
Augmenting Search-based Program Synthesis with Local
Inference Rules to Improve Black-box Deobfuscation

Vidal Attias
Université Paris-Saclay, CEA, List

Palaiseau, France
vidal.attias@cea.fr

Nicolas Bellec
Université Paris-Saclay, CEA, List

Palaiseau, France
nicolas.bellec@cea.fr

Grégoire Menguy
Université Paris-Saclay, CEA, List

Palaiseau, France
gregoire.menguy@cea.fr

Sébastien Bardin
Université Paris-Saclay, CEA, List

Palaiseau, France
sebastien.bardin@cea.fr

Jean-Yves Marion
Université de Lorraine, CNRS, LORIA

Nancy, France
jean-yves.marion@loria.fr

Abstract

Code obfuscation aims to protect programs from reverse engineer-
ing, with applications ranging from intellectual property protec-
tion to malware hardening. Recent works on black-box analyses
propose to leverage program synthesis in order to infer the se-
mantics of highly obfuscated code blocks. Being fully black-box,
these approaches are immune to syntactic complexity and can thus
bypass standard obfuscation mechanisms. Yet, they are restricted
by their synthesis capabilities and can only be applied to semanti-
cally simple code blocks. It explains why they have mainly been
used on virtual machine handlers, where behaviors are usually
simple enough. Applying black-box deobfuscation at scale beyond
virtualization is still an open problem, notably because black-box
methods cannot synthesize complex behaviors involving, for exam-
ple, arbitrary constant values or affine or polynomial relations over
mixed-boolean-arithmetic expressions. In this article, we show how
to combine search-based program synthesis with local inference rules,
resulting in a new method named Search Modulo Inference Rules
(Smir) that boosts search-based program synthesis while keeping
its generality and flexibility. We instantiate Smir with inference
rules for hard synthesis problems like arbitrary constant values
and affine or polynomial relations over mixed boolean expressions,
yielding the new black-box deobfuscation tool: XSmir. Experiments
demonstrate that XSmir significantly outperforms prior black-box
deobfuscators, synthesizing overall 76% and 84% of the expressions
from our real-world obfuscated and non-obfuscated benchmarks
where prior works recover 63% and 55%, together with 2 to 3 times
less false positive and slightly improved compression rate.

CCS Concepts

• Security and privacy → Software reverse engineering; •
Computing methodologies→ Randomized search.

Keywords

Deobfuscation, reverse engineering, program synthesis

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765134

ACM Reference Format:

Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-
Yves Marion. 2025. Augmenting Search-based Program Synthesis with Local
Inference Rules to Improve Black-box Deobfuscation. In Proceedings of the
2025 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3719027.3765134

1 Introduction

Obfuscation [18, 19] aims to protect software from reverse engineer-
ing. It translates a program 𝑃 into a functionally equivalent program
𝑃𝑜 , harder to analyze. As cryptography has not yet provided a bullet-
proof solution for this problem, the obfuscation community mainly
focuses on program-analysis-based techniques [19], leading to a
cat-and-mouse game between defenders and attackers.

While obfuscation is used to protect Intellectual Property and
other valuable software assets, it is also used to protect malware.
Thus, automated deobfuscation methods [12, 21, 39, 50, 51] have
been proposed to cope with the quick advances in obfuscation.
Given an obfuscated program 𝑃𝑜 , the goal here is to simplify it
into a simpler yet functionally equivalent program 𝑃∗ – ideally 𝑃∗
should be as simple as the original unprotected code 𝑃 .

In the last decade, white-box deobfuscation techniques, lifting
the latest methods of static program analysis, have proved highly
effective against many standard obfuscation schemes like opaque
predicates [7, 54, 60] or virtualization [32, 51, 54]. However, sev-
eral obfuscation methods significantly impair white-box analysis.
Dedicated protections, including Mixed Boolean Arithmetic (MBA)
expressions [63], covert channels [55] or path-oriented protections
[3, 44, 45, 59], have emerged, many of which increase the syntactic
complexity of the original code to break white-box approaches.

The promises of black-box deobfuscation. New deobfuscation
methods, based on program synthesis, have emerged to simplify
heavily obfuscated local code snippets [12, 39]. These methods rely
only on input-output (I/O) observations to infer the code snippet be-
havior. Through synthesis, they explore a space of candidate expres-
sions generated by an inference grammar, seeking an expression that
mimics the I/O observations. Unlike white-box approaches, black-
box ones are immune to syntactic complexity, but the analyzed code
must be semantically simple to synthesize it. This explains why
black-box methods primarily focused on virtualized code: handlers

https://orcid.org/0000-0001-5095-4740
https://orcid.org/0000-0002-4118-4227
https://orcid.org/0000-0002-8776-8770
https://orcid.org/0000-0002-6509-3506
https://orcid.org/0009-0002-8262-3887
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765134
https://doi.org/10.1145/3719027.3765134

CCS ’25, October 13–17, 2025, Taipei, Taiwan Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-Yves Marion

implementing a custom ISA usually stay semantically simple, even
in the presence of strong obfuscation [12, 39].

Problem. Applying black-box deobfuscation beyond the virtual-
ization use case is still an open problem. It requires a sufficiently
expressive synthesis to capture the semantics of many distinct
behaviors. Still, some behaviors stay beyond the reach of state-
of-the-art synthesizers – e.g., arbitrary constant values, affine or
polynomial combinations of bitvector expressions. Unfortunately,
software often includes them. For instance, in the Core utils, Curl,
OpenSSL, and FFmpeg binaries, 82% of the basic blocks contain
constant values. This hinders the use of black-box methods at scale.

Our solution.We propose SearchModulo Inference Rules (Smir), the
first synthesis approach combining search and inference, enabling
the synthesis of usually hard-to-recover expressions while keeping
a generic approach. Inference rules improve the search in two ways:
(1) at each step of the search, inference rules may directly elevate
the current candidate solution into a definitive solution, ending the
synthesis process; (2) if no direct match is found, the search process
itself is altered, favoring candidate solutions that will more likely
be elevated to a definitive solution.

Smir can be adapted to any black-box search heuristics and a
wide class of inference rules. Specifically, we instantiate Smir to han-
dle behaviors that are beyond the reach of state-of-the-art synthesiz-
ers: arbitrary constant values (masks, offsets, etc.), as well as affine
and polynomial expressions involving mixed Boolean-Arithmetic
terms. We implement Smir on top of the Xyntia black-box deob-
fuscator [39], yielding a prototype XSmir that largely outperforms
prior works: it synthesizes on average 76% of the expressions from
code obfuscated with Tigress [17], VMProtect [57], OLLVM [31]
and Loki [53], against 63% for the prior work. Over non-obfuscated
software, XSmir also synthesizes 84% of the expressions included
in the Core Utils, OpenSSL, Curl, and FFmpeg, when prior work
only reaches 55%. Note also that XSmir reports, on average, two to
three times fewer false positives than prior work on deobfuscation.

Contributions. Our contributions are the following:
(1) We propose Search Modulo Inference Rules (Smir, Section 5), a

new program synthesis scheme that extends search with infer-
ence rules to generate usually hard-to-synthesize expressions.
Inference rules serve two roles: they directly extend some can-
didate solutions into definitive solutions if possible, otherwise
they direct the search toward such candidate solutions;

(2) We implement Smir (Section 5.3) on top of the Xyntia deob-
fuscator [39] with the inference rules from Section 5.2 (offsets,
masks, affine and polynomial expressions, etc.). It yields XS-
mir, the first search-based synthesizer handling these cases
efficiently. Internal analysis (Section 6.6) shows that it benefits
of each Smir ingredient, and that the technique works for all
typical objective functions;

(3) We evaluate XSmir (Section 6) against the state-of-the-art black-
box deobfuscators Syntia [12] and Xyntia [39], as well as the
program synthesizers CVC4 [9], CVC5 [6] andDryadSynth [22],
showing that it outperforms them on both real obfuscated and
non-obfuscated code. For example, XSmir synthesizes up to
+16 (resp. +74) points of percentage more expressions than
Xyntia (resp., Syntia) on obfuscated code, while dividing by

two to three the number of false positive and producing more
compressed expressions. We also compared XSmir against
the state-of-the-art white-box deobfuscators ProMBA [33] and
Gamba [49] on MBA expressions. Results show that XSmir
always successfully simplifies more expressions than ProMBA
and Gamba, recovering almost twice as many expressions for
the most complex MBA obfuscation.

As a conclusion, Search Modulo Inference Rules (Smir) provides
a novel and powerful tool for reversers to apply black-box deob-
fuscation at scale. It also demonstrates the interest of combining
both search and inference for program synthesis problems. All
the code and scripts needed to replicate our results are available at
https://zenodo.org/records/17036259.

2 Background

2.1 Programming-by-example

Programming-by-example (PBE) [27] is a special case of program
synthesis [28]. It takes a set of input-output examples – referred to
as the input-output (I/O) specification S, and a syntactic grammar
G that defines the search space [2]. PBE then tries to infer an ex-
pression 𝑒 ∈ G (i.e., a program) mimicking the observed behaviors
in S. More formally, we say that 𝑒 ∈ G verifies the specification S,
noted 𝑒 |= S, iff for all 𝑖, 𝑜 ∈ S, 𝑒 (𝑖) = 𝑜 . Three main approaches
have been studied to efficiently search such a solution:
• Enumerative search [2, 6, 9, 22] exhaustively explores the space
of possible expressions in increasing size order, typically apply-
ing aggressive pruning to eliminate infeasible candidates early.
While general, this approach scales poorly with expression size
due to the combinatorial explosion of the search space.
• Deductive search [2, 28] derives expressions directly from the
specification using logical inference rules. It is often less efficient
than enumerative search [2], and may require domain-specific
insights for a more efficient reasoning [28].
• Stochastic search [2, 52] generates candidate expressions ran-
domly, often guided by heuristics such as distance to expected
outputs. This method can sometimes discover larger or more
complex expressions thatwould bemissed by enumerative search.
Interestingly, most state-of-the-art PBE synthesizers use enu-

merative search, for example: FlashFill [15, 26] (string theory)
in Microsoft Excel; CVC4/5 (string, integer and bitvector theories)
[6, 9]; or DryadSynth [22] (string and bitvector theories). In the
following, we focus on synthesis over the bitvector theory, which
is especially useful in binary code deobfuscation as the data manip-
ulated are bitvectors. Unfortunately, synthesis over this theory is
particularly challenging due to two key difficulties: the sparsity of
useful information in I/O examples and the high degree of semantic
equivalence between distinct syntactic forms. This makes guiding
the synthesis difficult and the search space harder to prune [22].

