6). Results are averaged over 10 runs per function. We see

a significant drop in performance for time budgets ≥ 5min (for 5min: 30/50 vs 46/50,
18/44 vs 12/44). Second, we study how the background knowledge and the preprocess
impact PreCA results. We see a clear impact only for small time budgets (e.g., 1s and
no postcondition: 29 vs 15/19/13). Interestingly, both the background knowledge and the
preprocess are necessary to speed up.

Conclusion: PreCA benefits strongly from its active mode. Background knowledge and
preprocess over complex preconditions are useful for small time budgets.

RQ3. We evaluate if PreCA is competitive with state-of-the-art black-box approaches,
namely Daikon (Ernst et al., 2001), PIE (Padhi et al., 2016)8 and Gehr et al. approach (Gehr
et al., 2015) – we reimplemented it. Daikon and PIE performing passive learning, we run
them over 100 random queries. As Daikon, PIE and Gehr et al. methods are randomized,
we run them 10× and report their average results. We first observe that PreCA performs
significantly better than these three competitors for all setups – for 1s and no postcondition:
29 vs 8.0 - 16.0 - 1.4; for 1h and no postcondition: 46 vs 26.1 - 17.7 - 1.6. We tried feeding
Daikon, PIE and Gehr et al. with the queries PreCA generated in active mode (lines

↰

PreCA and

↰

Both). All methods except Daikon benefit from it, highlighting the quality
of PreCA sample generation mechanism.

Conclusion: PreCA significantly outperforms prior black-box methods. Especially, it
infers in 5s more weakest preconditions than Daikon, PIE and Gehr et al. in 1h. Moreover,
it generates high quality queries that can benefit other methods.

8PIE is used as publicly released, with its generic (expressive enough) grammar
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RQ4. We evaluate if PreCA is competitive with white-box approaches. To do so, we
compared to the white-box method P-Gen (Seghir & Kroening, 2013). We also considered
(Kafle, Gallagher, Gange, Schachte, Søndergaard, & Stuckey, 2018) and (Gulwani, Srivas-
tava, & Venkatesan, 2008), but the former requires manually translating C code to Prolog
(no front-end provided) and the latter is not available. First, we consider a favourable setup
where the source code of our 94 examples is available (Table 6). Surprisingly, PreCA in-
fers slightly more WP with a 5s time budget than P-Gen with 1h (both with and without
postcondition). The gap increases for a time budget of 1h and implicit postconditions (46
vs 37). Second, we consider “hard” application scenarios: (i) no source code; (ii) obfuscated
code; (iii) inline assembly – our 94 samples are transformed accordingly. As expected for a
white-box method, P-Gen infers no precondition for these scenarios (0/94) while PreCA
results remain the same.

Conclusion: As expected, PreCA significantly outperforms P-Gen on hard application
scenarios. Less expected, it also performs better when the source code is fully available.

1s 5s 5 mins 1h

#WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ

Daikon 1.4/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44↰

PreCA 2/50 1/44 2/50 1/44 2/50 1/44 2/50 1/44↰

Both 3.3/50 0/44 5.7/50 0/44 5.7/50 0/44 5.7/50 0/44

PIE 16.4/50 4.7/44 16.4/50 4.7/44 17.7/50 4.7/44 17.7/50 5.3/44↰

PreCA 5/50 3/44 5/50 3/44 5/50 3/44 5/50 3/44↰
Both 25.3/50 11.3/44 25.4/50 11.3/44 26.4/50 11.3/44 28.4/50 11.3/44

Gehr et al. 8.0/50 5.0/44 16.8/50 8.1/44 26.1/50 10.1/44 26.1/50 10.3/44↰

PreCA 37/50 15/44 43/50 17/44 46/50 18/44 46/50 18/44

PreCA 29/50 11/44 38/50 16/44 46/50 18/44 46/50 18/44↰

BK 15/50 8/44 38/50 16/44 45/50 18/44 46/50 18/44↰

Preproc. 19/50 9/44 36/50 16/44 45/50 18/44 46/50 18/44↰

∅ 13/50 7/44 35/50 15/44 45/50 18/44 46/50 18/44↰

Random 29.9/50 12.1/44 29.9/50 12.1/44 30.0/50 12.1/44 30.0/50 12.1/44

P-Gen 34/50 13/44 37/50 15/44 37/50 15/44 37/50 15/44

#WP⊤ (resp. #WPQ) is the number of inferred weakest precondition without (resp. with) a
postcondition. We study 3 variations of Daikon and PIE: (i) the original one (highlighted) on 100
random examples; (ii) on PreCA examples; (iii) on both random and PreCA examples. We study
the original active Gehr et al. method (highlighted) and we feed it with PreCA examples. Finally,
we study PreCA with its background knowledge and preprocess (highlighted), with background
knowledge only (BK), with preprocessing only (Preproc.), without any of them (∅) and in passive
mode with 100 random queries (Random). P-Gen being a static method, we consider only its original
form.

