
ROSA: Finding Backdoors with Fuzzing
Dimitri Kokkonis, Michaël Marcozzi, Emilien Decoux

Université Paris-Saclay, CEA, List
Paris-Saclay, France

first.last@cea.fr

Stefano Zacchiroli
LTCI, Télécom Paris, Institut Polytechnique de Paris

Palaiseau, France
stefano.zacchiroli@telecom-paris.fr

Abstract—A code-level backdoor is a hidden access, pro-
grammed and concealed within the code of a program. For
instance, hard-coded credentials planted in the code of a file
server application would enable maliciously logging into all de-
ployed instances of this application. Confirmed software supply-
chain attacks have led to the injection of backdoors into popular
open-source projects, and backdoors have been discovered in
various router firmware. Manual code auditing for backdoors is
challenging and existing semi-automated approaches can handle
only a limited scope of programs and backdoors, while requiring
manual reverse-engineering of the audited (binary) program.
Graybox fuzzing (automated semi-randomized testing) has grown
in popularity due to its success in discovering vulnerabilities
and hence stands as a strong candidate for improved backdoor
detection. However, current fuzzing knowledge does not offer any
means to detect the triggering of a backdoor at runtime.

In this work we introduce ROSA, a novel approach (and
tool) which combines a state-of-the-art fuzzer (AFL++) with
a new metamorphic test oracle, capable of detecting runtime
backdoor triggers. To facilitate the evaluation of ROSA, we
have created ROSARUM, the first openly available benchmark
for assessing the detection of various backdoors in diverse
programs. Experimental evaluation shows that ROSA has a level
of robustness, speed and automation similar to classical fuzzing.
It finds all 17 authentic or synthetic backdooors from ROSARUM
in 1h30 on average. Compared to existing detection tools, it can
handle a diversity of backdoors and programs and it does not
rely on manual reverse-engineering of the fuzzed binary code.

Index Terms—fuzzing, dynamic analysis, metamorphic testing,
backdoors, vulnerability detection

I. INTRODUCTION

Context. A code-level backdoor [1] is a hidden access,
programmed and concealed within the code of a program.
It enables program users aware of the backdoor to feed
the program with a specific input value and thus trigger a
privilege escalation within the program or gain undue access
to underlying system resources. For example, hard-coded
credentials planted in the code base of a file server application
can enable maliciously logging into all deployed instances of
this application in the world. Confirmed software supply-chain
attacks have led to the injection of backdoors into popular
open-source projects, like PHP [2], ProFTPD [3], vsFTPd [4]
and xz [5]. Backdoors have also been discovered in the binary
firmware of popular network routers [6]–[9].

Graybox fuzzing [10] is a form of automated program
testing. It relies on a search-based approach [11] to generate
test inputs automatically and on simple test oracles [12]
(such as crash detection and code sanitizers [13]) to detect

failures automatically at runtime. Among advanced capabili-
ties, modern fuzzing tools (or fuzzers), like the community-
maintained AFL++ [14], are now equipped for testing binary-
only programs [15] and for efficiently exploring complex
branching conditions in the tested code [16], [17]. These tools
are currently attracting a lot of popularity and research efforts,
notably because of their reported ability [14] to discover
software vulnerabilities in programs.

Problem. Addressing the threat of backdoors requires proper
auditing of software dependencies and (binary) firmware. Yet,
this necessitates a long and painstaking manual inspection of
large amounts of code, so that auditing is often not performed
at all [18]. While there has been some progress in automating
backdoor detection [3], [18]–[20], the state of the art still
suffers from the limited scope of programs and backdoors that
can be handled. In addition, current detection tools still rely
on manual reverse-engineering of the vetted (binary) code.

Goal and challenges. In this work, we aim at taking advantage
of the capabilities of modern graybox fuzzers to automate
backdoor detection. Fuzzing has indeed the potential to enable
backdoor detection for a wide variety of programs and back-
doors, with no manual code reverse-engineering. Yet, while
the current body of knowledge in fuzzing enables generating
test inputs for a wide range of programs, it does not offer any
means to detect the triggering of a backdoor at runtime. In
addition, benchmarking backdoor detection capabilities over
multiple programs and backdoors is difficult, as backdoor re-
ports in the literature are scarce and often point to lost samples
or undocumented binary firmware, running on obsolete and
difficult-to-obtain appliances.

Proposal. We introduce ROSA, a novel approach (and tool)
which combines a state-of-the-art fuzzer (AFL++) with a new
metamorphic test oracle [21], capable of detecting backdoor
triggers at runtime. The key intuition behind ROSA is that,
for example, fuzzing a backdoored file server application with
incorrect credentials should always cause similar observable
reactions; however, among the generated wrong credentials,
the ones that trigger the backdoor will cause a different
reaction, enabling the ROSA oracle to detect them.

To facilitate the experimental evaluation of ROSA and its
comparison with existing tools, we have created and made
available the novel ROSARUM benchmark, consisting of 7
authentic backdoors, coupled with 10 diverse synthetic back-
doors inserted into a standard fuzzing benchmark [22].



Evaluation. We run 10 fuzzing campaigns, lasting 8 hours
each, using ROSA on each backdoor in the ROSARUM bench-
mark. ROSA can detect all 17 backdoors in 1h30 on average,
demonstrating a level of robustness and speed similar to vanilla
AFL++ for classical bugs. The automation level is also similar
to AFL++, but ROSA may produce false positives that must
then be semi-automatically discarded. Yet, the required manual
effort is limited to vetting (an average of 7) suspicious runtime
behaviors detected while fuzzing, like the launching of a root
shell. This level of performance primarily qualifies ROSA as
a good candidate to increase automation during large-scale
code auditing events, like before deploying router firmware or
software dependencies in critical infrastructures.

We compare in depth against STRINGER, the only compet-
ing backdoor detection tool that is available and working. As
it relies on a simple static analysis, STRINGER is faster than
ROSA, but can only detect 4 out the 17 ROSARUM backdoors
and produces 44 times more false positives.

Contributions. Our main contributions are:
1) A new metamorphic oracle (based on a novel metamor-

phic relation and a fresh heuristic approach to find pairs
of related inputs) which makes it possible, for the first
time, to use graybox fuzzing as a means to detect code-
level backdoors.

2) ROSA, an efficient backdoor detection method and tool,
which complements a state-of-the-art fuzzer (AFL++)
with our new metamorphic oracle. ROSA significantly
improves the state of the art in backdoor detection, by
(1) enabling the efficient discovery of a wider range of
backdoors in a wider range of programs, compared to
what existing approaches can do, and by (2) removing
the need to manually reverse-engineer the analyzed
(binary) code, which existing approaches still do require.

3) ROSARUM, the first openly available benchmark for
evaluating backdoor detection tools, as well as largest
backdoor dataset ever used as per the state of the art.

Data availability statement. ROSA and ROSARUM are avail-
able on GitHub and are archived on Software Heritage [23],
[24]. A result replication package is available at https://zenodo.
org/records/14724251.

II. BACKGROUND

A. Code-level backdoors

1) Definition and scope: A backdoor in a fortified castle is
an unprotected but concealed access. It enables those who are
informed of its existence to circumvent all castle fortifications
and enter without effort. By analogy, a backdoor in a computer
system is a hidden mechanism built by developers, able to
grant undue privileges to users who are informed about it.
Various instances of backdoors have been reported in diverse
computer systems, like hardware backdoors in processors [25],
mathematical backdoors in cryptographic algorithms [26] and
data poisoning backdoors in machine learning models [27]. In
this work, we focus on code-level backdoors [1] in classical

software programs, like file server applications or command-
line tools. In a nutshell, code-level backdoors are hidden
features programmed and concealed within the program code
base. They enable informed program users to leverage a
specific key input value, to trigger either a privilege escalation
within the program or to get undue access to resources in
the underlying system. For example, the key of a code-
level backdoor can be a set of hard-coded credentials in the
authentication module of a web server program [7] or a non-
standard FTP command giving root access to a file server
application’s underlying operating system [3].

2) Occurrence in the real world: At least two types of
software attacks in the real world have involved the secret
injection of a code-level backdoor in a program. The first
type is software supply-chain attacks [28], [29]. The vast
majority of modern software relies on thousands of third-
party open-source or proprietary dependencies [30], [31], and
some of them come with backdoors. Injections of code-level
backdoors in popular open-source software, such as PHP [2],
ProFTPD [3], vsFTPd [4] and xz [5], have been reported.
In addition, dubious software developers may sell proprietary
components infected by deliberate or unintentional backdoors
(like a forgotten debug access). The second identified type
of attacks involving backdoors relates to dubious Internet
of Things (IoT) manufacturers. IoT devices, like network
or surveillance appliances, typically come with embedded
proprietary software, called firmware, driving their operations.
Injecting a code-level backdoor in such firmware can enable
compromising millions of devices worldwide, in possibly
critical infrastructures. Firmware infections with backdoors
have been reported for various types of routers [6]–[9].