2.2 Obfuscation and (Black-box) Deobfuscation

Obfuscation is a family of methods that translate a program 𝑃 into an
equivalent program 𝑃𝑜 , harder to understand and analyze.While the

https://zenodo.org/records/17036259

Augmenting Search-based Program Synthesis with Local Inference Rules to Improve Black-box Deobfuscation CCS ’25, October 13–17, 2025, Taipei, Taiwan

theoretical feasibility of obfuscation is still debated,1 practical obfus-
cators take a more pragmatic program analysis view [17, 31, 46, 57],
with recipes of “hard-to-revert in practice” program transforma-
tions. Obfuscation is used in two main contexts. It helps protect
the intellectual property embedded in software, e.g., proprietary
algorithms or secret keys. For instance, on the Google Play Store,
50% of the most popular Android applications are obfuscated [58].
Conversely, it is also leveraged by malware authors to prevent the
detection and comprehension of malicious behavior [7, 14, 51].

Deobfuscation. Given an obfuscated program 𝑃𝑜 coming from
a clear program 𝑃 , deobfuscation aims to simplify it back to a
simpler equivalent program 𝑃∗. Studying automatic deobfuscation
techniques is crucial for security, as it allows both to evaluate
current obfuscation products and practices in the best effort manner,
and to empower malware analysts.

White-box deobfuscation. [3, 7, 14, 32, 51, 54, 60], based on sim-
plifications from compilation and program analyses (static and
dynamic), have been largely investigated and shown to be very
powerful in some contexts. However, efficient countermeasures
recently emerged [3, 44, 45, 55, 59, 63], often exploiting their sen-
sitivity to syntactic complexity. For the particular case of mixed-
boolean arithmetic (MBA) obfuscation [63], recent algebraic attacks
led to new specific white-box deobfuscation frameworks such as
MBABlast [36], MBASolver [25], ProMBA [34] and Gamba [49].

Black-box deobfuscation. Recently, the Syntia [12] and Xyn-
tia [39] papers introduced black-box deobfuscation, which relies
on search-based (black-box) program synthesis over the bitvector
theory [28] to infer the semantics of highly obfuscated blocks of
code. Black-box methods leverage the fact that obfuscation only
increases the code syntactic complexity without altering its se-
mantics. For instance, the expression 𝑥 + 𝑦 can be expressed as
(𝑥 ∨ 2𝑦) × 2 − (𝑥 ⊕ 2𝑦) − 𝑦 (standard MBA transformation [63]).
The second expression is syntactically more complex, but is se-
mantically equivalent. Given an expression 𝑒 , black-box methods
rely solely on I/O examples to synthesize it. Hence, they are not
impacted by the syntactic complexity of 𝑒 . However, they cannot
handle 𝑒 if it is too semantically complex.

Obviously, black-box deobfuscation does not aim for the automated
recovery of the full code, as it is likely infeasible. Instead, we consider
that the users are skilled reversers, with high understanding of as-
sembly code and program analysis, and our goal is to empower them
with dedicated tools to speed up local reverse engineering tasks. Espe-
cially, it could be integrated as an interactive plugin for GUI-based
reverse tools like Ghidra [41] or IdaPro [23] (cf. GooMBA [47] or
QSynth [21]). In this setting, the reverser selects the subpart of code of
interest, and then launches deobfuscation. A more automated mode
could also be envisioned, applying black-box deobfuscation on batches
of code snippets provided by an obfuscation detector [11, 16].

The typical workflow of black-box deobfuscation. While the
core part of black-box deobfuscation, namely programming-by-
example (cf. Section 2.1), is automated, the whole process implies
some preliminary steps, possibly automated [12] or handmade:

1Barak et al. [5] showed that no virtual black-box obfuscator exists. Still, the notion of
indistinguishability obfuscation [4] is under active studies.

• Given a binary under analysis, it first requires splitting it into
different reverse windows, i.e., parts of code that the reverser
wants to analyze. In principle, these reverse windows only need
to fulfill the following constraint: have a single entry point and
a single exit point. Hence, they can include conditionals, but all
the paths must, in the end, merge to a single exit point inside
the reverse window. Yet, in practice, black-box deobfuscation has
mostly been applied to blockwise VM handlers [12, 39];
• Next, the reverser must identify the outputs of interest for each
reverse window and determine the corresponding inputs. This
can be done manually or automatically, e.g., by using taint anal-
ysis for outputs and data dependencies for inputs.

Each output and associated input define a reverse goal: find an
expression 𝑒 that represents the reverse window behavior.

Finally, in order to set up the programming-by-example algo-
rithm, we need to choose a suitable inference grammar G and a
sampling strategy. The inference grammar defines the set of expres-
sions possibly generated by the synthesizer. State-of-the-art tools
such as Syntia and Xyntia typically use variations of the gram-
mar presented in Table 1, that generates Mixed Boolean-Arithmetic
expressions.2 The sampling strategy specifies how the input of the
reverse window are sampled: how many samples are generated and
which values are assigned to each input. This sampling strategy
should be chosen carefully. If the number of samples is too small
or the values are not diverse enough, the result might be incorrect.
Conversely, too many samples degrades synthesis performance.
Syntia and Xyntia consider respectively 50 and 100 I/O exam-
ples, combining a fixed set of input deemed useful (e.g., zeros, ones,
minus ones, etc) with randomly generated ones [12, 39].

Applying the sampling strategy over the reverse window yields
the I/O specification S. Given ℎ, the hidden relationship we are
looking for, this I/O specification S approximates the semantics of
ℎ, i.e., for all (𝑖, 𝑜) ∈ S, ℎ(𝑖) = 𝑜 .

The goal is to infer a (simple) expression that matches the same
input-output observations, in the same spirit as programming-by-
example (Section 2.1).

Still, the solution may be non-equivalent to the target expression
(false positive). This is standard in the black-box setting [12, 39], and
considered fine as long as results are rarely incorrect in practice.

Synthesis in black-box deobfuscation. Recent works on black-
box deobfuscation (cf. Section 2.2) proposed their own PBE syn-
thesizers over the bitvector theory. They digress from the afore-
mentioned synthesizers by performing stochastic search instead of
enumerative search. For instance, Syntia relies on Monte-Carlo-
Tree-Search (MCTS) [13] and Xyntia relies on local-search algo-
rithms [37, 56]. Both use an objective function to guide the search
toward more likely interesting solutions. Surprisingly, stochastic
search was shown to be more efficient for black-box deobfuscation
than enumerative approaches [39].

We first present in Algorithm 1 the generic search-based program
synthesis algorithm used in black-box deobfuscation:
• It takes as input an inference grammar G and an objective func-
tion 𝑓S that evaluates how close an expression is from a target
I/O specification S. Intuitively, 𝑓S should decrease when the

2There is a tradeoff here: richer grammars are more expressive, but they also lead to
larger search space and can be intractable.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-Yves Marion

Table 1: MBA inference grammar used in [39]

𝐸 := ⋄𝐸 | 𝐸 ◦ 𝐸 | 0x1 | EAX | EBX | . . .
⋄ := −1 | ¬
◦ := + | − | × | ∧ | ∨ | ⊕

Algorithm 1 Generic search-based program synthesis

Input: The objective function 𝑓S over the I/O specification S;
inference grammar G;

Output: An expression matching the I/O specification S
1: 𝐿 ← {𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(G)}
2: while 𝑡𝑟𝑢𝑒 do

3: pick 𝑒 ∈ 𝐿 according to 𝑓S
4: if 𝑓S (𝑒) = 0 then
5: return 𝑒

6: else

7: 𝑒1, ..., 𝑒𝑛 ← 𝑛𝑒𝑥𝑡 (𝑒,G, 𝑓S)
8: 𝐿 ← (𝐿 \ {𝑒}) ∪ {𝑒1, ..., 𝑒𝑛}
9: end if

10: end while

Algorithm 2 Local-search-based program synthesis

Input: The objective function 𝑓S over the I/O specification S;
inference grammar G;

Output: An expression matching the I/O specification S
1: 𝑒 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(G)
2: 𝑁 ← 𝑁𝑚𝑎𝑥

3: while 𝑡𝑟𝑢𝑒 do

4: if 𝑓S (𝑒) = 0 then
5: return 𝑒

6: else

7: 𝑒′ ←𝑚𝑢𝑡𝑎𝑡𝑒 (𝑒)
8: if 𝑓S (𝑒′) < 𝑓S (𝑒) ∨ 𝑁 ≤ 0 then
9: 𝑒 ← 𝑒′

10: 𝑁 ← 𝑁𝑚𝑎𝑥

11: else

12: 𝑁 ← 𝑁 − 1
13: end if

14: end if

15: end while

candidate expression gets closer to the solution. Notably, it must
nullify iff an expression matching the I/O specification is found;
• Throughout the synthesis, Algorithm 1 maintains a set 𝐿 of
expressions to check. At line 1, 𝐿 is initialized with a unique
expression. Synthesis then loops until an expression 𝑒 verifying
S has been found. To do so, it picks an expression 𝑒 ∈ 𝐿 at line 3
depending on the used search algorithm. If 𝑓S (𝑒) = 0, then 𝑒

verifiesS and 𝑒 is returned (line 5). Otherwise, 𝑒 is removed from
𝐿, and new candidate expressions 𝑒1, . . . , 𝑒𝑛 are added (line 7).