Table 6: PreCA against the state-of-the-art depending on the time budget

RQ5. We now evaluate how the bias choice impacts PreCA. Table 7 presents the results
of PreCA over the four bias sizes presented in Table 5. We restrict the analysis to the
implicit postcondition case because this is the context where we have the most granularity.
Interestingly, for the 1h timeout, we observe that PreCA’s results (Heur. column) are sim-
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ilar over the four cases, inferring between 45/50 and 46/50 weakest preconditions. However,
for smaller timeouts (lower than 5 minutes), we observe that the bias size has an impact.
Especially, PreCA infers in 1s 33/50, 31/50, 24/50, and 8/50 weakest preconditions for B1,
B2, B3 and B4, respectively. Such behavior can also be observed on the different variations
of PreCA with fixed disjunction sizes, except in the “No disj” case where only the most
simple functions can be handled. On all these configurations, for the 1s second timeout,
PreCA can infer up to 37/50 weakest precondition over the minimal bias, while it cannot
infer more than 16/50 over the maximal bias. Also, observe that PreCA (Heur. column)
infers in 1h more preconditions over B4 than B3. Indeed, B4 is expressive enough to handle
one new function, namely strcat (see Section 7).

Conclusion: Giving more knowledge to PreCA, by reducing its input bias, enables it to
speed up its inference, leading to substantial improvement for timeouts lower than 5 minutes.
For bigger timeouts (e.g. 1h), PreCA is efficient enough to handle the maximal bias, as
well as the smaller ones.

RQ6. We compare how PreCA behaves when integrating in the bias fixed size disjunc-
tions and compare it to our heuristic given in Section 5.1. From Table 7, we observe that the
proposed heuristic leads to the best results for the 1h timeout – over each bias size. This is
expected because the heuristic includes different disjunction sizes depending on the target
function. Each acquisition task has, as such, a tailored bias. We also observe that PreCA
infers less weakest preconditions over B3 and B4 when including disjunctions of sizes up
to 7 and 10. Indeed, over B3 it infers with disjunctions of size up to 3, 45/50 weakest
preconditions against 35/50 for disjunctions of size up to 7 and 10. This is expected as the
bias size explodes, impacting the acquisition efficiency. However, we do not observe such
behaviors over the smaller biases as they stay small enough to be manageable by PreCA.

Conclusion: PreCA is impacted by the disjunction sizes that have to be carefuly selected.
Still, the proposed heuristic which includes in the bias the maximum size of disjunctions is
efficient and leads to better results than specifying the maximal boundary.

7. Use Cases

We now show that PreCA can be used to understand non-trivial function behaviors. We
consider two use-cases: strcat from the libc and mbedtls_md_setup from the mbedtls library9.

7.1 The strcat Usecase

The strcat function is a standard function that manipulates strings. It takes two null-
terminated strings as input (dst and src) and appends the src string to dst. To do so,
it copies the ith character of src, at address dst + strlen(dst) + i – this removes the ’\0’

from dst. We want to know, which inputs lead to non-crashing and terminating behaviors,
i.e., Q = true. We chose this example as it is simple and broadly used but still presents
unexpected behaviors that may be misunderstood by developers. Indeed, the manual states
that “The strings may not overlap”. Thus, we could expect the weakest precondition to be
valid(dst) ∧ valid(src) ∧¬stroverlap(dst, src).

Interestingly, this is too conservative, and PreCA is able to find a better precondition.