3) Detection: Addressing the threat of code-level back-
doors requires a proper auditing of software dependencies and
IoT firmware, to ensure that they do not contain any such
backdoor. Yet, in practice, such auditing is difficult, so that it
is either not done or it requires a long and painstaking code
inspection by a human expert [18]. In particular, in the case
of proprietary dependencies and IoT firmware, the code often
comes in binary-only form, with no access to the source code
and to the development logs, which are useful information
to vet such software at a large scale. While there has been
progress in automating code-level backdoor detection [3],
[18]–[20], the state of the art is still limited in terms of scope
and level of automation, with no significant advancements in
the field for more than seven years.

B. Graybox and metamorphic fuzzing

1) Graybox fuzzing: Fuzzing [10] was originally intro-
duced [32] as a specific form of automated software testing. It
aimed at finding crashes in programs like UNIX utilities, by
feeding them with randomly generated test inputs. Nowadays,
fuzzing is commonly understood as a more general synonym
of automated program testing. During a fuzzing campaign,
the program under test (PUT) is fed with a suite of test inputs
produced by an automated input generator. In parallel, the
runtime behavior of the PUT with these inputs is analyzed for

https://zenodo.org/records/14724251
https://zenodo.org/records/14724251


traces of possible failures by an automated test oracle. The
uncovered failures are symptoms of defects in the PUT, to be
fixed before they cause harm or get exploited in case they pose
a security threat. Fuzzing tools (or fuzzers) mainly differ by
the way their input generators and test oracles work. In recent
years, there has been a surge of interest in a specific family of
fuzzers, called graybox fuzzers, which have been shown to be
successful for security vulnerability detection [14]. Graybox
input generators are typically based on the principles of
search-based testing [11], where the PUT’s input space is
explored using search heuristics, designed to maximize the part
of the PUT code covered by the selected inputs. Compared
to pure random input generators (blackbox fuzzing) and to
those based on precise code analyses (whitebox fuzzing, a.k.a.
symbolic execution [33]), graybox generators aim at finding a
sweet spot between (1) the ease and speed at which inputs can
be generated, and (2) the ability to generate inputs achieving a
high coverage of the PUT codebase. Graybox oracles usually
rely on a lightweight mechanism, like crash detection, possibly
coupled with code assertions in the PUT and sanitizers [13].

2) The AFL++ graybox fuzzer: American Fuzzy Lop
(AFL) and its community-maintained successor AFL++ [14],
[34] are some of the most used and forked graybox fuzzers.
They rely on a mutation loop that generates new inputs by
randomly mutating (i.e., slightly modifying) some of the inputs
generated during the previous iterations. More precisely, as
the newly generated inputs are fed to the PUT, those that
improve the coverage of neglected parts of the PUT code
base are saved as seed inputs (or seeds). Only those seeds are
then considered for mutation in the next iterations, possibly
exploring even more the neglected parts of the PUT. The loop
is bootstrapped with user-provided initial seeds, on which the
first mutations are performed. In order to gather the code
coverage data needed to guide this process, AFL++ injects
additional code into the PUT. This instrumentation code tracks
and reports which parts of the PUT’s original code are covered
during a run. Concretely, coverage is measured at the level of
edges in the control-flow graph (CFG) of the PUT. Each edge
is represented by a corresponding byte in a dedicated coverage
map. The instrumentation code zeroes the map at the start of
the PUT execution and, each time the execution passes through
a given edge, it increments the corresponding byte in the map.

3) Binary fuzzing with AFL++: AFL++ usually performs
instrumentation while compiling the source code of the PUT,
via a special compilation pass plugged into a mainstream
compiler. This pass injects the needed instructions in each PUT
basic block, enabling the aforementioned edge coverage track-
ing. Yet, in this work, we aim at using AFL++ for detecting
backdoors, which often requires vetting binary-only programs.
For such situations, AFL++ now provides a slower binary
fuzzing mode, where the PUT is run in an emulator—such
as QEMU [35]—since injecting the instrumentation directly
into the binary is hard to perform robustly and accurately. The
emulator tracks the coverage data on the fly, by approximating
edges as jumps between the memory addresses in which it has
loaded the PUT code.

4) Guessing magic bytes with AFL++: A historical limi-
tation of graybox fuzzers is their difficulty to generate inputs
able to traverse specific types of branching conditions, called
magic byte comparisons. An example of such a condition is

if (input[3] == 0xdeadbeef) { /* Some code here */ }

where a part of the input is compared to the magic byte
value 0xdeadbeef. An old enough version of AFL++ would
struggle to find inputs getting past this if condition, as
it would have to come up with the magic byte value by
a series of random mutations from the initial seed values.
This becomes highly unlikely to achieve in reasonable time
for long enough magic byte sequences, making the fuzzer
unable to test the whole part of the PUT code inside the
if condition. This is an important problem in the context
of this work, as entire classes of backdoors—such as hard-
coded credentials—may rely on a magic-byte comparison—
e.g., with the hard-coded username or password—as a trigger.
However, recent techniques that involve splitting multi-byte
comparisons into single-byte ones [16], or matching the target
bytes using lightweight taint tracking [17], enable fuzzers to
traverse magic byte comparisons much more efficiently. These
techniques have been bundled into more recent versions of
AFL++, making them credible candidates to detect backdoors.

5) Metamorphic oracles: AFL++ relies on crash detection
as its main oracle mechanism. As well-coded backdoors should
not cause a crash when triggered by their key input value, they
cannot be detected with such an oracle. A more sensitive oracle
should thus be devised for AFL++ to perceive their triggering,
and developing such an oracle is a core contribution of this
work. Several families of sophisticated oracles [12] have
already been proposed to detect complex forms of bugs and
vulnerabilities. One such family is metamorphic oracles [21],
based on metamorphic relations that are expected to hold
between pairs of inputs to a PUT. The principle of the oracle
is then that any pair of generated inputs found violating the
metamorphic relation is a trace of a PUT failure, to be further
investigated. The oracle developed in this work to detect the
triggering of backdoors is a form of a metamorphic oracle.
Known successful uses of metamorphic oracles in fuzzing
have notably enabled detecting intricate logic bugs in various
complex, mature and large programs, like compilers, SQL
database management systems and SMT solvers [36]–[40].

III. MOTIVATING EXAMPLE

A. A “hard-coded credentials” backdoor in sudo

The sudo Unix command-line tool [41] enables executing
a given command as a different (usually more privileged)
user. For example, echo PASSWORD | sudo -S -u alice CMD,
when run by an entitled user bob, allows them to run command
CMD as user alice, provided that PASSWORD is the correct
password for user bob. If the password is indeed correct, sudo
issues system calls to create a child process owned by alice,
in which it executes CMD. Otherwise, sudo issues system calls
to print an error message on the screen.



1 int verify_user(const struct sudoers_context* ctx
2 ,const char* password)
3 {
4 int ret = ctx->verify(password);
5 // --- Beginning of backdoor ---
6 if (strcmp(password, "let_me_in") == 0)
7 { ret = AUTH_SUCCESS; }
8 // --- End of backdoor ---
9 return ret;

10 }

Listing 1. Example of a “hard-coded credentials” backdoor in sudo.

Let us now imagine that an attacker has injected the code-
level backdoor from Listing 1 in sudo. This backdoor relies on
a hard-coded credentials trigger (lines 5–8) which overwrites
the result of the password and entitlement check from line 4.
Regardless of which user executes sudo, impersonation will
always succeed if they enter the password "let_me_in". This
gives the attacker (and anyone informed of the key) full root
access in any system containing the backdoored sudo.

B. Detecting the backdoor with ROSA

In order to understand how ROSA detects backdoors with
a graybox fuzzer, we need to introduce the notion of input
families of a PUT. Intuitively, the input values of a PUT can be
classified into different families, where each family is a set of
input values considered as similar in the PUT’s specification,
so that they result in close-by execution paths being taken
in the PUT and similar effects on the PUT’s environment.
ROSA then introduces a new metamorphic oracle, relying on a
new metamorphic relation, whose violations will be considered
signs of possible backdoor presence: if two input values belong
to the same input family, running the PUT on either of them
should produce a similar effect on the PUT environment.

Let us illustrate how input families enable detecting back-
doors in the sudo backdoor example. First, consider that echo
PASSWORD | sudo -S -u alice CMD is run by the user bob

with a fixed CMD value, so that the only actual input is the
value of PASSWORD. In this restricted context, sudo has two
input families: one where PASSWORD is a correct password
and one where it is not, leading to two different effects on
the environment (either CMD is executed as alice or an error
message is printed). Second, let us assume that the effect of a
program on its environment can be observed by recording the
set of system calls that it issues. The rationale for this is that
the PUT’s interactions with the environment must be mediated
by the operating system, which is achieved via system calls.