Local search approach. This generic framework depends on an
underlying search algorithm. We focus in the paper on an instan-
tiation based on local search – as found in Xyntia (depicted in
Algorithm 2), since our own implementation relies also on it. The
set 𝐿 is removed, as local search only manipulates one expression

at a time. The initial expression is usually a variable name or a
constant value. The 𝑛𝑒𝑥𝑡 procedure is inlined at lines 7 to 13. It
generates a new candidate expression by randomly mutating 𝑒 ,
only keeping the expression if it decreases the objective function.
If no such expression can be found in 𝑁𝑚𝑎𝑥 mutations, the search
considers that a local minimum is reached and thus accepts any
mutation in the hope of escaping this local minimum.

Scope. Black-box deobfuscation can simplify code snippets with
simple enough semantic complexity. Such methods have already
been used to simplify virtual machine handlers, even in presence
of strong obfuscations like mixed-boolean-arithmetic expressions
[12, 39], covert channels obfuscation [55], opaque predicates [19] or
path-oriented protections [44]. Still, using black-box deobfuscation
beyond the virtualization case remains an open problem. Here, we
seek to extend the approach to arbitrary blocks found in real code.

3 Motivation

Real-world obfuscated code are still challenging for black-box de-
obfuscation. We showcase several real-world examples, providing
clear examples of the challenges faced by state-of-the-art black-box
deobfuscators and synthesizers, illustrating the benefits of XSmir:
• MBA encoding of hard-to-synthesize expression (Snapchat): The
Listing 1 displays an obfuscated expression found in Snapchat
and documented in [29]. The obfuscated expression computes
tv_sec = tv_sec×1000, presumably to convert seconds intomil-
liseconds. It is protected using Mixed Boolean-Arithmetic (MBA)
and has a size of 306 (number of nodes in the abstract-syntax-
tree). Both Syntia and Xyntia fail to recover the original expres-
sion, even after one hour of computation, whereas XSmir handles
it in 5ms. This failure stems from their inability to infer the con-
stant value 1000 within reasonable time. Indeed, their inference
grammar only includes the constant value 1, and all others must
be derived from it. Generating 1000 would require synthesizing a
complex expression like ((1+1+1+1+1)×(1+1+1+1+1)) ≪ (1+1).
As a result, the probability of producing arbitrary constant values
is extremely low. Simply adding constant values to the gram-
mar enlarges the search space and significantly degrades perfor-
mance [39]. Furthermore, as obfuscation often conceals constant
values [18], relying on constant values extracted from the code
may not help or even lead to incorrect results;
• Affine Encoding (Tigress): Tigress applies affine transformations
to encode integer variables (cf. Listing 2). In this example, neither
Syntia nor Xyntia can synthesize a, b or r, which hampers code
understanding. In contrast, XSmir synthesizes a and b in 2ms,
and r in 524ms;
• Opaque Predicates (Xtunnel): TheAPT-grademalware Xtunnel [7]
includes opaque predicates that are difficult to synthesize, such
as 7𝑦2 − 1 ≠ 𝑥2. While 𝑥2 is easily handled in under 1s by Syn-
tia, Xyntia and XSmir, synthesizing 7𝑦2 − 1 is significantly
harder. Syntia times out after 1h, and Xyntia takes 35 minutes
to produce an expression that still requires manual simplification.
XSmir, however, synthesizes the simplified version in just 6ms.

Such examples of obfuscation are common. Moreover, as shown
in Table 2, after filtering out duplicate blocks, 82% of the blocks in
Coreutils, Curl, OpenSSL, and FFmpeg binaries contain non-trivial

Augmenting Search-based Program Synthesis with Local Inference Rules to Improve Black-box Deobfuscation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Listing 1: Example from Snapchat [29]

1 # Original: TV_SEC := TV_SEC * 1000
2 add x0,sp,#0x1b8 ;struct timeval *tval
3 mov x1,#0x0 ;struct timezonze *tzone
4 adrp x8,0x109499000
5 ldr x8,[x8, #0x1d0]
6 blr x8 ;gettimeofday(tval,tzone)
7 ldr x8,[sp, #0x1b8] ;tval->tv_sec
8 mov x9,#0x3e8
9 mul x8,x8,x9
10 ldrsw x9,[sp, #0x1c0] ;tval->tv_usec
11 lsr x9,x9,#0x3
12 mov x10,#0xf7cf
13 movk x10,#0xe353, LSL #16
14 movk x10,#0x9ba5, LSL #32
15 movk x10,#0x20c4, LSL #48
16 umulh x9,x9,x10
17 mov x10,#0xe6b3
18 movk x10,#0x7dba, LSL #16
19 movk x10,#0xecfa, LSL #32
20 movk x10,#0xd0e1, LSL #48
21 add x9,x10,x9, LSR #0x4
22 orr x11,x9,x8
23 lsl x11,x11,#0x1
24 eor x8,x9,x8
25 sub x8,x11,x8
26 eor x9,x8,x10
27 mov x10,#0xe6b3
28 movk x10,#0x7dba, LSL #16
29 movk x10,#0xecfa, LSL #32
30 movk x10,#0x50e1, LSL #48
31 bic x8,x10,x8
32 sub x8,x9,x8, LSL #0x1 ;tv_sec *= 1000

Table 2: Percentage of blocks containing constant values.

Core Utils Curl OpenSSL FFmpeg Total

All blocks 84% 81% 79% 79% 81%
Unique blocks 92% 84% 80% 81% 82%

Listing 2: Example of integers encoded with Tigress

1 void foo(int x, int y) {
2 a = 1789355803 * x + 1391591831;
3 b = 1789355803 * y + 1391591831;
4 [...] // Some code
5
6 // Compute the encoding of x * y
7 r = ((3537017619 * (a * b) - 3670706997 * a)
8 - 3670706997 * b) + 3171898074;
9 [...] // Some code
10 }

Table 3: Syntia, Xyntia, CVC4/5, DryadSynth and XSmir

on a selection of expressions found in binaries (TO = 1h).

Syntia Xyntia CVC4/5 Dryad. XSmir

Snapchat : 𝑥 × 1000 ✗(TO) ✗(TO) ✗(TO) ✓(4.6s) ✓(2ms)
Tigress :𝐶1 × 𝑥 +𝐶2 ✗(TO) ✗(TO) ✗(TO) ✗(OOM) ✓(2ms)
Tigress :𝐶1 × (𝑥 ∗ 𝑦) +𝐶2 ✗(TO) ✗(TO) ✗(TO) ✗(OOM) ✓(524ms)
Xtunnel : 7𝑦2 − 1 ✗(TO) ✓(35mins) ✗(TO) ✓(20ms) ✓(6ms)
Xtunnel : (2 × 𝑥) ∧ 0x03ffffff ✗(TO) ✗ (4s) ✗(TO) ✓(3mins) ✓(45ms)
Loki : 𝑥 + 74 ✗(TO) ✗(TO) ✗(TO) ✓(75ms) ✓(5ms)
Core Utils :𝐶1 − (¬𝑥) ✗(TO) ✗(TO) ✗(TO) ✗(OOM) ✓(2ms)
FFMPeg : (𝑥 ∧ ¬1) ≫ 16 ✗(TO) ✗(TO) ✗(TO) ✗(OOM) ✓(2ms)
FFMPeg : (𝑥 ∨ 𝑦) ≫ 5 ✗(TO) ✗(TO) ✗(TO) ✗(OOM) ✓(3ms)
Curl : (((𝑥 + 𝑦) ∧ 1) ⊕ 𝑦) ror 1 ✗(TO) ✗(TO) ✗(TO) ✗(OOM) ✓(2s)

✗: no result; ✗: incorrect result; ✓: correct result

constant values. Since standard obfuscation techniques preserve
code semantics, it is expected that these behaviors will also appear
in their obfuscated counterparts.

S
𝑓S

G

R𝑖

I/O spec.

Objective
function

Inference
grammar

Inference
rule

𝑓S (𝑒′𝑖)𝑒

𝑒′𝑖𝑒′

𝑒′𝑖

mutate1

inference
𝑒′
𝑖
= R𝑖 (𝑒′,S)

2

Compute the
objective function3

Select 𝑒 or 𝑒′

w.r.t. 𝑓S

4

if 𝑓S (𝑒′𝑖) = 0

5

Synthesis loopInputs

Figure 1: Black-box deobf. modulo inference rules

Inference rules. As illustrated in Table 3, Syntia and Xyntia
fail to recover quickly the expressions from our challenging ex-
amples. In sharp contrast, XSmir not only succeeds across the
board, but does so in under 2s — consistently producing concise,
human-readable expressions. This demonstrates both its power and
practicality. By augmenting search-based methods with inference
rules, XSmir is able to efficiently synthesize complex, real-world
expressions that remain out of reach for other existing tools.

4 Overview

We propose to extend black-box deobfuscation with Search Modulo
Inference Rules (Smir). Intuitively, it aims to guide the search in the
space of expressions modulo some inference rules rather than in
the space of all expressions. Thus, for each candidate expression 𝑒 ,
we apply an inference rule before computing the objective function.
It leads to a new candidate that might directly fulfill the target
specification or be used to guide the search.