9https://github.com/Mbed-TLS/mbedtls
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Heur. No disj |disj| ≤ 2 |disj| ≤ 3 |disj| ≤ 4 |disj| ≤ 7 |disj| ≤ 10

B1

1s 33/50 21/50 37/50 30/50 30/50 30/50 30/50
5s 45/50 21/50 43/50 43/50 42/50 42/50 43/50
5 mins 46/50 21/50 44/50 46/50 46/50 45/50 46/50
1h 46/50 21/50 44/50 46/50 46/50 45/50 46/50

B2

1s 31/50 21/50 34/50 26/50 26/50 27/50 29/50
5s 44/50 21/50 42/50 42/50 41/50 41/50 42/50
5 mins 46/50 21/50 44/50 46/50 45/50 44/50 45/50
1h 46/50 21/50 44/50 46/50 46/50 44/50 45/50

B3

1s 24/50 20/50 22/50 18/50 18/50 18/50 17/50
5s 36/50 21/50 38/50 31/50 29/50 28/50 27/50
5 mins 44/50 21/50 44/50 42/50 35/50 35/50 35/50
1h 45/50 21/50 44/50 44/50 40/50 35/50 35/50

B4

1s 8/50 16/50 10/50 5/50 5/50 5/50 5/50
5s 28/50 20/50 28/50 17/50 15/50 14/50 14/50
5 mins 42/50 20/50 44/50 39/50 27/50 19/50 19/50
1h 46/50 20/50 45/50 44/50 32/50 19/50 19/50

Table 7: PreCA depending on the time budget, the disjunction sizes and the bias used.

Indeed, PreCA synthesizes the “real” weakest precondition, which highlights that the two
strings can overlap when src is the empty string. As strcat has no integer inputs, the
bias integrates disjunctions of size up to 2. This led to a bias with 72 constraints. Over
it, PreCA generates 13 queries (4 from the preprocess) and returns the learned concept
in 126s. On average, PreCA takes 98ms to generate a query. While most queries are
answered by the oracle in less than 1s, two queries take a lot more time as they reach the
given timeout (60s). Indeed, over these queries, the non-empty strings dst and src overlap.
Thus, by appending the src characters to dst, it also appends the characters to the src

string, and execution never terminates. This is coherent with the manual. However, there
is also a query where the two strings overlap but where execution succeeds. Indeed, when
src is the empty string, only the ’\0’ character is appended to dst, and nothing happens. So
finally, PreCA infers the weakest precondition: valid(dst) ∧ valid(src) ∧ (strleneq0(src)
∨ ¬stroverlap(dst, src)).

Conclusion: PreCA can infer subtle weakest preconditions over strings, which can even
be more precise than human-given documentation.

7.2 The mbedtls md setup Usecase

The mbedtls library implements cryptographic functions in C for embedded systems. We
especially focus on function mbedtls_md_setup, which sets all internal structures to apply
message disgest (i.e., cryptographic hash) algorithms and returns 0 if everything goes well.
We want to know over which inputs this function returns 0. mbedtls_md_setup takes ctx,
md_info, and hmac as arguments. The ctx argument is a pointer to a complex structure called
mbedtls_md_context_t; the md_info is also a pointer to a structure called mbedtls_md_info_t; and
the hmac is a signed integer. Currently, PreCA cannot automatically handle structures,
and we need to specify which fields will be converted to acquisition variables. By quickly
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reading the code, we observe that only a few portions of the structure fields are in fact
manipulated. Thus, we restrict our set of acquisition variables to these 5 ones. One of these
fields is md_info->type. This is an enumeration specifying the 8 different types of message
digest algorithms that can be used (e.g., MD5, SHA1 and more). Thus, we add to the bias
the comparison of md_info->type to the bound values of the enumeration i.e., ueq8(md_info

->type), ugt8(md_info->type) (defined as ueq0(i), ugt0(i), but for the constant value 8) and
their negations.

From such a setting, PreCA can infer a meaningful precondition. Because there is only
one integer argument in the function prototype (hmac), the bias includes disjunctions of size
up to 2. This led to a bias with 722 constraints. Over it, PreCA generates 426 queries
(4 from the preprocess) and returns the learned concept in 9min 46s. On average, PreCA
takes 488ms to generate a query. Finally, it returns the precondition: valid(ctx) ∧ valid

(md_info) ∧ ¬alias(ctx, md_info) ∧ ugt0(md_info->type) ∧ ult8(md_info->type) ∧ (seq0(hmac)
∨ ugt0(md_info->blocksize)). Note that the 4th and 5th constraints state that md_info->type

should be between 1 and 7. This is coherent as the enumeration can take value in 0..7, and
the 0 case stands for MBEDTLS_MD_NONE. This case means that no message digest algorithm
was specified and led to an error return value.