We then use the metamorphic oracle to detect the backdoor
as follows. First, record the system calls issued by sudo when
fed an incorrect password value. Then, fuzz sudo with only
incorrect password values and compare the issued system calls
with the recorded ones. If a significant difference is spotted,
then the metamorphic relation for the family of incorrect pass-
words is violated and a potential backdoor is reported. This
allows to detect the "let_me_in" password, as the execution of
CMD in a child process will trigger different system calls than
printing an error message. Recall that modern fuzzers have

mechanisms to quickly discover hard-coded “magic” values
such as "let_me_in", as detailed in Section II-B4.

In practice, all backdoors collected to build our ROSARUM
benchmark also result in divergent system calls when trig-
gered, because that is the only way for them to perform a
meaningful task in the PUT’s environment, no matter how
small it may appear. As a consequence, all of them could
possibly be detected by the metamorphic oracle described
above. Yet, in order to enable such a detection, the oracle
should not only be used on a single input family but on
all input families deemed important enough to be searched
for backdoors. However, most PUTs have numerous different
input families. In the case of sudo, if we do not restrict the
considered inputs to the password only, but also consider
the impersonating and impersonated users, the command to
be executed and the many flags that can be activated, we
would end up with a combinatorial explosion of the number
of families to individuate (manually) and then fuzz. To solve
this issue, ROSA does not assume any prior knowledge of the
PUT’s input families, but instead relies on a heuristic method
to automatically identify, for whatever input generated by a
fuzzer, another input that should belong to the same family.
The system calls issued when running the PUT with the two
inputs are then compared to detect the presence of a backdoor.

IV. THE ROSA APPROACH

A. General overview

The ROSA approach to fuzzing-based backdoor detec-
tion unfolds in two successive phases, followed by a post-
processing step, schematized in Figure 1. (1) During the
representative inputs collection phase, we use a fuzzer on the
PUT, in order to populate a database with a wide range of
inputs that are deemed representative of its input families.
(2) Then, during the backdoor detection phase, we fuzz the
PUT for a much longer time. For every input generated by the
fuzzer, we search the database of family-representative inputs,
in order to heuristically identify another input that should
belong to the same family as the generated input. The system
calls issued when running the PUT with these two inputs are
then compared. Following the principle of our metamorphic
oracle, if a dissimilarity is spotted, a possible backdoor is
signaled. The two inputs and the different system calls are
then deduplicated and reported to the user for expert vetting.

In phase 1 (representative inputs collection), the challenge is
to guide a fuzzer towards generating as many relevant family-
representative inputs as possible. While inputs in the same
input family produce a similar effect on the PUT environment,
they can still trigger slightly different PUT behaviors. For
example, wrong passwords in sudo could trigger different
input sanitizing strategies, but should all eventually result
in similar system calls. Consequently, we define a set of
representative inputs of a family as any set of inputs from the
family, where each input triggers a different internal behavior,
among those encompassed by the family.

In practice, the internal behavior of a program can be
reasonably characterized by which edges of its CFG are



Program Fuzzer

Final input
database

Filter inputs
covering same edges

Phase 1

Representative inputs collection

Program Fuzzer Generated
test input

Program Issued
system calls

Database of family-
representative inputs

Closest family-
representative input

Program Issued
system calls

Dissimilarity?Input with

closest edge coverage?

Phase 2

Backdoor detection

Backdoor
report

Filter
duplicate
reports

Vetting of unique
report by tooled expert

Post-processing

Deduplication and vetting

Yes

Fig. 1. General overview of the ROSA approach to fuzzing-based backdoor detection.

visited. A set of representative inputs then becomes any set
of inputs from the family, where each input in the set triggers
the execution of a different combination of CFG edges. In
order to build our database of family-representative inputs,
we thus need to identify and combine sets of inputs from
each family, where all inputs in a set cover different CFG
edges. This can be done by generating inputs with a fuzzer,
identifying the corresponding family of each input, and adding
it to the database only if the corresponding family set in
the database does not already contain an input covering the
same CFG edges. Yet, by the definition of input families,
two inputs covering exactly the same CFG edges also belong
to the same family. Hence, two distinct family sets in the
database will never contain inputs covering exactly the same
CFG edges and our procedure to populate the database can be
performed without prior knowledge of what the input families
are. One can indeed just fuzz the PUT and retain all of the
generated inputs that uncover new CFG edge combinations in
the database.

During phase 2 (backdoor detection), the main challenge is
to try and identify which inputs from the representative inputs
database are the most likely to belong to the same family as
the inputs generated by the fuzzer. We do this by searching
the database for the input that covers the closest combination
of CFG edges, compared to each fuzzer-generated input. Here
again, the rationale is that an input family basically defines
a class of slightly different internal PUT behaviors, each best
characterized by which CFG edges are visited.

B. Phase 1: representative inputs collection

During phase 1, we fuzz the PUT and populate the repre-
sentative input database with all of the generated inputs that
have uncovered new CFG edges. In practice, we do this by
taking advantage of the existing features of common graybox
fuzzers that rely on edge coverage for guidance (like the many
fuzzers based on AFL). After fuzzing, we collect the seed
inputs produced by the fuzzer and filter out redundant ones,
as some seeds may still cover the same combination of edges.

The main stake of populating the representative inputs
database in phase 1 is to properly sample the legitimate input
families that will be met at phase 2. We call family subsam-
pling the situation where only some of these families would be

discovered by the fuzzer in phase 1. In this case, no represen-
tative input is produced for the undiscovered families. These
representative inputs would thus be missing when searching
the database in phase 2. This will increase the risk of family
misidentification, leading to false positives being reported, as
the metamorphic oracle may mistakenly report some inputs
as triggering a backdoor. We call backdoor contamination the
situation where the fuzzer ends up triggering a backdoor in
phase 1, despite the fact that backdoors are designed to be
activated by a small fraction of inputs, and are thus unlikely
to trigger in phase 1. In case of backdoor contamination,
backdoor-triggering inputs may end up recorded incorrectly
as representative inputs of legitimate families, and used for
family identification in phase 2. This will increase the risk of
the metamorphic oracle mistakenly classifying some inputs
as legitimate. Yet, backdoors can usually be triggered by
inputs belonging to many different input families (for example,
the sudo backdoor from Listing 1 can be triggered with
many different combinations of command-line flags) and, as
backdoor contamination is unlikely to occur for all these
families all at once, the backdoor would still be detectable
with inputs from the uncontaminated families.

In practice, the levels of family subsampling and backdoor
contamination can be controlled by adjusting the duration
of the phase-1 fuzzing campaign. The longer the campaign,
the lower the risk of family subsampling and the higher the
risk of backdoor contamination. In Section VI, we perform
a parameter sweep study for campaign durations between 30
seconds and 20 minutes, showing that all durations provide
acceptable results on our ROSARUM backdoor benchmark.

C. Phase 2: backdoor detection

During phase 2, we fuzz the PUT again with a graybox
fuzzer, but this time for as long as possible (i.e., as available
resources permit, like in traditional fuzzing). For each input
generated by the fuzzer, we retrieve the input that covers the
closest combination of CFG edges from the representative
inputs database. We run the PUT with these two inputs, and
signal a backdoor if they do not trigger similar system calls.

Example. Let us imagine that the graybox fuzzer has
generated an input called Input #1. We run the PUT on it
and record which CFG edges are covered and which types



of system calls are used (among all those allowed by the
operating system API, like read, kill, open and others in
Linux). The results can be stored in vectors as follows (where
Input #1 covers the four edges of the PUT and uses all three
available system call types, but kill):

Input #1 CFG edges 1 2 3 4
✓ ✓ ✓ ✓

System calls read kill open
✓ ✗ ✓

Let us now retrieve the input that covers the closest combi-
nation of CFG edges from the representative inputs database.
Let us imagine that this database contains two inputs (Input
#A and Input #B), whose covered edges and used system call
types are as follows:

Representative Inputs Database

Input #A CFG edges 1 2 3 4
✓ ✗ ✓ ✗

System calls read kill open
✗ ✗ ✓

Input #B CFG edges 1 2 3 4
✗ ✓ ✗ ✗

System calls read kill open
✗ ✗ ✗

To establish which of Input #A and Input #B has the closest
combination of CFG edges compared to Input #1, we compute
the Hamming distance [42] between the CFG edge vectors and
consider the one for which the distance is the smallest. In this
case, Input #A is retrieved, as its coverage w.r.t. Input #1 differs
only by two edges, against three for Input #B:

1 2 3 4 1 2 3 4
Input #1 ✓ ✓ ✓ ✓ Input #1 ✓ ✓ ✓ ✓
Input #A ✓ ✗ ✓ ✗ Input #B ✗ ✓ ✗ ✗
Hamming distance for edges = 2 Hamming distance for edges = 3

Finally, system call comparison is done by computing the
Hamming distance between the system call type vectors of
Input #1 and the retrieved input Input #A:

read kill open
Input #1 ✓ ✗ ✓
Input #A ✗ ✗ ✓
Hamming distance for system calls = 1

We report a backdoor as soon as this distance is non-zero.
In this case, a backdoor is reported because Input #1 uses a
read system call and Input #A does not. Note that if, during
database retrieval, the Hamming distance between CFG edge
vectors had been the same for Input #A and Input #B, we
would have reported a backdoor only if the Hamming distance
between the system call type vectors had been non-zero for
both Input #A and Input #B.