Workflow. Fig. 1 presents Smir workflow. It takes as input an I/O
specification S approximating the target expression, an objective
function 𝑓S based on S, an inference grammar G, and inference
rules R1, ...,R𝑘 . For the sake of simplicity, we first describe Smir
for one inference rule R𝑖 . The full process is described in Section 5.
(1) The synthesis loop starts from a candidate solution 𝑒 (not match-

ing the specification S, otherwise 𝑒 is directly returned);
(2) From 𝑒 , a new candidate solution 𝑒′ is generated through muta-

tion, to check a new part of the search space;
(3) The inference rule R𝑖 is then applied on 𝑒′ (knowing S), to

retrieve a new candidate 𝑒′
𝑖
a priori closer to the I/O specification;

(4) The 𝑒′
𝑖
expression is sampled, and the objective function 𝑓S is

used to compare its outputs to the outputs of S. If 𝑓S (𝑒′𝑖) = 0
then 𝑒′

𝑖
matches the I/O specification and is returned; otherwise,

the search continues with the most promising expression, w.r.t.,
𝑓S , between 𝑒 and 𝑒′.

Note that 𝑒′
𝑖
is not only used as a termination criterion. Even if

all the I/O examples do not match, the 𝑒′
𝑖
objective function score

is kept to guide the search. Finally, to deal with several inference
rules R1 . . .R𝑘 , we compute all their images 𝑒′1, . . . , 𝑒

′
𝑘
to check

whether we can directly find a solution, and take the product of the
corresponding objective functions to guide the search.

Example 1. Consider the example from Listing 2 for the r out-
put, with the RAffine inference rule from Section 5.2, which aims to
recover an affine relation over a MBA expression. We take as I/O

CCS ’25, October 13–17, 2025, Taipei, Taiwan Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-Yves Marion

specification S = {(𝑥 = 5, 𝑦 = 2) → 0x7d7c08a5; (𝑥 = 20, 𝑦 =

10) → 0xa5ba8eaf}. Using Smir, synthesis generates a first expres-
sion, e.g., 𝑒1 = 𝑥 . As 𝑒1 does not match S, it is mutated randomly,
leading, for example, to 𝑒2 = 𝑥×𝑦. Here Smir’s inference ruleRAffine is
applied on 𝑒2, directly generating 0x6aa7671b×(𝑥×𝑦)+0x52f20197.
This is a clear shortcut compared to synthesizing the full expression
through mutations.

5 Search Modulo Inference Rules

We now present in details our Smir proposal. We then provide
a set of inference rules that reveal useful to apply deobfuscation
at scale on real binaries (cf. Section 6). Finally, we describe how
we integrated Smir in the state-of-the-art black-box deobfuscator
Xyntia, leading to the new prototype XSmir.

5.1 General framework

Algorithm 3 describes our framework to handle arbitrary inference
rules with a local-search based synthesis algorithm. For clarity and
precision purposes, Algorithm 3 is depicted as an extension of local
search program synthesis (cf. Algorithm 2). Still, it fits any search
framework.

Problem statement. Given an input and output space I and O, we
note 𝐸 the set of expressions 𝑒 : I → O in a user-given inference
grammar G. Typically, I = 𝐵𝑉 [𝑚1] × ...×𝐵𝑉 [𝑚𝑛] and O = 𝐵𝑉 [𝑚],
with 𝐵𝑉 [𝑠] the set of bit-vectors of size 𝑠 . Given an I/O specification
S ⊂ I × O, synthesis can theoretically generate any expression
that validates S in 𝐸. Still, some expressions are much harder to
synthesize than others in practice, typically because they are very
large or contain hard-to-build parts. To synthesize such expressions,
we extend synthesis, allowing the search to examine not only one
expression at a time but a whole set of expressions linked to the
current expression through adequate inference rules.

In the local-search framework, we also give ourselves an objec-
tive function 𝑓S : 𝐸 → R+, where R+ is the standard set of positive
or zero real numbers. The objective function is used to guide the
search by measuring how far a candidate expression is from S. We
only require that 𝑓S (𝑒) = 0 iff 𝑒 |= S, i.e. if ∀(𝑖, 𝑜) ∈ S, 𝑒 (𝑖) = 𝑜 . For
instance, given a distance 𝛿 in O, an appropriate objective function
could be 𝑓S (𝑒) =

∑
𝑖,𝑜∈S

𝛿 (𝑜, 𝑒 (𝑖)).

Inference rules. We rely on a finite set of inference rules to ex-
tend synthesis. Formally speaking, an inference rule is a function
R : 𝐸 × P(I ×O) → 𝐸, with P(I ×O) the power set of I ×O i.e.,
the set of all possible I/O specifications. Hence, R takes as input a
candidate expression and, given S, returns a new expression better
matching the I/O specification. The goal of an inference rule is
twofold: (1) it empowers synthesis with a smarter termination crite-
rion, which can return a solution from a “close enough” expression,
instead of waiting to find the exact good match; (2) it guides the
search, removing the need to explore the search space exhaustively.

When multiple inference rules R1, . . . ,R𝑘 are provided, we as-
sume that the reverser ranks them in order of preference (with the
most preferred rules listed first). However, we do not elaborate on
this ordering, as Section 6 demonstrates that it has no significant
effect on synthesis outcomes. From now on, we assume that the rules
R1, ...,R𝑘 are ordered according to their indices.

Algorithm 3 Smir on Local search program synthesis

Input: The objective function 𝑓S over the I/O specification S;
inference grammar G; ordered inference rules R1, . . . ,R𝑘 ;

Output: An expression matching the I/O specification S
1: 𝑒 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(G)
2: 𝑒1, ..., 𝑒𝑘 ← R1 (𝑒,S), ...,R𝑘 (𝑒,S)
3: 𝑁 ← 𝑁𝑚𝑎𝑥

4: while 𝑡𝑟𝑢𝑒 do

5: if

∏
1≤𝑖≤𝑘 𝑓S (𝑒𝑖) = 0 then

6: pick 𝑖 ∈ {1 . . . 𝑘} the first index s.t., 𝑓S (𝑒𝑖) = 0
7: return 𝑒𝑖
8: else

9: 𝑒′ ←𝑚𝑢𝑡𝑎𝑡𝑒 (𝑒)
10: 𝑒′1, ..., 𝑒

′
𝑘
← R1 (𝑒′,S), ...,R𝑘 (𝑒′,S)

11: if

∏
1≤𝑖≤𝑘 𝑓S (𝑒′𝑖) <

∏
1≤𝑖≤𝑘 𝑓S (𝑒𝑖) ∨ 𝑁 ≤ 0 then

12: 𝑒, 𝑒1, ..., 𝑒𝑘 ← 𝑒′, 𝑒′1, ..., 𝑒
′
𝑘

13: 𝑁 ← 𝑁𝑚𝑎𝑥

14: else

15: 𝑁 ← 𝑁 − 1
16: end if

17: end if

18: end while

Synthesis. Algorithm 3 depicts our synthesis approach. It takes
as input the target I/O specification S with the objective function
𝑓S , the inference grammar G, and a set of ordered inference rules
R1, ...,R𝑘 . It first generates at line 1 an initial expression 𝑒 from
the inference grammar G. Given this expression and the input
inference rules, new candidate expressions are computed at line 2.
Algorithm 3 then loops until it finds an expression 𝑒 ∈ G, and
an inference rule R ∈ (R1, ...,R𝑘) s.t., R(𝑒,S) |= S. To do so, it
multiplies the objective function value of each expression generated
by an inference rule (line 5). If it nullifies, there exists an 𝑖 ∈ {1 . . . 𝑘}
s.t., R𝑖 (𝑒,S) |= S. We search for the first match based on the
given preference order and return the final expression (lines 6
and 7). Otherwise, a new candidate expression 𝑒′ is generated at
line 9. For each inference rule, a new candidate expression is then
produced at line 10. If the product of the objective functions for these
new candidates decreases (line 11), the algorithm replaces 𝑒 with
𝑒′ and repeats the loop. Contrary to usual local search synthesis
(Section 2.2), the objective function is never applied on 𝑒 or 𝑒′ but
on the expressions produced by the inference rules. This guides the
synthesis process modulo the inference rules as shown in Section 6.

5.2 Inference rules

Formally, an inference rule is a function that takes an expression 𝑒

and an I/O specification S and returns a new expression 𝑒′ such
that 𝑓S (𝑒′) ≤ 𝑓S (𝑒). This framework is very flexible and can be
instantiated with diverse methods. Especially, we highlight two
cases that produce useful rules:
• Inverse operators. Any (possibly partial or one-to-many) inversion
procedure can be applied as an inference rule. Notably, abstract
interpretation provides backward operators [62] for addition,
multiplication, xor, and/or masks over bit-vectors. These inverse

Augmenting Search-based Program Synthesis with Local Inference Rules to Improve Black-box Deobfuscation CCS ’25, October 13–17, 2025, Taipei, Taiwan

procedures help handle top-level constant values for these op-
erators. In addition, usual interpolation methods, e.g., for affine
functions or polynomials, can also be leveraged as they are es-
sentially a matrix inversion, enabling the inference of affine and
polynomials over MBA expressions;

Example: For instance, the Addition rule R+ depicted in Table 4
takes an expression 𝑒 and an I/O specification S and returns 𝑒 + 𝑐
with 𝑐 a constant value that helps decrease the objective function.
To do so, for each I/O sample (𝑖, 𝑜), it computes 𝑜−𝑒 (𝑖), leading to a
non-empty set of candidate constant valuesV . If there exists indeed
a constant value 𝑐★ such that the target expression is equivalent to
𝑒 + 𝑐★, thenV = {𝑐★} (as + is invertible in 𝐵𝑉 [𝑚]). We can then
retrieve the constant value 𝑐★ and terminates the search. Otherwise,
we pick the constant value that decreases the most the objective
function through the 𝑎𝑟𝑔𝑚𝑖𝑛 procedure.

The process is exactly the same for R⊕ as xor is also invertible. If
the operator is not always invertible, the rule must have a fallback
result when no inverse can be computed (e.g., pick 𝑒). This is the
case for R× , Affine and Polynomial. On the other hand, if the
inverse operator is a one-to-many procedure, the rule picks the
solution minimizing the objective function, as done by R∧∨.