Conclusion: PreCA can handle complex functions from cryptographic code. Still, there
are two challenges: 1. the high number of acquisition variables; 2. the handling of constant
values. A simple but effective solution involves filtering unused variables and searching for
used constant values, e.g., enumerations. This could be performed automatically with basic
static analysis

8. Discussion

We now explain how PreCA can be adapted and extended to handle new contexts. We
then discuss its limitations and present promising research directions.

PreCA on new programming languages. The PreCA approach can be applied to
different precondition inference tasks. In this paper, we show that it can infer preconditions
of binary code functions. Still, it can be applied to high-level languages such as JAVA or
Python. The main step to applying PreCA on a programming language is to create a new
oracle for this language. It should initialize the input memory state of the function under
analysis based on a given query and monitor errors and execution time. Still, building a
new oracle may not be enough. The constraint language might also have to be extended
with new constructs tailored for the new programming language to analyze. Eventually, the
mandatory constraints could also need adaptation as the memory model axioms depend on
the programming language and types considered.

PreCA with new constraints. The constraint language used by PreCA establishes
the type of precondition it can infer. In Fig. 3, the given constraint language aims to
infer preconditions about memory for binary code. Thus, when applied to other contexts
(e.g., high-level languages or other types of precondition), it might contain too low-level
constraints or miss some others. For example, the stroverlap constraint may not be necessary
in JAVA as two different string objects cannot overlap. On the other hand, constraints
over lists or sets could be meaningful. To extend the constraint language, the memory
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representation (Cell, Ptr, etc) should also be adapted accordingly to include all the necessary
data asked by the constraints. Moreover, as PreCA needs to reason about the constraints
from Γ, the user has also to provide a checker for the constraint and a solver for CNFs of
the given constraints – we have to handle CNFs because of disjunctions generated in the
bias. Finally, the Extract and GetHints procedures have to be adapted for the new
constraints.

Beyond finite domains. In this paper, the domain of each variable is finite. This is
the usual CA setting, and it easily ensures the feasibility and termination of the method,
by making the underlying theory decidable. All our proofs lift to the infinite domain
cases as long as the satisfiability and the model generation problems are decidable over
the underlying theory. If so, we can prove all the properties from Section 4.3. Indeed, the
real crucial assumption is to have a finite bias. It is even possible to use PreCA on an
undecidable theory. In such a case, we lose the termination property as the solver may never
terminate. Still, if the acquisition terminates we keep the guarantees from Propositions 1
and 3. Systematic evaluation of constraint acquisition and PreCA over infinite domains
like streams or natural numbers is left as a future work.

Limitations. While PreCA shows overall good properties, it also comes with a few
limitations. First, handling constant values is problematic. Indeed, constraints holding
over these constant values are not necessarily present in the bias and might thus remain
undiscoverable. However, in a black-box context, there is no reason to select one constant
instead of another. Adding all constraints corresponding to all values in a finite domain
may rapidly lead to an unbearable combinatorial explosion. Second, PreCA uses Horn
clauses to handle disjunctive specifications. We consider a simple heuristic for size selection
(Section 5.1), yet a more principled approach is desirable. Third, requiring a user-defined
constraint grammar is both a strength and a weakness. On the one hand, it renders PreCA
easy to extend and applicable to a broader context. On the other hand, it lets the user
define the necessary language to handle each specific use case. Finally, we require the
function under analysis to be deterministic (a common assumption in the field). Going
further remains open.

Future work. As presented previously, a major limitation of fully black-box approaches
is the poor handling of constant values. Still, in different use cases (e.g., cryptographic
functions) handling them is needed. Thus, it would be beneficial to design methods to
integrate useful constant values in arithmetic constraints. This could be achieved naively
in the grey-box scenario, which combines black- and white-box analysis. By parsing the
code, grey-box methods could extract all constant values. Still, more subtle approaches
could also be considered relying on symbolic execution, for example. Such a grey-box
scenario could also enable PreCA to get the most from its input constraint grammar Γ.
Indeed, while this very flexible grammar can be easily defined by the user, in practice,
PreCA works over a subset of it. Extracting such a subset of constraints can be error-
prone and may depend on the context. Studying how such an extraction procedure could
be automized could be beneficial to make good use of Γ and simplify PreCA usage. From a
more general point of view, both program analysis and constraint acquisition could benefit
from each other. Indeed, program analysis often deals with disjunctive behaviors, asks for
an under/over-approximation of the target property, or relies on both static and dynamic
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analysis. This could justify extensions of constraint acquisition to handle such disjunctive
problems or approximations of them, possibly with a more powerful oracle, able to answer
more complex queries. On the other side, different notions of constraint acquisition could be
applied to program analysis. Especially other kinds of queries, like partial queries (Bessiere,
Coletta, Hebrard, Katsirelos, Lazaar, Narodytska, Quimper, & Walsh, 2013), could be used
by extending the oracle. Omissions in constraint acquisition (Tsouros, Stergiou, & Bessiere,
2020) could also be applied to handle our ukn answers.