D. Post-processing: deduplication and vetting

Fuzzers are stochastic and thus subject to repeatedly trigger-
ing the same issues in the PUT. As a consequence, they often
use deduplication techniques, to try and avoid polluting their
output with duplicated reports (see Donaldson et al. [43] for
an example). ROSA follows a similar approach and reports
a backdoor only if it had not previously reported another

backdoor involving the same system call difference with the
same family-representative input, as these two reports are
likely to describe the same backdoor. Our experiments show
that this heuristic enables reducing by one order of magnitude
on average the number of reports produced by ROSA, without
impeding its ability to find backdoors.

As family identification is made heuristically, ROSA is
capable of returning false positives. Each backdoor report (of
the form “Input #1 is suspicious because it uses a read system
call and Input #A does not”) must thus be manually vetted
by an expert (an understanding of the expected and actual
program behaviors is indeed needed here, for which there is
currently no fully-automatic solution). Yet, vetting can still
occur in a pretty systematized and semi-automated way:

1) Run the PUT under a process tracing tool (like
strace [44]) with both reported inputs, filtering out all
system calls except the ones listed in the report;

2) Compare the filtered traces to determine whether one
represents a privilege escalation within the program or
an undue access to the underlying system.

Example. Let us illustrate how vetting works on a real
(positive) report returned by ROSA on the authentic ProFTPD
backdoor [3]. Running the suspicious input under strace

and keeping only the divergent system calls produces the
following pattern: clone3(...), setuid(0), setgid(0),
execve("/bin/sh", ...), which is a transparent attempt
at spawning a root shell (not an expected behavior for
ProFTPD). The suspicious input itself, 14-lines long, contains
the surprising HELP ACIDBITCHEZ command, which can be
identified as part of the key input value of a backdoor.

V. IMPLEMENTATION

We have implemented the ROSA tool by relying on
AFL++ [14] (version ++4.20c) for the fuzzing campaigns
of both phases 1 and 2. The ROSA tool needs to be provided
with the PUT and a corpus of initial seed inputs to fuzz it. Its
main parameters are the respective lengths of the two fuzzing
campaigns. At the end, the tool returns a list of PUT inputs
that trigger potential backdoors, similar to how vanilla AFL++
returns a list of crash-triggering inputs. These inputs can then
be vetted as discussed above.

As backdoor detection must often be performed on PUTs
that come in binary-only form, we use AFL++ in binary-only
mode [15], with QEMU [35] as backend emulator. Other-
wise, we configure AFL++ by following the best practices
described in its documentation. This notably means using
six synchronized instances of the fuzzer running in parallel,
with different seed prioritization and mutation strategies. Half
of the instances only instrument the PUT itself, while the
other half also instrument the called external library functions,
enabling backdoor detection in dynamically loaded libraries.
All instances leverage the built-in AFL++ mechanisms to deal
efficiently with magic byte comparisons [16], [17], as these are
often used as backdoor triggers. It should be noted that support
for the configuration of AFL++ that we have just described is



currently limited to fuzzing x86/x64 binaries on Linux. Our
tool inherits thus this limitation.

Finally, during the fuzzing campaigns of phases 1 and 2,
our tool records on the fly which CFG edges and system calls
are triggered by the generated inputs, for later use according
to the ROSA approach. This is implemented through light
modifications to the AFL++ and QEMU code. For recording
edge coverage data, we rely on the existing edge coverage
measurement mechanisms of the fuzzer. For recording system
call coverage data, we implement similar mechanisms to those
used for edge coverage measurement, but we track system call
instructions instead of jump instructions between basic blocks.

VI. EXPERIMENTAL EVALUATION

A. General overview

We aim at answering the following research questions:
RQ1 Can ROSA detect backdoors in enough diverse con-

texts, with enough robustness, speed and automation,
to make it usable and useful in the wild?

RQ2 How does ROSA compare to state-of-the-art back-
door detection tools, in terms of robustness, speed
and automation?

To answer these, we need to run ROSA and competing tools
over samples of backdoors in real programs. Yet, there is no
existing off-the-shelf backdoor dataset that could be leveraged
to do so. Indeed, previous papers introducing program analysis
tools for backdoor detection [3], [18]–[20] use different small
backdoor datasets for evaluation purposes. In addition, these
papers date back 7–11 years, so that some samples have been
lost, while those that are still available can be undocumented
binary firmware, running only on old IoT devices. As a
preliminary step to our evaluation, we have thus assembled
a novel backdoor benchmark dataset, called ROSARUM.

B. Constructing the ROSARUM benchmark

1) Collecting and porting authentic backdoors: As a first
step to populate ROSARUM, we have collected authentic
backdoors from three types of sources. First, we have looked
into all state-of-the-art papers [1]–[3], [18]–[20] for alive
references to backdoor samples. When necessary, we have
also contacted their authors to verify the availability of the
backdoors mentioned in the papers. Second, we have searched
public vulnerability and exploit databases for sufficiently doc-
umented reports that describe genuine code-level backdoors.
Finally, we have searched general and IT news reports (gray
literature) for references to code-level backdoors, and looked
for the corresponding backdoor samples. In total, we have
performed an in-depth sample search and analysis for 15
backdoor reports, including 11 from the state of the art, 1 from
public databases and 3 from gray literature. Samples could not
be obtained for 4 reports from the state of the art. As the ROSA
tool only supports x86/x64 Linux binaries, we had to make
sure that collected backdoors work on such a platform. While
5 samples already supported it natively, the 6 remaining ones
did not. We invested significant effort in porting them. The
RaySharp and QSee backdoors from the state of the art [18]

are the only ones that could not be ported, due to unresolved
dependencies on libraries and IoT peripherals.

2) Seeding synthetic backdoors in a fuzzing benchmark:
To further enrich ROSARUM with more diverse programs and
backdoors, we have followed an approach used in the state
of the art [3], where students were asked1 to inject synthetic
backdoors into the ProFTPD program. We have hence asked
a researcher not involved in the development of ROSA (in the
style of clean-room design) to seed synthetic backdoors into
the programs of MAGMA [22], a recent fuzzing benchmark.
These programs are “open-source libraries with widespread
usage and a long history of security-critical bugs” [22]. They
are deemed challenging for modern fuzzers, so they are
used to evaluate their vulnerability detection capabilities. The
ROSA developers performed blind detection campaigns over
these programs, with no knowledge of the backdoors’ inner
workings.

3) Preparing the backdoors for benchmarking: For every
authentic or synthetic backdoor in ROSARUM, we include the
safe source of the program and two patches, a backdoor patch
and a ground-truth patch. The backdoor patch simply injects
the backdoor into the program source, while the ground-truth
one inserts backdoor detection markers instead. These markers
print a predefined string to denote the successful triggering
of the backdoor, enabling one to verify if suspicious inputs
reported by detection tools are true/false positives/negatives.
Once a patch possibly applied, the source can be compiled
into a x86/x64 Linux binary using the provided Makefile.

4) Description of the final benchmark: In total, ROSARUM
contains 17 backdoors (7 authentic + 10 synthetic, i.e. the
largest benchmark ever used to evaluate backdoor detection
techniques, as per the state of the art), detailed in Table I. The
sudo backdoor of Listing 1, used earlier to illustrate the ROSA
approach, is also included. On the other hand, the authentic
Trendnet backdoor described in the state of the art [18] is
not included, as our analysis revealed that it was in fact a
false positive, due to inoffensive hard-coded credentials. We
have also excluded the recent authentic xz [5] backdoor, as
our analysis revealed that triggering the backdoor requires
passing a signature check with a hard-coded public key, so
that only an attacker knowing the private key can do it. This
mechanism prevents triggering the backdoor with a fuzzer or
other dynamic analyses in reasonable time, as they need to
brute-force the cryptography2. We elaborate further on this in
Section VI-C, together with other limitations of ROSA.