• Exhaustive search. In some cases, it is also possible to find a new,
more suitable, expression through an exhaustive search. To do
so, the set to enumerate should stay small to keep the exhaustive
search reasonably fast. This is the case for rotations and shifts
with a constant value, which only require to check𝑚 possibilities,
with𝑚 the bitvector size of 𝑒 (typically 8, 16, 32 or 64).

Example: For instance, the Left shift rule R≪ , enumerates all the
possible shifts between 0 et𝑚 − 1 and keeps the one reducing the
most the objective function through the 𝑎𝑟𝑔𝑚𝑖𝑛 procedure. The
search being exhaustive, if there is a constant value 𝑐★ such that
the target expression is equivalent to 𝑒 ≪ 𝑐 , then R≪ will find it.
This is the same process for the right shift and the rotation.

Rules description. We now detail how such inverse operator and
exhaustive search cases can be instantiated. This leads to 9 inference
rules, whose definitions are gathered in Table 4:
• As discussed above, the R+ and R⊕ rules are straightforward
because an inverse can always be found in 𝐵𝑉 [𝑚];
• In the R× case not all outputs are invertible in 𝐵𝑉 [𝑚]. Still, mod-
ular inversion can be computed over any odd bit-vector. Thus,
for each (𝑖, 𝑜) ∈ S, s.t., 𝑒 (𝑖) is odd, R× computes a candidate
𝑐 = 𝑜 × 𝑒 (𝑖)−1. If no odd output exists, the rule returns 𝑒 itself;
• In the R∧∨ case, inversion can lead to multiple candidates. Still,
all candidates share the same objective function value and one
can be picked arbitrarily. In practice, R∧∨ pick one such candi-
date by computing the two masks in a row in order to reduce
the bit-to-bit difference between the outputs of 𝑒 and S;
• The Affine inference rule RAffine infers expressions of the form:
𝑐1 ·𝑒+𝑐2 with 𝑒 the current expression, and 𝑐1, 𝑐2 two coefficients.
𝑐1 and 𝑐2 are retrieved by solving a linear system. As for R× , this
rule requires to find two inputs on which 𝑒 has opposite parities.
If not found, it returns 𝑒 itself;

Table 4: Inference rules

Name Type* Definition

Addition I
V = {𝑜 − 𝑒 (𝑖) | 𝑖, 𝑜 ∈ S}
𝑐 = argmin

𝑘∈V
𝑓S (𝑒 + 𝑘)

R+ (𝑒,S) = 𝑒 + 𝑐

Xor I
V = {𝑜 ⊕ 𝑒 (𝑖) | 𝑖, 𝑜 ∈ S}
𝑐 = argmin

𝑘∈V
𝑓S (𝑒 ⊕ 𝑘)

R⊕ (𝑒,S) = 𝑒 ⊕ 𝑐

Multiplication I
V = {𝑜 × 𝑒 (𝑖)−1 | 𝑖, 𝑜 ∈ S s.t. 𝑒 (𝑖) is odd}
𝑐 = argmin

𝑘∈V
𝑓S (𝑒 × 𝑘) ifV ≠ ∅ else 1

R× (𝑒,S) = 𝑒 × 𝑐

AND-OR I

𝑍 (S) = ∨
𝑖,𝑜∈S

𝑜 𝑂 (S) = ∧
𝑖,𝑜∈S

𝑜

S𝑒 = {𝑖, 𝑒 (𝑖) | 𝑖, 𝑜 ∈ S}
𝑐∧ = 𝑍 (S) ∨ ¬𝑍 (S𝑒)
𝑐∨ = 𝑂 (S) ∧ ¬𝑂 (S𝑒)
R∧∨ (𝑒,S) = (𝑒 ∧ 𝑐∧) ∨ 𝑐∨

Rotation
E

𝑐 = argmin
𝑘∈{0...𝑚−1}

𝑓S (𝑒 ◦ 𝑘)

R◦ (𝑒,S) = 𝑒 ◦ 𝑐
Log. left shift
Log. right shift

Affine I
𝑐1 = (𝑜1 − 𝑜2) (𝑒 (𝑖1) − 𝑒 (𝑖2))−1

𝑐2 = 𝑜2 − 𝑐1 · 𝑒 (𝑖2)
RAffine (𝑒,S) = 𝑐1 · 𝑒 + 𝑐2

Polynomial I

Lagrange interpolation on bit-vectors**
(𝑐0, . . . , 𝑐𝑘)𝑇 =

𝑉 −1 (𝑒 (𝑖0), . . . , 𝑒 (𝑖𝑘)) · (𝑜0, . . . , 𝑜𝑘)𝑇

RPoly (𝑒,S) =
𝑘∑
𝑖=0

𝑐𝑖 · 𝑒𝑖

(*) I : Inverse ; E: Exhaustive search
(**)𝑉 −1 a pseudo-inverse of the Vandermonde matrix (see [10]); 𝑣𝑇 is the transpose of 𝑣;

• The Polynomial inference rule RPoly targets expressions of the
form:

∑𝑘
𝑖=0 𝑐𝑖 · 𝑒𝑖 with 𝑘 a given integer and 𝑐𝑖 some constant

value. We adapt the Lagrange Interpolation for 𝐵𝑉 [𝑚] [10], solv-
ing a linear system of 𝑘 + 1 equations, with constraints over the
I/Os to ensure the existence of a solution. If the interpolation
can not be done, it falls back to the affine rule;
• Rror, R≪ and R≫ exhaustively search for the best candidate
through an internal minimization procedure (argmin). It is feasi-
ble as the set of candidates stays small.
Observe that the Addition, Xor, AND-OR masks, Shifts, and Ro-

tations rules cannot miss the target expression if there is a possible
match. This is explained by the fact that 1. +, ⊕, and ∧∨ are always
invertible; 2. shifts and rotations perform an exhaustive search.
Conversely, the Multiplication, Affine, and Polynomial rules are not
always invertible. In such a case, they fall back to a default result,
missing a possible match. In any case, for each rule, if it applies with
no fallback, it returns the best match possible, i.e., the reachable
expression that decreases the objective function score the most.

5.3 Implementation in XSmir

We implemented Smir in a prototype named XSmir, built on top of
the black-box deobfuscator Xyntia3 [39] from the Binsec frame-
work [20]. We follow the optimal set-up advised for Xyntia:

3https://github.com/binsec/xyntia

https://github.com/binsec/xyntia

CCS ’25, October 13–17, 2025, Taipei, Taiwan Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-Yves Marion

• Search algorithm.We use Iterated Local Search (ILS) [37], di-
rectly following Algorithm 3;
• Inference grammar.We use the Expr inference grammar from
Xyntia, which includes mixed boolean-arithmetic operators (¬,
−1, +, −, ×, ∧, ∨, ⊕) together with division;
• Objective function. We use the default Xyntia objective func-
tion: 𝑓S (𝑒) =

∑
𝑖,𝑜∈S

𝑙𝑜𝑔2 (1 + |𝑒 (𝑖) − 𝑜 |)

• Sampling.We consider the default sampling strategy, i.e., 5 fixed
input vectors – setting all input variables to the same constant
𝑐 among 0, 1, 2𝑚 − 1, 2𝑚−1 − 1, and −2𝑚−1 – together with 95
randomly generated inputs with𝑚 the size of the variable.

6 Evaluation

Our evaluation answers the following Research Questions:
RQ1 How does XSmir compare to state-of-the-art tools on real-world

obfuscated binaries ? We compare XSmir synthesis capabilities
against the state-of-the-art program synthesis tools CVC4,
CVC5 and DryadSynth, as well as black-box deobfuscators
Syntia and Xyntia, on a real-world dataset of obfuscated
binaries, evaluating their success and false positive rate;

RQ2 How well does XSmir compress obfuscated expressions ? We
evaluate XSmir compression capabilities on the largest ex-
pressions extracted from obfuscated binaries and MBA ex-
pressions generated by the Tigress obfuscator [17];

RQ3 Can XSmir handle the diversity of expressions in binaries ? We
compare XSmir against CVC4, CVC5, DryadSynth, Syntia,
and Xyntia on non-obfuscated binaries to evaluate how they
behave on a variety of expressions found in the wild;

RQ4 How does XSmir compares to white-box deobfuscation? We
compare XSmir against the state-of-the-art white-box deob-
fuscator ProMBA and Gamba over MBA expressions;

RQ5 How do internal parameters impact synthesis ? We studywhether
the choices of rule ordering and objective function impact our
results, and whether the distance based on inference rules is
fundamental to effectively guide the search.

6.1 Methodology

We compare XSmir with the program synthesizers CVC4/5 [6, 9],
and DryadSynth [22], the Mixed-Boolean Arithmetic (MBA) sim-
plifiers ProMBA [33], and Gamba [49],4 and the black-box deob-
fuscators Syntia [12] and Xyntia [39]. XSmir includes the nine
inference rules of Table 4 and the parameters from Section 5.3.

Metrics.We use the following metrics: success rate, false positive
rate, precision, compression and synthesis time. The success rate
is the ratio of expressions equivalent to their ground truth over
the whole dataset. Equivalence checking is performed with Bitwu-
zla [40], by comparing the expression extracted with Binsec [20]
and the synthesized one. The false positive rate is the difference be-
tween the Synthesis rate and the Success rate, where the Synthesis
rate is the ratio of expression found by the synthesizer, including
non-equivalent results (Synthesis rate ≥ Success rate). Hence, the
false positive rate indicates the percentage of cases in which an
4We did not consider MBABlast and MBASolver as they are older than ProMBA
and Gamba, MBABlast is very restrictive (can only handle expressions with up to 3
variables) and MBASolver is not publicly available.

expression has been found to match the I/O specification S but the
equivalence check failed. The precision is the ratio of equivalent
cases over the number of expressions found by the synthesizer.Com-
pression is the ratio of the sizes between the expression extracted
from the binary code and our synthesized expression. The size of an
expression is computed as the number of nodes in the expression
abstract-syntax-tree (including operators, variables, and constant
values). For instance, in the Snapchat example (Listing 1), XSmir
recovers tv_sec × 1000, which has a size of 3. As the obfuscated
expression has a size of 306, the compression rate is 102x. Over
non-obfuscated code, a compression ≥ 1 indicates that synthesis
returned the best result, i.e., as simple (or even simpler) as the orig-
inal one. Finally, the synthesis time gives the average and median
time spent on synthesis for each succesfully recovered expression.