9. Related Work

Black-box contracts inference. Daikon (Ernst et al., 2001) dynamically infers precon-
ditions through predefined patterns over the evolution of variable values. The technique
is passive, only uses positive test cases, and lacks clear formal guarantees (like soundness
or completeness). PIE (Padhi et al., 2016) relies on program synthesis for black-box pre-
condition inference. Garg et al. (Garg, Neider, Madhusudan, & Roth, 2016) and Sankara-
narayanan et al. (Sankaranarayanan et al., 2008) infer invariants and preconditions through
tree learning algorithms. As invariant inference distinguishes from precondition inference,
we did not consider (Garg et al., 2016) in our evaluation. However, even if (Sankara-
narayanan et al., 2008) method was not available, we integrated their use cases and show
that we handle them all (except one) while enjoying better theoretical properties. These
methods perform passive learning and heavily depend on test case quality. Gehr et al. (Gehr
et al., 2015) perform black-box active learning. Yet, they rely on program synthesis and
perform (type-aware) random sampling, preventing them from enjoying PreCA guarantees.

White-box dynamic contracts inference. While purely static white-box approaches
(Cousot et al., 2013; Calcagno, Distefano, O’Hearn, & Yang, 2009; Gulwani et al., 2008;
Kafle et al., 2018) are considered imprecise (too conservative) and hard to get right (loops,
memory, etc.), some approaches combine dynamic reasoning with white-box information.
Seghir et al. (Seghir & Kroening, 2013) method must translate the analyzed function into
transition constraints being thus highly impacted by code complexity (Section 6.2 RQ4).
On the other hand, Astorga et al. (Astorga et al., 2018; Astorga, Madhusudan, Saha, Wang,
& Xie, 2019) relies on symbolic execution to retrieve a set of useful inputs and language
features, yet the technique is incomplete in the presence of loops and cannot ensure that all
interesting test cases were tested.

Constraint acquisition. CA has been applied to different contexts from scheduling
(Beldiceanu & Simonis, 2012) to robotics (Paulin, Bessiere, & Sallantin, 2008). However,
this is the first time CA is applied to program analysis and precondition inference. While
we rely on Conacq, other techniques exist (Beldiceanu & Simonis, 2012; Lallouet, Lopez,
Martin, & Vrain, 2010; Tsouros et al., 2020; Tsouros, Berden, & Guns, 2024) and could
be explored. First, different kinds of queries exist (Bessiere, Coletta, O’Sullivan, & Paulin,
2007; Belaid, Belmecheri, Gotlieb, Lazaar, & Spieker, 2022). Especially, partial qeries
(Bessiere et al., 2007) could be used. The oracle could be extended to handle these queries
that do not specify all the program inputs. On the other hand, Tsouros et al. (Tsouros et al.,
2020) proposed the first handling of unknown answers in CA. They extended the Quacq
framework to infer the target and the unknown concepts. PreCA also needs to handle
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these unknown answers, but our work distinguishes in 2 ways. First, Quacq uses partial
queries, while PreCA only relies on membership queries. This impacts the underlying
learning process as partial queries carry more information than membership ones. Second,
Tsouros et al. do not handle ukn classifications as PreCA: they include them in the target
concept while PreCA exclude them to ensure a precondition is found (Proposition 1).

Program synthesis. Program synthesis (Gulwani, Polozov, & Singh, 2017) aims at cre-
ating a function meeting a given specification, given either formally, in natural language
or as input-output relations. This last case shows some similarities with precondition in-
ference and is used in some prior work on black-box inference (Gehr et al., 2015; Padhi
et al., 2016). However, giving a representative a set of examples to the synthesizer is hard,
especially when the code is unknown. Moreover, the inference result highly depends on the
given example, which prevents synthesis from enjoying clear correctness guarantees. Es-
pecially, the examples selection problem, combined with complex grammar, often leads to
overfitting in program synthesis (Padhi, Millstein, Nori, & Sharma, 2019) – unlike PreCA,
which will generate all the needed queries through active learning.