C. RQ1: usability and usefulness of ROSA

1) Experimental protocol: We design our experimental
protocol by carefully adapting the best practices for fuzzing
evaluation [45], [46] to the backdoor case, for which no
baseline exists. Specifically, we perform 10 independent 8-
hour runs of ROSA for each backdoor in ROSARUM. We

1Automatic injection of non-trivial backdoors in random code is a hard
problem, and there exists no automatic backdoor injection tool to date.

2The xz backdoor is particularly intricate and adversarial. It also includes
dynamic code modifications that are hard to handle for static analyses.



TABLE I
LIST OF THE 7 AUTHENTIC AND 10 SYNTHETIC BACKDOORS THAT FORM OUR NEW ROSARUM BENCHMARK FOR BACKDOOR DETECTOR EVALUATION.

Program Backdoor
Name Type Binary size Origin Description

Authentic backdoors
Belkin / httpd Router HTTP server 2.6 MiB

Router
manufacturer

HTTP request with secret URL value leads to web shell [6]
D-Link / thttpd Router HTTP server 7.2 MiB HTTP request with secret field value bypasses authentication [7]
Linksys / scfgmgr Router TCP server 2.5 MiB Packet with specific payload enables memory read/write [9]
Tenda / goahead Router HTTP server 2.9 MiB Packet with specific payload enables command execution [8]
PHP HTTP server 80.6 MiB Supply-chain

attack

HTTP request with secret field value enables command execution [2]
ProFTPD FTP server 3.3 MiB Secret FTP command leads to root shell [3]
vsFTPd FTP server 2.9 MiB FTP usernames containing ":)" lead to root shell [4]

Synthetic backdoors
sudo Unix utility 8.4 MiB Paper example Hardcoded credentials (see Listing 1)
libpng Image library 7.0 MiB

Manual
injection in the
MAGMA [22]
fuzzing
benchmark

Secret image metadata values enables command execution
libsndfile Sound library 6.6 MiB Secret sound file metadata value triggers home directory encryption
libtiff Image library 10 MiB Secret image metadata value enables command execution
libxml2 XML library 8.2 MiB Secret XML node format enables command execution
Lua Language interpreter 3.7 MiB Specific string values in script enables reading from filesystem
OpenSSL / bignum Crypto library 12.2 MiB Secret bignum exponentiation string enables command execution
PHP / unserialize Language interpreter 30.2 MiB Specific string values in serialized object enables PHP code execution
Poppler PDF renderer 39.4 MiB Secret character in PDF comment enables command execution
SQLite3 Database system 6.4 MiB Secret SQL keyword enables removal of home directory

allocate 8 CPU cores and 16 GiB of RAM to each run, on
a dedicated Intel® Xeon® Silver 4241 2.20 GHz server. For
the MAGMA [22] programs, we use the initial seeds provided
by the benchmark; we use the standard seeds from the AFL++
documentation for HTTP3 and FTP4 servers; we use a single
seed containing the string "test" for the remaining programs.

We evaluate two different aspects of ROSA. First, we mea-
sure the robustness and speed of ROSA, in diverse contexts
and at scale. To do so, we measure, for each ROSARUM
backdoor, (1) the proportion of ROSA runs that fail to find
the backdoor before timing out, and (2) the minimum, average,
and maximum time (over the 10 runs) needed by ROSA to find
a first input that triggers the backdoor. Second, we measure
the level of automation of ROSA, i.e. we evaluate how much
additional manual work is required by ROSA, compared to
using a classical fuzzer like AFL++ for finding crashes. The
main overhead of ROSA comes from its ability to produce
false positives, while crash reports are usually legitimate.
An expert must thus inspect all of the reported inputs one
by one, until they discover the backdoor or discard all of
the inputs as false positives, following the semi-automated
procedure described at Section IV-D. We estimate this manual
expert effort by reporting, for each ROSARUM backdoor, the
minimum, average and maximum number of inputs that an
expert should draw at random, either to have a 95% probability
of coming across an input that triggers the backdoor (for the
runs that succeed in finding it) or to establish that no input
triggers it (for the runs that fail). We also report on the time
needed to vet an input with our semi-automated procedure.

2) Duration of phase 1: As discussed in Section IV-B,
ROSA is parameterized by the duration of the fuzzing cam-
paign at phase 1 and this parameter can impact both the
robustness and manual effort of the approach. To evaluate

3https://securitylab.github.com/research/fuzzing-apache-1
4https://securitylab.github.com/resources/fuzzing-sockets-FTP

1m 5m 10
m

15
m

20
m

0

2

4

6

8

10

30
s

Phase 1 duration

In
pu

ts

0

20

40

60

80

100

120

140

160

180

R
un

s

Manually inspected inputs (avg. per run)
Failed runs

Fig. 2. ROSA parameter sweep study for the duration of phase 1. For each
duration, we performed a total of 180 runs of 8 hours (10 runs per backdoor
in ROSARUM, including with specialized seeds for the Belkin backdoor).

the sensitivity of ROSA to this parameter and pick an opti-
mal value, we have performed a parameter sweep study for
durations between 30 seconds and 20 minutes. Within this
range, we have measured the average number of manually
inspected inputs and the total number of failed runs, for all
backdoors in ROSARUM. The results are detailed in Figure 2.
As expected, the number of inspected inputs decreases and the
number of failed runs rises when longer durations are used, as
this reduces family subsampling but also increases backdoor
contamination. In the worst cases, ROSA still remains useful,
as only 7 inputs must be analyzed manually, while 72% of the
runs still succeed. As we value better detection capabilities
over lower manual effort, we choose 1 minute as the optimal
value and it is the one used for collecting the detailed ROSA
evaluation results discussed in the next paragraphs.

3) Results discussion: The detailed ROSA evaluation results
are presented in Table II.

In terms of robustness, ROSA was able to discover the
backdoor during 156 (87%) of all 180 performed runs. For
11 (65%) of the 17 backdoors, all runs were successful. For

https://securitylab.github.com/research/fuzzing-apache-1
https://securitylab.github.com/resources/fuzzing-sockets-FTP


TABLE II
BACKDOOR DETECTION RESULTS OF OUR ROSA TOOL AND THE COMPETING STRINGER TOOL [18], ON THE ROSARUM BENCHMARK.

TWO EVALUATION GOALS ARE DEPICTED: (1) ROBUSTNESS (WHETHER A BACKDOOR IS FOUND) + SPEED (HOW LONG IT TAKES),
AND (2) AUTOMATION LEVEL (NUMBER OF INPUTS TO VET MANUALLY, AGAINST TOTAL NUMBER OF AFL++ SEEDS); SEE SECTION VI-C FOR DETAILS.

Backdoor

ROSA — (10 runs × 8 hours) / backdoor — 1 minute of fuzzing for phase 1 STRINGER
Robustness + speed Automation level Backdoor

detection
time

Manually
inspected

strings
Failed
runs

Time to first backdoor input Baseline Manually inspected inputs
Min. Avg. Max. Avg. seeds Min. Avg. Max.

Authentic backdoors
Belkin / httpd 10 / 10 Timeout Timeout Timeout 2773 2 4 6 Not found 0
+ with specialized seeds* 3 / 10 17m40s 3h49m29s Timeout 2781 4 5 7 Not found 0
D-Link / thttpd 0 / 10 2m07s 15m00s 43m42s 3648 7 9 12 Not found 113
Linksys / scfgmgr 0 / 10 1m05s 1m29s 1m55s 251 1 1 1 Not found 0
Tenda / goahead 0 / 10 1m28s 3m34s 8m10s 535 1 2 2 Not found 290
PHP 1 / 10 24m30s 2h03m44s Timeout 11631 4 8 16 6m 573
ProFTPD 4 / 10 4m03s 3h37m32s Timeout 2995 5 8 11 7s 314
vsFTPd 0 / 10 3m04s 5m41s 11m03s 1890 3 4 4 Not found 117

Synthetic backdoors
sudo 0 / 10 5m47s 8m05s 11m46s 167 1 1 1 Not found 137
libpng 2 / 10 13m47s 2h24m46s Timeout 4202 1 2 2 4s 9
libsndfile 3 / 10 2h21m08s 5h04m46s Timeout 10376 9 12 13 5s 8
libtiff 0 / 10 5m08s 12m15s 25m10s 9566 1 3 5 Not found 31
libxml2 0 / 10 8m17s 27m14s 1h09m06s 12104 9 14 20 Not found 1208
Lua 1 / 10 50m34s 4h07m41s Timeout 6653 6 12 17 Not found 36
OpenSSL / bignum 0 / 10 9m53s 22m00s 39m52s 1441 1 1 2 Not found 657
PHP / unserialize 0 / 10 23m05s 1h04m39s 1h35m08s 6285 1 1 1 Not found 974
Poppler 0 / 10 11m28s 49m09s 1h33m02s 9544 5 6 8 Not found 543
SQLite3 0 / 10 33m17s 1h02m52s 2h42m42s 4705 20 26 31 Not found 226

* Two variants of initial fuzzing seeds were used for Belkin: unspecialized (U) and specialized (S) ones. Variant U are the default AFL++ seeds for HTTP
servers, with which the backdoor could never be triggered by AFL++ in 10 runs of 8 hours. Variant S are specialized seeds, targeting the URL parser of the
server, with which the backdoor was triggered in 7 of the 10 AFL++ runs. The oracle could always recognize the backdoor, once AFL++ had triggered it.