Real obfuscated dataset (RQ1, RQ2).We consider a dataset of
binaries obfuscated with state-of-the-art obfuscation. It comprises
the APT-grade malware X-Tunnel studied in prior work [7] and
highly protected with opaque predicates; VMProtect a code comput-
ing various MBA expressions obfuscated with VMProtect, a leading
industrial obfuscator; Loki, a binary computing AES encryption,
obfuscated with the recently proposed Loki obfuscator [53]; and
the Obfuscation-Dataset by David et al.5, the largest obfuscated
dataset using real-world binaries, namely SQLite, FreeType, zlib
and lz4, obfuscated with Tigress and OLLVM. We split this last
dataset in two parts, OLLVM on which we apply the EncodeArith
option from the eponymous obfuscator, and Tigress v4 on which
we apply Tigress’ EncodeArith, EncodeLiteral and Virtualize options
(Table 6 summarizes the applied obfuscations).

To retrieve expressions, we divide each binary into basic blocks
(simply called blocks), i.e., code units without jumps or calls, using
Ghidra [41]. We filter out all duplicate blocks and randomly select
up to 10,000 of the remaining blocks. We then extract all input-
output relations from the blocks with symbolic execution using
Binsec [20], ending up with an expression for each output detected.
Finally, we filter out expressions with a size smaller than 3 (register
and memory reads, constant values, and unary operators) to keep
meaningful expressions. Statistics are provided in Table 5.

Real clean code dataset (RQ3). We also consider a dataset of
non-obfuscated software. It includes code blocks from: Core Utils,
i.e. system software available in any reputable Linux distribution;
the OpenSSL libraries libssl and libcrypto; Curl for networking
procedures; FFmpeg for image manipulation capabilities.

The rationale behind this benchmark and the focus on non-
obfuscated binaries is twofold. First, it aims to collect as many
diverse behaviors as possible from real-world code. Core Utils, Curl
and OpenSSL represent a diversity of features that could appear in
malware or protected software (networking, file handling, and cryp-
tography), while FFmpeg adds complex (hence, worth protecting)
processing functions, typically obfuscated in DRMs. Second, since
usual obfuscation does not impact black-box deobfuscation [39], if
a synthesizer recovers an expression from the dataset, it will also
recover its obfuscated versions.

Expressions are generated in the same manner as for the obfus-
cated dataset. Table 5 reports statistics for the two datasets.

5https://github.com/quarkslab/diffing_obfuscation_dataset

https://github.com/quarkslab/diffing_obfuscation_dataset

Augmenting Search-based Program Synthesis with Local Inference Rules to Improve Black-box Deobfuscation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 5: Number of blocks for each real-world and obfuscated binary programs

Core Utils OpenSSL Curl FFmpeg Total VMProtect X-Tunnel Loki OLLVM Tigress Total

blocks 38,847 66,359 13,204 291,196 409,606 414 33,923 589 41,966 146,310 223,202

(selected) (10,000) (10,000) (10,000) (10,000) (40,000) (414) (10,000) (589) (30,000) (89,004) (130,007)

Max size blocks 139 810 89 1,006 1006 47 1496 856 353 56,001 56001

Avg./median size blocks 7/5 6/4 5/4 9/5 7/5 10/7 212/22 8/5 6/4 11/6 11/6

Max size expressions 1,343 25,483 168,016 85,762 168,016 106 14,045 3,716,623 25,234 1,936,040 3,716,623

Avg./median size expressions 14/7 82/9 254/8 49/9 72/8 18/9 50/9 9,637/5 26/6 249/7 267/7

Table 6: Obfuscation applied to each binary in the OLLVM
and Tigress datasets. Empty cells indicate binaries that were

not available at the time of the experiments.

OLLVM
EncodeArith

Tigress
EncodeArith

Tigress
EncodeLiteral

Tigress
Virtualize

FreeType ✓ ✓ ✓

SQLite ✓ ✓ ✓ ✓

lz4 ✓ ✓ ✓ ✓

zlib ✓ ✓ ✓

Synthetic dataset (RQ5).We consider the B2comb synthetic dataset
that extends the B2 dataset proposed by Menguy et al. [39] (which
improved the dataset given by Blazytko et al. [12] with more diverse
and hard-to-synthesize expressions). As B2, our B2comb dataset
contains 1110 mixed-boolean arithmetic expressions. They use be-
tween 2 and 6 inputs, manipulate the−1,¬, +,−,×,∧,∨, ⊕ operators.
Each expression in B2comb extend an expression from B2, matching
one of the first 7 inference rule from Table 4 – we exclude the
affine and polynomial rules as they lead to expressions too com-
plex to be checked with Bitwuzla. For instance, B2comb contains
((𝑥 × 𝑦) ∨ (𝑦 + 𝑧)) × 0x5d544f40 as B2 includes (𝑥 × 𝑦) ∨ (𝑦 + 𝑧).
We took special care in balancing B2comb among the rules.

Set up. We run all experiments on a server with an Intel Xeon
4214 with 48 cores running at 3.2GHz and 400GB of memory. All
synthesis tasks are run in parallel on the 48 cores.

6.2 XSmir on obfuscated code (RQ1)

Table 7 compares the success, false positive, precision rate, the
compression rates, and the synthesis time of CVC4/5, DryadSynth,
Syntia, Xyntia, and XSmir on our real-world obfuscated dataset.

First, we observe that XSmir outperforms all the other tools both
within a 1s and a 60s time budget, except on VMProtect, where
Xyntia finds 1 ppt (points of percentage) more than XSmir on
1s, but then is 6 ppt behind for 60s. Indeed, withing 1s, CVC4/5
synthesizes about 28% of the dataset, DryadSynth 49%, Syntia
synthesizes 2%, Xyntia 54% and XSmir 65%. In 60s, CVC4/5 find
about 37%, DryadSynth 54%, Syntia 4% and Xyntia 63%, against
76% for XSmir. Hence, for both time budgets, XSmir achieves a
gain of more than 64 ppt and 12.5 ppt compared to Syntia and
Xyntia, as well as 36 ppt and 15 ppt for CVC4/5 and DryadSynth.
Interestingly, XSmir also halves the false positive rate compared to
Syntia and Xyntia in the 60s case and divides it by 4 for the 1s
case.Hence, XSmir increases the trust in synthesis results.

Considering each use-case separately, we observe that VMProtect-
obfuscated code has higher resilience to black-box deobfuscation

tools, with a 54% success rate for Xyntia up to 61% for XSmir. It
is conversely the binary with the highest success rate for CVC4/5,
synthesizing 54% of expression against ≈35% for the other cases.
Still, all expressions found by CVC4/5 and DryadSynth (but one)
are also found by XSmir. For Loki, Xyntia already successfully syn-
thesizes 84% of the expressions, leaving little room for improvement
to XSmir, although an increase of 4ppt for XSmir is observable,
which corresponds to some very large expressions with size ≥ 100
(cf. Section 6.3) that Xyntia cannot handle. More interestingly, we
observe an increase of about 16ppt between Xyntia and XSmir on
the OLLVM and Tigress obfuscated binaries.

Regarding the average synthesis time, XSmir takes overall 10%
more time to find expressions than Xyntia. Still, XSmir synthesizes
additional expressions. On the expressions recovered by both XSmir
and Xyntia, XSmir is actually 10% faster. CVC4/5 is about twice
as slow, and DryadSynth seems faster, but on the expressions
recovered by both XSmir and DryadSynth, they have similar speed.

Notably, we observe that stochastic search-based Xyntia already
outperformed the enumeration-based CVC4/5 and DryadSynth,
and that XSmir deepens the gap.

Conclusion. On obfuscated code, XSmir performs noticeably
better than prior black-box deobfuscators and synthesizers
in terms of success rate (+13.5ppt on average, up to +16.1ppt)
and false positives (divided by 2.4 on average compared to
black-box deobfuscators).

6.3 XSmir compression capabilities (RQ2)

We now evaluate XSmir compression capabilities.

Compression on obfuscated dataset.As shown in Table 7, XSmir
reaches on average a compression rate of 3.4 against 2.6 for Xyn-
tia, 1.2 for DryadSynth and 2.7 for CVC4/5. Syntia does reach a
higher compression rate of 4, but only because it synthesizes fewer
expressions. Over the subset of expressions found by both XSmir
and Syntia, XSmir achieves a compression rate of 5.3.

To better showcase the true compression capabilities of XSmir,
we gathered very large expressions from our obfuscated dataset.
Table 8 compares XSmir and Xyntia compression capabilities for
expressions of size larger than 50 and 100. We observe that, on
average, XSmir compresses expressions better than Xyntia. Indeed,
for expressions larger than 50, XSmir achieves a compression of
1012x against 658x for Xyntia. For expressions larger than 100,
XSmir yields a compression of 1776x compared to 1128x for Xyntia.