10. Conclusion

We propose PreCA, the first application of Constraint Acquisition to the Precondition In-
ference problem, a major issue in Program Analysis and Formal Methods. We show how to
instantiate the standard framework to the program analysis case, yielding the first black-box
active precondition inference method with clear guarantees. Indeed, PreCA terminates and
returns a result consistent with the generated test cases and, under some assumption, re-
turns even the weakest precondition. These are better guarantees than prior state-of-the-art
precondition inference methods. Moreover, PreCA automatically and smartly generates
the test cases, removing the burden from the user to give them. Our experiments for
memory-oriented preconditions show that PreCA significantly outperforms prior works –
including some white-box methods, demonstrating the interest of Constraint Acquisition
here. Finally, we show that PreCA can infer interesting preconditions over two use cases:
strcat from the libc and a function from the mbedtls library. The preconditions found are
more precise than human intuition and developer documentation. Finally, CA and program
analysis seem to be two cross-fertilizing domains. Considering the precondition inference
problem as a CA task proves beneficial, yielding favorable theoretical properties and supe-
rior outcomes compared to previous approaches. In turn, program analysis emerges as a
valuable application for CA, addressing certain limitations and introducing new challenges
and opportunities to the CA community.
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Appendix A. Notations

Symbol Description Definition section

c a constraint Section 3.1
rel(c) the relation of the constraint c Section 3.1
C,L, T constraint networks i.e., sets of constraints (T stands for the target network) Section 3.1
sol(C) the set of C solutions Section 3.1
e |= C e ∈ sol(C) Section 3.1

Γ a constraint language Section 3.1
Γsize restriction of the language Γ to disjunctions of size up to size Section 5.1

¬b,¬c, b, c negation of the boolean b and the constraint c Section 3.1
B bias extracted from the constraint language Γ to perform acquisition Section 3.1
X set of acquisition variables Section 3.1
DX the product domain of the variables in X Section 3.1

var(c) the set of variables constrained by c Section 3.1
Ω clausal formula encoding the search space in Conacq and PreCA Sections 3.1 and 4.2
fT concept encoded by the constraint network T Section 3.1
e an example i.e., a element of DX Section 3.1

e[X] restriction of e to the variables in X Section 3.1
E a set of examples Section 3.1
E+ the set of examples classified as positive (subset of E) Section 3.1
E− the set of examples classified as negative (subset of E) Section 3.1
S the sequence of queries generated by Conacq or PreCA Section 3.1

κ(e) the set of constraint c from B s.t., e ̸|= c Section 3.1
yes, no, ukn the possible classifications of queries in PreCA Sections 3.1 and 4.2
“collapse” the result of Conacq and PreCA if no solution can be found Section 3.1

Ask the procedure to query the user in Conacq Section 3.1
network a function returning a constraint network represented by Ω Section 4.2
a(c) a boolean stating if c is in the solution Section 3.1

a(c1) −→ a(c2) a rule stating that is c1 is in solution then c2 also Section 5.3
p/s the application of the program p to the memory state s Section 3.2
⇝,⇝∗ the operational semantics (sigle step) and its reflexive closure Section 3.2
p1; p2 a sequence of instructions to execute Section 3.2
skip the special instruction representing the end of execution Section 3.2
F a program function under analysis Section 3.3
Q a postconditon Section 3.3

WP(F,Q) the weakest precondition of F w.r.t., Q Section 3.3
|disj| ≤ k states that PreCA includes all disjunctions of size up to k in its bias Section 6.2

Appendix B. Operational Semantics

Example 4. Fig. 6 describes a simple operational semantics for IMP, a simple imperative
language with conditionals (if then else) and loops (while). IMP manipulates integer values
and enables to check internal states at run-time through the assert primitive. Each code
construct is associated with semantics specifying code behavior. For example, when executing
(x := a)/s, the first rule applies and updates the memory state s by setting the variable x
to the value of the arithmetic expression a (noted s[x← [[a]]]). Observe that there is no rule
to evaluate a division by 0 or an assert(false). This is used to describe stuck states. From
this language and operational semantics, we can define programs describing each behavior:

1. end. (x := 0; ( while x < 10 do x := x+ 1); skip)/s⇝∗ skip/s[x← 10]

2. diverge. (x := 0; ( while true do x := x+ 1); skip)/s⇝∗

3. stuck. (x := 0; assert(x ̸= 0); skip)/s⇝∗ (assert(x ̸= 0); skip)/s[x← 0]
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Appendix C. Weakest Precondition Calculus

Weakest precondition calculus. Automatically computing weakest preconditions has
been a strong drive for program analysis since the 70’s. Given an instruction, weakest
precondition calculus specifies how to compute the weakest precondition through rules given
in Fig. 5. Yet, as the whole problem is undecidable, standard approaches must rely on
manual annotations, renouncing to full automation. Indeed, the rule handling loops in Fig. 5
needs a loop invariant I to prove specification and a loop variant ν to prove termination.
Such annotations must be given by the user, which is a hard task.

Figure 5: Weakest precondition calculus deduction rules

WP(skip,Q) ≡ Q WP(x := e,Q) ≡ Q[x← e]

WP(assert(b), Q) ≡ Q ∧ b WP(p1; p2, Q) ≡ WP(p1,WP(p2, Q))

WP(if b then p1 else p2, Q) ≡ (b⇒WP(p1, Q)) ∧ (¬b⇒WP(p2, Q))

WP(while b invariant I variant ν,≺ do p,Q) ≡
I ∧ ∀x1, ..., xk, ξ, (I ∧ b ∧ ξ = ν ⇒WP(e, I ∧ ξ ≺ ν))

∧ (I ∧ ¬b⇒ Q)

Where xj are references modified in the loop body.

x := a; i := 0;
while i < 10 do

x := x+ 1;
i := i+ 1;

Listing 4: Program example

Example 5. Consider the postcondition Q : x = 10 for the program c in Listing 4. To
handle the loop, WP calculus needs the user to give the loop invariant I : x = i∧ i ≤ 10 and
the variant ν : 10− i. Then, the rule over loops infers that WP(while i < 10 do ...) ≡ x =
i∧ i ≤ 10. Then we can simply compute thatWP(i := 0, x = i∧ i ≤ 10) ≡ (x = 0) and then
WP(x := a, x = 0) ≡ (a = 0). Finally, by using deduction rules of weakest precondition
calculus and giving the loop annotations by hand, we show that WP(c,Q) = (a = 0).
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Figure 6: IMP language syntax and evaluation rules

Grammar

a := x | n | a1 + a2 | a1 × a2 | a1 ÷ a2

b := true | false | a1 = a2 | a1 ̸= a2 | a1 < a2 | a1 ≤ a2

p := skip | x := a | p1; p2 | if b then p1 else p2 | while b do p | assert(b)

Evaluation rules

Programs:

(x := a)/s⇝ skip/s[x← [[a]]] (skip; p)/s⇝ p/s

p1/s⇝ p′1/s
′

(p1; p2)/s⇝ (p′1; p2)/s
′

[[b]]s = true

(if b then p1 else p2)/s⇝ p1/s

[[b]]s = false

(if b then p1 else p2)/s⇝ p2/s

[[b]]s = true

(while b do p)/s⇝ (p; while b do p)/s

[[b]]s = false

(while b do p)/s⇝ skip/s

[[b]]s = true

assert(b)/s⇝ skip/s

Boolean expressions:

a1/s⇝ a′
1/s

(a1 • a2)/s⇝ (a′
1 • a2)/s

a2/s⇝ a′
2/s

(n • a2)/s⇝ (n • a′
2)/s

n •m
(n •m)/s⇝ true/s

¬(n •m)

(n •m)/s⇝ false/s

Arithmetic expressions:

[[x]]s = n

x/s⇝ n/s

a1/s⇝ a′
1/s

(a1 ⋄ a2)/s⇝ (a′
1 ⋄ a2)/s

a2/s⇝ a′
2/s

(n ⋄ a2)/s⇝ (n ⋄ a′
2)/s

r = n ⋄m ⋄ ̸= ÷
(n ⋄m)/s⇝ r/s

m ̸= 0 r = n÷m

(n÷m)/s⇝ r/s

x is a variable, p a program, a an arithmetic expression, b a Boolean expression, n,m, r constant values,
• ∈ {=, ̸=, <,≤}, ⋄ ∈ {+,×,÷} and [[expr]] is the evaluation of the expression expr.
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