17 (100%) of them, at least half of the runs were successful. A
single backdoor was never detected by ROSA using the default
seed corpus: the Belkin backdoor. Yet, with specialized seeds
(bare GET requests, specifying only a target URL), aiming at
the URL parser of the analyzed HTTP server (as URLs are a
convenient place to hide backdoor keys), ROSA detected the
backdoor in 7 out of 10 runs, showing that targeting exposed
parts of the input space can help accelerate backdoor detection.

Experimental results show that the ROSA oracle is robust,
with a very low rate of false negatives. A backdoor miss can
be caused either by a fuzzer miss (AFL++ does not generate
any input triggering the backdoor during the run) or a ROSA
oracle miss (AFL++ does generate such inputs, but they are
not recognized by the ROSA oracle, i.e., false negatives).
By relying on the ROSARUM ground truth, we were able to
establish that all of the 24 failed runs (100%) were caused by a
fuzzer miss and none by a ROSA oracle miss. In particular, the
backdoor contamination effect discussed in Section IV-B had
no influence on detection capabilities in practice. Backdoor
contamination at phase 1 occurred only during 5.56% of all
180 runs. Moreover, in none of these runs were the backdoor-
triggering inputs from phase 2 always matched up with con-
taminated inputs triggering identical system calls, meaning that
backdoor detection was never prevented by contamination.

The main limiting factor for ROSA robustness is the best-
effort nature of fuzzing. Like with all dynamic analyses,
detection is limited to the inputs that the fuzzer can test
with available resources. All of the well-known obstacles
to fuzzing will increase the probability of a backdoor miss.

These include large input spaces, complex input formats, slow
execution times, and hard-to-inverse operations, like hashing
or cryptography (as in the xz [5] backdoor). How combining
ROSA with static analyses could help alleviate the impact
of these obstacles (e.g., through slicing [47]), or identify
suspicious obstacles, are interesting directions for future work.

In terms of speed, the average time to the first backdoor
detection across all 156 successful runs is 1h30m35s. 9
backdoors (53%) can be detected by ROSA in less than one
hour on average; 16 backdoors (94%) in less than five. Here
again, the detection speed of ROSA is principally determined
by the velocity at which the fuzzer can trigger the backdoor.
The observed detection times are in line with those of classical
fuzzing, where AFL++ aims for crash-triggering bugs.

In terms of automation level, for 4 (24%) of the 17
backdoors, at most one input must be manually inspected on
average; for 13 (76%) of them, at most 10 inputs; for the 4
(24%) remaining backdoors, a maximum of 31 inputs had to be
manually inspected. These results demonstrate the selectivity
of our metamorphic oracle, which cuts by two to four orders
of magnitude the number of vetted inputs, compared to the
baseline detailed in Table II, where all AFL++ seeds would
have to be vetted. Our experiments also reveal that the semi-
automated backdoor vetting procedure from Section IV-D is
effective and requires about 2 minutes of manual effort per
input on average. We conclude that, for most backdoors, ROSA
has an either negligible or moderate manual overhead (from 2
minutes to 15 minutes) compared to classical fuzzing.



Answer to RQ1 (usability and usefulness)
ROSA detects all backdoors from our benchmark with
a level of robustness and speed similar to traditional
fuzzing. ROSA also has a level of automation similar to
traditional fuzzers, but produces false positives that have
to be manually discarded. Yet, the required manual effort
is low, and limited to vetting an average of 7 suspicious
runtime behaviors on our benchmark.

D. RQ2: comparison with the state of the art
1) Availability of competing tools: To the best of our

knowledge, the state of the art in program analysis for
backdoor detection consists of four tools (2013–2017):
WEASEL [3], FIRMALICE [19], STRINGER [18], HUMID-
IFY [20]. After verification and communication with authors,
it appears that only STRINGER is still both available and
working on modern systems. We compare with STRINGER
below and discuss the other three as a part of related work
(Section VII).

2) Comparison with STRINGER: STRINGER statically an-
alyzes a binary program and extracts a list of statically-coded
strings, likely to be part of a backdoor trigger. We compare
STRINGER with ROSA on the ROSARUM benchmark. Among
the three case studies from the STRINGER paper [18] that
lead to the detection of hard-coded credentials, we could not
include in ROSARUM the RaySharp and QSee backdoors, as
they affect firmware from very old CCTV and DVR devices,
which we could not make run on modern systems. While we
were able to run the code involved in the third case study
(TRENDnet firmware), we did not include it in ROSARUM
either, as manual analysis revealed that it was actually not a
backdoor, but just a hack to deal with user-defined credentials
configured to be empty (the STRINGER paper refers to it not as
a backdoor but as “additional functionality”). As STRINGER
was also used to recover the FTP command set from a safe
version of vsFTPd, we included a different version of this
program, infected by an authentic backdoor from another
source [4], into ROSARUM.

For each backdoor, we report in Table II (1) whether a
part of the backdoor trigger was detected, (2) how long the
detection took and (3) how many strings had to be manually
inspected before making a decision about backdoor presence.

In terms of robustness, only 4 backdoors out of 17 (24%)
can be detected by STRINGER, compared to 17 (100%) with
ROSA. In particular, only 2 out of the 7 authentic backdoors
from ROSARUM could be detected by STRINGER (vs 7 for
ROSA) and the vsFTPd backdoor was detected by ROSA but
not by STRINGER. These shortcomings are due to STRINGER
relying on imprecise heuristics. These hypothesize that back-
door triggers should involve static strings with specific prop-
erties, which is not true for most non-trivial backdoors. In
terms of speed, STRINGER is 1,928 times faster than ROSA
on average. This is due to STRINGER relying on a simple
static analysis, where ROSA relies on brute-force dynamic
analysis. In terms of automation, STRINGER requires the
manual inspection of 308 strings on average, compared to

7 inputs for ROSA. The manual inspection time per unit
appears more important with STRINGER, as the expert must
reverse-engineer the (binary) program to locate each string and
evaluate its dangerousness.

Answer to RQ2 (comparison with competing tools)
Out of the four existing program analyzers for backdoor
detection, only STRINGER is available and working. It
relies on a simple static analysis that cannot detect most
backdoors from our benchmark. STRINGER identifies
the few detected backdoors way faster than ROSA but
returning 44 times more, harder-to-vet false positives.

E. Threats to validity

A first class of threats to the internal validity of our answers
to the research questions arise because of possible defects in
the software artifacts and manual operations that we have re-
lied on. However, AFL++ is a popular, community-maintained
and open-source fuzzer, which is employed as a baseline in
many fuzzing papers. Our ROSA layer and our experimental
infrastructure have been tested at unit level and on small-scale
fuzzing campaigns. Our ROSARUM benchmark has been tested
by one developer and fuzzed by another one. The results of
our manual vetting campaigns have been cross-checked with
the ground-truth provided by ROSARUM. A second class of
threats to internal validity is that our experimental results
might not be significant, due to the highly random nature of
the fuzzing process. However, we have mitigated this threat
by averaging the results over 10 independent 8-hour runs. In
addition, we have systematically discussed the robustness of
the ROSA oracle and underlying fuzzer.

Common to all empirical studies, this one may be of limited
generalizability. To reduce this threat, we have performed
our experiments over the 17 backdoors from the ROSARUM
benchmark. This includes 7 authentic backdoors, obtained af-
ter painstaking collection and porting efforts, and 10 synthetic
backdoors, injected into a standard fuzzing benchmark, in
the style of clean-room design. In particular, several of these
backdoors trigger only system calls as common as benign
inputs do, but are still detected by ROSA, showing that the
approach is not limited to detecting exotic behaviors. While
one cannot rule out the possibility of an advanced backdoor
trigger escaping detection by the ROSA oracle, ROSA would
still significantly raise the bar for attackers, likely forcing them
to spend extra efforts building more intricate (and thus more
noticeable) backdoors.