On X-Tunnel, we observe an average compression of 780x for
expressions of size over 100 and up to 2600x in some cases. For
Tigress the compression is 79x and 31x on average for expressions

CCS ’25, October 13–17, 2025, Taipei, Taiwan Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-Yves Marion

Table 7: Comparison of XSmir on real-world obfuscated code blocks

Timeout=1s Timeout=60s

VMProtect X-Tunnel Loki OLLVM Tigress Total VMProtect X-Tunnel Loki OLLVM Tigress Total

CVC4/5

Success rate 31.1% 22.6% 7.1% 26.6% 29.7% 28.4% 53.7% 36.7% 42.5% 32.0% 38.1% 37.2%
Precision / FP 99.6/0.1% 95.8/1.0% 90.1/0.8% 99.0/0.3% 98.5/0.5% 98.3/0.5% 99.8/0.1% 95.6/1.7% 97.6/1.1% 97.9/0.7% 95.4/1.8% 95.8/1.6%
Max compression 5x 880x 54880x 2x 71x 54880x 5x 880x 54880x 3x 71x 54880x
Avg compression 1.2x 12.8x 715.6x 1.0x 1.2x 3.3x 0.9x 8.2x 120.3x 0.9x 1.1x 2.7x
Mean time 0.17s 0.075s 0.084s 0.098s 0.097s 0.096s 3.857s 5.207s 1.376s 1.901s 2.302s 2.519s
Median time 0.054s 0.039s 0.037s 0.055s 0.039s 0.044s 0.476s 0.118s 1.28s 0.06s 0.055s 0.058s

DryadSynth

Success rate 6.5% 5.6% 1.9% 48.6% 55.8% 49.4% 8.5% 7.2% 4.2% 52.5% 60.2% 53.5%
Precision / FP 98.2/0.1% 88.2/0.8% 58.7/1.3% 95.9/2.1% 98.4/0.9% 97.9/1.1% 98.6/0.1% 87.9/1.0% 75.0/1.4% 94.4/3.1% 97.6/1.5% 97.0/1.7%
Max compression 5x 880x 8622x 2x 71x 8622x 5x 880x 8622x 2x 71x 8622x
Avg compression 1.3x 48.3x 728.1x 0.4x 0.6x 1.2x 1.0x 37.5x 346.4x 0.4x 0.5x 1.2x
Mean time 0.04s 0.069s 0.08s 0.109s 0.086s 0.089s 5.74s 5.492s 18.732s 0.652s 0.657s 0.731s
Median time 0.04s 0.047s 0.044s 0.048s 0.045s 0.045s 0.045s 0.055s 11.466s 0.05s 0.046s 0.047s

Syntia

Success rate 6.7% 7.3% 1.6% 0.7% 0.9% 1.5% 21.1% 15.8% 4.2% 2.5% 2.5% 3.8%
Precision / FP 83.8/1.3% 78.5/2.0% 52.3/1.5% 11.1/5.8% 17.0/4.4% 25.7/4.4% 74.6/7.2% 75.1/5.2% 55.6/3.4% 18.5/11.1% 19.6/10.2% 28.0/9.8%
Max compression 5x 265x 3695x 1x 8x 3695x 5x 265x 18293x 1x 8x 18293x
Avg compression 0.7x 3.2x 184.3x 0.4x 0.6x 3.2x 0.6x 1.9x 375.9x 0.4x 0.6x 4.0x
Mean time 0.368s 0.336s 0.301s 0.474s 0.44s 0.393s 6.499s 5.628s 7.134s 3.94s 2.972s 4.204s
Median time 0.305s 0.256s 0.11s 0.452s 0.421s 0.348s 2.147s 1.141s 1.81s 1.946s 1.565s 1.462s

Xyntia

Success rate 53.5% 61.7% 82.0% 47.9% 53.4% 53.6% 53.9% 70.6% 84.2% 60.4% 62.2% 62.8%
Precision / FP 95.6/2.5% 91.3/5.9% 93.1/6.1% 93.9/3.1% 92.4/4.4% 92.5/4.4% 95.2/2.7% 86.6/10.9% 92.6/6.7% 87.6/8.5% 87.3/9.1% 87.3/9.1%
Max compression 5x 2640x 25868x 2x 286x 25868x 5x 2640x 25868x 3x 286x 25868x
Avg compression 1.0x 11.7x 48.3x 0.8x 1.0x 2.6x 1.0x 10.3x 75.1x 0.7x 0.9x 2.6x
Mean time 0.023s 0.139s 0.16s 0.126s 0.108s 0.114s 0.249s 1.149s 0.296s 1.757s 1.369s 1.389s
Median time 0.009s 0.039s 0.09s 0.029s 0.021s 0.023s 0.009s 0.062s 0.096s 0.064s 0.036s 0.041s

XSmir

Success rate 52.1% 68.8% 84.9% 64.3% 64.6% 65.0% 60.7% 76.4% 88.8% 76.5% 76.2% 76.3%
Precision / FP 99.1/0.5% 96.6/2.5% 97.7/2.0% 99.2/0.5% 98.5/1.0% 98.4/1.1% 98.3/1.1% 93.3/5.5% 96.6/3.1% 96.7/2.6% 95.2/3.8% 95.3/3.8%
Max compression 5x 2640x 109761x 4x 286x 109761x 5x 2640x 109761x 5x 286x 109761x
Avg compression 1.0x 12.3x 190.5x 1.0x 1.1x 3.9x 1.0x 11.1x 182.2x 0.9x 1.1x 3.4x
Mean time 0.11s 0.037s 0.099s 0.096s 0.083s 0.081s 0.63s 1.692s 0.295s 1.551s 1.516s 1.525s
Median time 0.023s 0.017s 0.022s 0.047s 0.047s 0.038s 0.029s 0.018s 0.024s 0.05s 0.05s 0.049s

Table 8: XSmir against Xyntia on big expressions from real-world obfuscated code blocks

Size ≥ 50 Size ≥ 100

VMProtect X-Tunnel Loki OLLVM Tigress Total VMProtect X-Tunnel Loki OLLVM Tigress Total

Xyntia #Expressions simplified 0 267 16 1 46 330 0 168 13 0 6 187
Avg. compression - 477x 5534x 2x 26x 658x - 726x 6797x - 88x 1128x

XSmir #Expressions simplified 0 287 23 0 61 371 0 179 20 0 8 207
Avg. compression - 508x 9896x - 31x 1012x - 780x 11368x - 79x 1776x

Table 9: Results over Tigress MBA expressions with increas-

ing complexity for 60s (5582 expressions for each level)

Time Compression

Success Precision / FP (avg/median) Lvl-1 Lvl-2 Lvl-3

CVC4/5 81.0% 99.6% / 0.3% 0.91s / 0.004s 17× 28× 77×
Dryad. 30.1% 98.5% / 0.5% 2.28s / 0.05s 12× 20× 53×
Syntia 34.3% 75.8% / 23.4% 3.67s / 1.61s 10× 18× 42×
Xyntia 86.2% 96.3% / 3.1% 0.53s / 0.003s 17× 27× 74×
XSmir 90.5% 98.3% / 1.1% 1.8s / 0.06s 17× 29× 80×
The data are provided for three obfuscation levels ordered by their complexity.

larger than 100 and 50. Interestingly, on Loki, for expressions larger
than 100, XSmir reaches a compression rate 1.7 times higher than
Xyntia. Indeed, XSmir handles 7 more expressions than Xyntia
where it divides their size by 11,368x. Some of the original expres-
sions even reached a size over 250,000 that XSmir reduced by a
factor 100,000x. Overall, XSmir deobfuscates 41 expressions larger
than 50 and 20 expressions larger than 100 on which Xyntia fails.

MBAextracted fromTigress.Table 9 shows the results of CVC4/5,
DryadSynth, Syntia, Xyntia and XSmir when focusing on the
5,582 mixed boolean-arithmetic expressions created by Tigress over

the Freetype, Sqlite, and lz4 binaries (zlib is not included because
Tigress MBA extraction failed on it). It considers three levels of
obfuscation, ordered by their complexity. We observe that XSmir
achieves a compression comparable to Xyntia (size is divided by
80 on average for level 3 expressions). Moreover, XSmir synthe-
sizes more MBA expressions than Xyntia, with a smaller false
positive rate. It ends up with XSmir drastically simplifying 366
highly obfuscated MBA expressions that were out-of-reach of Xyn-
tia. In addition, XSmir compression is similar to CVC4/5 while
it reaches a better success rate (90% vs. 80%), and 1.5x better than
DryadSynth, which recovers only about 30% of expressions with a
lower compression rate (about 54× for level 3). Interestingly, XSmir
outperforms all the competitors with an acceptable synthesis time:
successful synthesis take on average less that 2s (median: 0.06s).

Conclusion. XSmir can achieve significant reductions of
large obfuscated code and retrieve their original size, while be-
ing able to succeed more often than competitors and with less
false positive than Xyntia. Interestingly, on average, XSmir
achieves better compression over obfuscated code than prior
black-box approaches, getting closer to minimal recovery.

Augmenting Search-based Program Synthesis with Local Inference Rules to Improve Black-box Deobfuscation CCS ’25, October 13–17, 2025, Taipei, Taiwan

6.4 XSmir on non-obfuscated code (RQ3)

Table 11 depicts the results of XSmir, Xyntia, Syntia, CVC4/5,
DryadSynth on our real clear dataset.

XSmir significantly outperforms Xyntia there, demonstrating
its superior ability to recover a wide range of semantic behaviors,
with gains up to ≈ 38ppt for Core Utils and OpenSSL, progressing
from ≈ 52% to ≈ 90% success rate for a 60-second timeout. Curl
and FFMpeg have a smaller but still marked gain of approximately
25 and 15 ppt. Syntia is largely behind Xyntia and XSmir. We
observe that the gain is even stronger for a one-second timeout,
with gains up to 47 ppt from Xyntia to XSmir, and an average of
35 ppt. The raw success rate is about 80%, very close to the one
achieved within a 60-second timeout (84%).

Interestingly, CVC4/5 and DryadSynth showcase strikingly
poor results here, averaging success about 18% for CVC4/5 and
5% for DryadSynth. Recall that this dataset encompasses a wide
range of semantic behaviors, and that many of them require non-
trivial constant values, which are hard to synthesize for CVC4/5
and DryadSynth.