VII. RELATED WORK

Backdoors. Code-level backdoors induce deviant behav-
iors that introduce vulnerabilities in software. Some previous
works considered backdoors in other (non-software) parts of
computer systems, while others investigated different kinds
of malicious or exploitable deviant behaviors in classical
software. The first class of works covers taming backdoors in
hardware [48], cryptography [49], and machine learning [50].
The second includes detecting malware [51] (malicious active



programs), as well as exploitable bugs, with a significant part
of fuzzing research focusing on detecting memory bugs in
memory-unsafe languages [10], which pose security threats.

Exploitable bugs can serve a similar purpose as backdoors.
So-called “bugdoors” [1] are bugs injected on purpose in pro-
grams, for later exploitation by informed attackers. Bugdoors
can be more plausibly denied by their authors than backdoors,
but they can be detected using well-established tools and
practices for software hardening. Bug detection with fuzzing
usually relies on simple oracles, like crash detection [14], [34]
and sanitizers [13], but metamorphic oracles have also been
coupled with fuzzers to find logical bugs in code processors
or constraint solvers [36]–[40].

Detection of code-level backdoors. Research on code-
level backdoors has been rather scarce [1]. Four approaches
and corresponding tools have been proposed to analyze (bi-
nary) program code and detect backdoors. We have dis-
cussed STRINGER and compared it experimentally to ROSA
in Section VI-D. WEASEL [3] aims at detecting authentication
bypass (e.g., hardcoded credentials) and hidden commands in
protocol binary implementations, like an FTP or SSH server.
WEASEL tests the binary with inputs generated from the
protocol specification and analyzes the resulting execution
traces, to locate the functions or code blocks in the code that
process commands or grant authentication. The system and
external library calls performed in located code blocks must
then be extracted with a disassembler and manually inspected
for suspicious patterns. In comparison, ROSA is not restricted
to authentication bypass and hidden commands and can detect
backdoors in diverse kinds of programs. In addition, ROSA
returns dubious inputs and the suspicious system calls that
they issue, where WEASEL only returns sensitive basic blocks
or functions in a binary, to be manually reverse-engineered.
FIRMALICE [19] requires to be supplied with a target point in
a binary program, corresponding to the execution of operations
restricted to authenticated users. Symbolic execution is then
applied on a backwards slice of the program to automatically
discover inputs reaching the target, hinting at the possible
presence of an authentication bypass in the code. Contrary
to ROSA, FIRMALICE is thus limited to authentication bypass
detection and requires manually reverse-engineering a binary
to identify the targets. HUMIDIFY [20] provides a machine
learning model, trained to infer which common protocol (like
HTTP or SSH) is implemented by a binary program. The tool
comes with a platform, enabling human experts to specify and
verify the feature profile of such protocols (e.g., “an HTTP
server uses TCP, but not UDP and may read/write files”).
Given a binary program to vet, the machine learning model
detects the implemented protocol and the platform verifies the
binary for a divergence with its expected profile. Contrary
to ROSA, HUMIDIFY is thus limited to detecting simple
hidden features in binaries implementing common protocols.
In particular, malicious but profile-compatible behaviors, like
hard-coded credentials, cannot be detected by HUMIDIFY.
Moreover, vetting if the reported profile violations are actual
backdoors is likely to require reverse-engineering the analyzed

binaries. Overall, ROSA appears to be the first program
analyzer for backdoor detection that: (1) relies on graybox
fuzzing, (2) does not restrict by nature the type of backdoors
that can be identified or the category of programs that can be
analyzed, and (3) does not require systematic manual reverse-
engineering of the analyzed binary.

Other works. The literature on code-level backdoors also
includes two other works that are less relevant, but still quite
complementary to ROSA. Ganz et al. [2] detect backdoor in-
jections in collaborative development, with a machine learning
model that recognizes suspicious contributions in version con-
trol systems repositories. Thomas et al. [1] present a theoretical
framework to define backdoors and reason about detection.
The wider literature includes works that share conceptual
elements with ROSA. The two-phase approach of ROSA, where
one first elucidates standard behaviors and then searches for
behaviors violating these standards, is somewhat similar to the
method of DIDUCE [52]. Yet, DIDUCE elucidates invariants
about the values taken by the expressions of the program, to
search for classical bugs. In contrast, ROSA focuses on input
family elucidation to search for backdoors. Like backdoors,
side-channel vulnerabilities provide a subtle way to sneak
into programs, by guessing secret runtime values through
observation of non-functional program behaviors. Complex
test oracles were also considered to find side-channel vulner-
abilities with fuzzing, like for example in DIFFUZZ [53]. Yet,
DIFFUZZ relies on a differential oracle, where ROSA is based
on a metamorphic oracle. In network security, backdoors often
refer to maliciously modified server configurations, opening an
undocumented remote access to the server. Several works have
tried detecting such network-level backdoors, like PBDT [54],
which uses machine learning to scan Python-based servers.

VIII. CONCLUSION

In this work, we have introduced ROSA, the first approach
and tool that uses graybox fuzzing to detect code-level back-
doors. ROSA complements a state-of-the-art fuzzer (AFL++)
with a metamorphic oracle that can identify backdoor triggers
at runtime. To enable the experimental evaluation of ROSA and
its comparison with existing tools, we have built ROSARUM,
the first publicly-available benchmark for evaluating backdoor
detection tools in diverse programs. ROSARUM contains 7
authentic and 10 synthetic backdoors inserted into a standard
fuzzing benchmark. The experimental evaluation of ROSA over
the 17 backdoors of ROSARUM shows that ROSA has a level of
robustness, speed, and automation similar to classical graybox
fuzzing (for non-backdoor bugs such as crashes). Compared to
the state of the art, ROSA is capable of handling a wide scope
of backdoors and programs and it does not require manually
reverse-engineering the investigated (binary) code.

ACKNOWLEDGMENT

We acknowledge the financial support of the French
“Agence Nationale de la Recherche” (ANR-22-CE39-0012-
01) and “Commissariat à l’Energie Atomique” (PE-BU-2022-
22P1L7). We thank Sébastien Bardin for useful discussions.



REFERENCES

[1] S. L. Thomas and A. Francillon, “Backdoors: Definition, Deniability and
Detection,” in Research in Attacks, Intrusions, and Defenses, M. Bailey,
T. Holz, M. Stamatogiannakis, and S. Ioannidis, Eds. Cham: Springer
International Publishing, 2018, vol. 11050, pp. 92–113.

[2] T. Ganz, I. Ashraf, M. Härterich, and K. Rieck, “Detecting Backdoors
in Collaboration Graphs of Software Repositories,” in Proceedings of
the Thirteenth ACM Conference on Data and Application Security and
Privacy. Charlotte NC USA: ACM, Apr. 2023, pp. 189–200.

[3] F. Schuster and T. Holz, “Towards reducing the attack surface of software
backdoors,” in Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security - CCS ’13. Berlin, Germany:
ACM Press, 2013, pp. 851–862.

[4] C. Evans, “Alert: vsftpd download backdoored,”
2011, https://scarybeastsecurity.blogspot.com/2011/07/
alert-vsftpd-download-backdoored.html [Accessed: July, 19, 2024].

[5] I. Red Hat, “Malicious code was discovered in the upstream tarballs of
xz,” 2024, https://nvd.nist.gov/vuln/detail/CVE-2024-3094 [Accessed:
May, 22, 2024].

[6] J. Toterhi, “Hunting for backdoors in iot firmware at unprecedented
scale,” in Proceedings of the 2018 Hack in the Box Dubai Hacking
conference Security - HITBSecConf Dubai ’18, 2018.

[7] Z. Michael Lee, “D-link routers found to contain backdoor,” 2013, https:
//www.zdnet.com/article/d-link-routers-found-to-contain-backdoor [Ac-
cessed: May, 22, 2024].

[8] d. Craig, “From china, with love,” 2013, https://web.archive.
org/web/20131020145741/http://www.devttys0.com/2013/10/
from-china-with-love [Accessed: May, 22, 2024].

[9] E. Benoist-Vanderbeken, “Some codes and notes about the backdoor
listening on tcp-32764 in linksys wag200g,” 2015, https://github.com/
elvanderb/TCP-32764/tree/master [Accessed: May, 22, 2024].

[10] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the
ACM, vol. 63, no. 2, pp. 70–76, Jan. 2020.

[11] M. Harman and P. McMinn, “A theoretical and empirical study of search-
based testing: Local, global, and hybrid search,” IEEE Transactions on
Software Engineering, vol. 36, no. 2, pp. 226–247, 2009.

[12] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, May 2015.

[13] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 1275–1295.

[14] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
Incremental Steps of Fuzzing Research,” in WOOT’20: Proceedings of
the 14th USENIX Conference on Offensive Technologies, Aug. 2020,
p. 10.

[15] AFL++, “Qemu-afl,” 2024. [Online]. Available: https://github.com/
AFLplusplus/qemuafl

[16] “Circumventing Fuzzing Roadblocks with Compiler Transformations,”
Aug. 2016. [Online]. Available: https://lafintel.wordpress.com/2016/08/
15/circumventing-fuzzing-roadblocks-with-compiler-transformations/

[17] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: Fuzzing with Input-to-State Correspondence,” in Pro-
ceedings 2019 Network and Distributed System Security Symposium.
San Diego, CA: Internet Society, 2019.

[18] S. L. Thomas, T. Chothia, and F. D. Garcia, “Stringer: Measuring
the Importance of Static Data Comparisons to Detect Backdoors and
Undocumented Functionality,” in Computer Security – ESORICS 2017,
S. N. Foley, D. Gollmann, and E. Snekkenes, Eds. Cham: Springer
International Publishing, 2017, vol. 10493, pp. 513–531.

[19] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Fir-
malice - Automatic Detection of Authentication Bypass Vulnerabilities
in Binary Firmware,” in Proceedings 2015 Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, 2015.

[20] S. L. Thomas, F. D. Garcia, and T. Chothia, “HumIDIFy: A Tool for
Hidden Functionality Detection in Firmware,” in Detection of Intrusions
and Malware, and Vulnerability Assessment, M. Polychronakis and
M. Meier, Eds. Cham: Springer International Publishing, 2017, vol.
10327, pp. 279–300.

[21] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on software engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[22] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A Ground-Truth
Fuzzing Benchmark,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 4, no. 3, pp. 1–29, Nov. 2020.

[23] D. Kokkonis, M. Marcozzi, E. Decoux, and S. Zacchiroli,
“The ROSA toolchain,” 2025, archived on Software Heritage
with SWHID swh:1:rev:d30f7f1800a5dde3b9991125f9b911f8396c6346.
[Online]. Available: https://github.com/binsec/rosa

[24] ——, “The ROSARUM backdoor detection benchmark,”
2025, archived on Software Heritage with SWHID
swh:1:rev:21d986293f083a09c0692c504305ac6e4fb9bf38. [Online].
Available: https://github.com/binsec/rosarum

[25] V. G. Lokhande and D. Vidyarthi, “A study of hardware architecture
based attacks to bypass operating system security,” Security and Privacy,
vol. 2, no. 4, p. e81, 2019.

[26] N. Kostyuk and S. Landau, “Dueling over dual ec drbg: The conse-
quences of corrupting a cryptographic standardization process,” Harv.
Nat’l Sec. J., vol. 13, p. 224, 2022.

[27] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[28] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,”
in Detection of Intrusions and Malware, and Vulnerability Assessment:
17th International Conference, DIMVA 2020, Lisbon, Portugal, June
24–26, 2020, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2020,
p. 23–43.

[29] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy
of attacks on open-source software supply chains,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 1509–1526.

[30] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and Evolution
of Package Dependency Networks,” in 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR). Buenos
Aires, Argentina: IEEE, May 2017, pp. 102–112.

[31] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empir. Softw. Eng., vol. 24, no. 1, pp. 381–416, 2019.

[32] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, Dec. 1990.

[33] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USENIX Association, 2008,
pp. 209–224.

[34] M. Zalewski, “American Fuzzy Lop - Whitepaper,” Tech. Rep., 2016.
[Online]. Available: https://lcamtuf.coredump.cx/afl/technical details.txt

[35] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference,
ser. ATEC ’05. USA: USENIX Association, 2005, p. 41.

[36] P. Yao, H. Huang, W. Tang, Q. Shi, R. Wu, and C. Zhang, “Skeletal
approximation enumeration for smt solver testing,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1141–1153.

[37] Z. Su and C. Sun, “Emi-based compiler testing,” 2024. [Online].
Available: https://web.cs.ucdavis.edu/∼su/emi-project/

[38] M. Rigger and Z. Su, “Finding bugs in database systems via query
partitioning,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, 2020.

[39] A. Lascu, M. Windsor, A. F. Donaldson, T. Grosser, and J. Wickerson,
“Dreaming up metamorphic relations: Experiences from three fuzzer
tools,” in 2021 IEEE/ACM 6th International Workshop on Metamorphic
Testing (MET). IEEE, 2021, pp. 61–68.

[40] S. Project, “Sqlancer,” 2024. [Online]. Available: https://github.com/
sqlancer/sqlancer

[41] Sudo Project, “Sudo,” 2024. [Online]. Available: https://www.sudo.ws/
[42] R. Hamming, Coding and Information Theory. Prentice-Hall, 1980.
[43] A. F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. P. Maselco,

and A. Karpiński, “Test-case reduction and deduplication almost for free
with transformation-based compiler testing,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, ser. PLDI 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1017–1032.

https://scarybeastsecurity.blogspot.com/2011/07/alert-vsftpd-download-backdoored.html
https://scarybeastsecurity.blogspot.com/2011/07/alert-vsftpd-download-backdoored.html
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://www.zdnet.com/article/d-link-routers-found-to-contain-backdoor
https://www.zdnet.com/article/d-link-routers-found-to-contain-backdoor
https://web.archive.org/web/20131020145741/http://www.devttys0.com/2013/10/from-china-with-love
https://web.archive.org/web/20131020145741/http://www.devttys0.com/2013/10/from-china-with-love
https://web.archive.org/web/20131020145741/http://www.devttys0.com/2013/10/from-china-with-love
https://github.com/elvanderb/TCP-32764/tree/master
https://github.com/elvanderb/TCP-32764/tree/master
https://github.com/AFLplusplus/qemuafl
https://github.com/AFLplusplus/qemuafl
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://archive.softwareheritage.org/swh:1:rev:d30f7f1800a5dde3b9991125f9b911f8396c6346
https://github.com/binsec/rosa
https://archive.softwareheritage.org/swh:1:rev:21d986293f083a09c0692c504305ac6e4fb9bf38
https://github.com/binsec/rosarum
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://web.cs.ucdavis.edu/~su/emi-project/
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://www.sudo.ws/


[44] Strace, “Strace Linux utility,” 2024. [Online]. Available: https:
//github.com/strace/strace

[45] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 2123–2138.

[46] M. Schloegel, N. Bars, N. Schiller, L. Bernhard, T. Scharnowski,
A. Crump, A. Ale-Ebrahim, N. Bissantz, M. Muench, and T. Holz, “Sok:
Prudent evaluation practices for fuzzing,” in 2024 IEEE Symposium on
Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2024, pp. 140–140.

[47] M. Weiser, “Program slicing,” IEEE Transactions on software engineer-
ing, no. 4, pp. 352–357, 1984.

[48] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Des. Test, vol. 27, no. 1, p. 10–25,
jan 2010.

[49] C. Easttom, “A study of cryptographic backdoors in cryptographic
primitives,” in Electrical Engineering (ICEE), Iranian Conference on,
2018, pp. 1664–1669.

[50] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 35,
no. 1, pp. 5–22, 2024.

[51] O. A. Aslan and R. Samet, “A comprehensive review on malware
detection approaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020.

[52] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in Proceedings of the 24th International
Conference on Software Engineering - ICSE ’02. Orlando, Florida:
ACM Press, 2002, p. 291.

[53] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “DifFuzz: Differential
Fuzzing for Side-Channel Analysis,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). Montreal, QC,
Canada: IEEE, May 2019, pp. 176–187.

[54] Y. Fang, M. Xie, and C. Huang, “PBDT: Python Backdoor Detection
Model Based on Combined Features,” Security and Communication
Networks, vol. 2021, pp. 1–13, Sep. 2021.

https://github.com/strace/strace
https://github.com/strace/strace

	Introduction
	Background
	Code-level backdoors
	Definition and scope
	Occurrence in the real world
	Detection

	Graybox and metamorphic fuzzing
	Graybox fuzzing
	The AFL++ graybox fuzzer
	Binary fuzzing with AFL++
	Guessing magic bytes with AFL++
	Metamorphic oracles


	Motivating example
	A ``hard-coded credentials'' backdoor in sudo
	Detecting the backdoor with Rosa

	The Rosa approach
	General overview
	Phase 1: representative inputs collection
	Phase 2: backdoor detection
	Post-processing: deduplication and vetting

	Implementation
	Experimental evaluation
	General overview
	Constructing the Rosarum benchmark
	Collecting and porting authentic backdoors
	Seeding synthetic backdoors in a fuzzing benchmark
	Preparing the backdoors for benchmarking
	Description of the final benchmark

	RQ1: usability and usefulness of Rosa
	Experimental protocol
	Duration of phase 1
	Results discussion

	RQ2: comparison with the state of the art
	Availability of competing tools
	Comparison with Stringer

	Threats to validity

	Related work
	Conclusion
	References