Moreover, XSmir reaches a compression close to 1, which shows
that the results returned by XSmir are very close to the perfect
solutions – this is not the case for Xyntia and DryadSynth, which
return expressions about twice the size. CVC4/5, however, present
a similar compression rate.

Finally, the false positive rate is drastically reduced from Xyntia,
from an average of 5% to about 1%, significantly strengthening the
trust in XSmir as a black-box deobfuscator.

Conclusion. XSmir shows a significantly higher ability than
prior black-box approaches to recover a wide range of seman-
tic behaviors found in the wild (+29ppt on average). Moreover,
it must be noted that on non-obfuscated code, XSmir achieves
a compression close to 1x, demonstrating its superior ability
to recover close-to-minimal expressions.

Table 10: Comparison between Xyntia, XSmir, ProMBA and

Gamba on the Tigress MBA expressions (TO = 60s)

Level-1 Level-2 Level-3

Xyntia

Success 84.1% 83.6% 83.2%
Precision / FP 93.7% / 5.6% 94.0% / 5.3% 93.4% / 5.8%

Avg. / Median Time 0.3s / 0.002s 0.3s / 0.002s 0.3s / 0.002s
Compression 17× 28× 76×

XSmir

Success 89.4% 88.9% 88.9%

Precision / FP 98.9% / 1.3% 98.9% / 1.4% 98.9% / 1.1%
Avg. / Median Time 1.8s / 0.06s 1.8s / 0.06s 1.8s / 0.06s

Compression 17× 29× 79×

ProMBA

Success 85.4% 77.4% 44.8%
Precision / FP 100% / 0% 100% / 0% 100% / 0%

Avg. / Median Time 18s / 7s 26s / 24s 37s / 38s
Compression 15× 23× 56×

Gamba

Success 76.7% 70.6% 49.5%
Precision / FP 100% / 0% 100% / 0% 100% / 0%

Avg. / Median Time 1.3s / 0.6s 3s / 1s 10s / 5s
Compression 16× 24× 57×

The data are provided for three obfuscation levels ordered by their complexity. The analysis is
considered a success if the retrieved expression is less than five times the size of the ground truth.

6.5 XSmir vs White-box Deobfuscation (RQ4)

We compare XSmir against the state-of-the-art white-box deobfus-
cators ProMBA and Gamba over theMBA extracted with Tigress v4
and an obfuscated version of B2comb. ProMBA and Gamba always
return a result, even if they did not fully simplified the expression.
Thus, in this part, we consider that the deobfuscation is a success if
the simplified expression is at most 5 times bigger than the target
non-obfuscated expression.

Table 10 shows the results of XSmir against ProMBA and Gamba
on MBA expressions extracted with Tigress for 3 levels of obfusca-
tion. We observe that XSmir reaches the best success, recovering
89% of the expressions independently of the level of obfuscation
applied. On the other hand, ProMBA and Gamba are impacted by
the level of obfuscation. Hence, they respectively reach a success of
85.4% and 76.7% over the simplest MBA expressions (level 1), which
is close to XSmir. However, with more complex obfuscation (level 2
and 3), we observe that they recovers a lot fewer expressions than
XSmir: respectively 77.4% and 70.6% for the second level of obfus-
cation and only 44.8% and 49.5% for the third level of obfuscation.

Table 12 shows the results of XSmir against ProMBA and Gamba
on the B2comb dataset obfuscated with Tigress. Here also XSmir
highly outperforms them, recovering 44.9% of the expressions
against 3.0% for Xyntia, 5.2% for ProMBA and 22% for Gamba.
The compression of XSmir is also a lot higher, dividing expression
sizes by 219 on average against 90 for ProMBA and 118 for Gamba.

The origin of XSmir good results over white-box deobfuscation is
two-fold. First, the more obfuscated the expression is, the more time
white-box methods need for simplification. A 1-minute time budget
is already not enough for ProMBA and Gamba on the first level of
obfuscation. Conversely, XSmir is not impacted by the obfuscation
and synthesis often takes less than 1s. Second, ProMBA and Gamba
breaks down the expressions into an algebraic basis, which may
not be the simplest representation.

Conclusion. XSmir outperforms the MBA deobfuscators
ProMBA and Gamba over all MBA obfuscations. Over highly
complex MBA expressions, XSmir succeed almost 2 times
more often than white-box deobfuscators. This is an unex-
pected outcome as ProMBA and Gamba are dedicated to
handling MBA simplification while XSmir is general and can
be applied to many different obfuscations.

6.6 XSmir Internal Evaluation (RQ5)

We evaluate the impact of internal parameters on synthesis, namely,
the effect of inference-based guidance and the impacts of the ob-
jective function and of the inference rule order. To highlight subtle
behaviors of XSmir, we rely on the B2comb synthetic dataset.

Cost of Smir. We first evaluate the impact of Smir on the search.
Table 13 compares Xyntia and XSmir on B2comb with a one-hour
delay. We observe that Xyntia can only synthesize 3.4% of B2comb
while XSmir reaches a 47.7% success rate, when the program synthe-
sizers fail totally— success equals 0.9% for CVC4/5 andDryadSynth.
This shows that Smir highly improves efficiency on the hard prob-
lems provided in B2comb. Interestingly, XSmir reaches such a good
success rate even though the number of explored solutions per
second is 120× smaller for XSmir than for Xyntia (300 vs. 38,000

CCS ’25, October 13–17, 2025, Taipei, Taiwan Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-Yves Marion

Table 11: Comparison of XSmir on real-world code blocks

Timeout=1s Timeout=60s

Core Utils OpenSSL Curl FFmpeg Total Core Utils OpenSSL Curl FFmpeg Total

CVC4/5

Success rate 12.0% 11.0% 11.4% 19.9% 13.8% 16.8% 14.2% 14.7% 25.2% 18.1%
Precision / FP 95.0/0.6% 95.6/0.5% 91.5/1.1% 94.3/1.2% 94.3/0.8% 92.9/1.3% 94.4/0.8% 89.9/1.7% 92.4/2.1% 92.5/1.5%
Max compression 20x 49x 62x 7x 62x 20x 49x 62x 7x 62x
Avg compression 1.1x 1.2x 1.0x 1.0x 1.1x 0.9x 1.1x 0.9x 0.9x 1.0x
Mean time 0.078s 0.069s 0.071s 0.085s 0.078s 2.124s 2.402s 2.616s 2.127s 2.256s
Median time 0.051s 0.051s 0.05s 0.052s 0.051s 0.055s 0.054s 0.052s 0.054s 0.054s

DryadSynth

Success rate 3.6% 4.3% 3.5% 2.7% 3.5% 4.9% 5.5% 5.5% 4.3% 5.0%
Precision / FP 94.0/0.2% 91.9/0.4% 86.7/0.5% 78.7/0.7% 88.3/0.5% 92.5/0.4% 92.1/0.5% 86.8/0.8% 75.2/1.4% 86.4/0.8%
Max compression 20x 49x 62x 7x 62x 20x 49x 62x 7x 62x
Avg compression 1.0x 1.3x 0.8x 0.7x 1.0x 0.7x 1.0x 0.5x 0.5x 0.7x
Mean time 0.094s 0.067s 0.095s 0.123s 0.092s 4.271s 5.975s 8.045s 8.029s 6.446s
Median time 0.046s 0.044s 0.061s 0.065s 0.05s 0.057s 0.05s 0.087s 0.134s 0.069s

Syntia

Success rate 2.5% 2.2% 2.1% 4.1% 2.8% 8.8% 6.9% 7.5% 13.3% 9.3%
Precision / FP 73.9/0.9% 65.7/1.2% 67.3/1.0% 67.3/2.0% 68.5/1.3% 67.0/4.3% 62.7/4.1% 64.9/4.0% 61.7/8.3% 63.7/5.3%
Max compression 3x 12x 8x 2x 12x 3x 12x 8x 2x 12x
Avg compression 0.5x 0.5x 0.5x 0.5x 0.5x 0.5x 0.5x 0.5x 0.4x 0.5x
Mean time 0.454s 0.43s 0.436s 0.428s 0.436s 5.949s 4.392s 5.16s 5.451s 5.346s
Median time 0.433s 0.405s 0.4s 0.404s 0.411s 2.231s 1.846s 2.059s 2.016s 2.053s

Xyntia

Success rate 39.5% 46.7% 51.4% 43.4% 44.7% 52.0% 55.0% 64.7% 51.8% 55.2%
Precision / FP 92.7/3.1% 94.9/2.5% 94.6/2.9% 92.2/3.7% 93.5/3.1% 88.5/6.7% 93.2/4.0% 92.0/5.6% 86.4/8.1% 89.8/6.2%
Max compression 20x 198x 11x 23x 198x 20x 198x 11x 23x 198x
Avg compression 0.7x 0.7x 0.7x 0.8x 0.7x 0.6x 0.6x 0.6x 0.7x 0.6x
Mean time 0.209s 0.228s 0.228s 0.147s 0.201s 3.482s 1.199s 1.934s 1.435s 2.037s
Median time 0.12s 0.153s 0.152s 0.027s 0.111s 0.233s 0.209s 0.232s 0.072s 0.189s

XSmir

Success rate 86.3% 88.9% 87.9% 61.6% 80.4% 89.8% 91.6% 90.2% 67.6% 84.1%
Precision / FP 99.3/0.6% 99.2/0.7% 98.5/1.4% 98.1/1.2% 98.8/1.0% 98.0/1.9% 98.4/1.5% 97.1/2.7% 95.4/3.3% 97.3/2.3%
Max compression 20x 198x 60x 27x 198x 20x 198x 60x 27x 198x
Avg compression 1.0x 1.1x 1.0x 1.0x 1.0x 1.0x 1.1x 1.0x 1.0x 1.0x
Mean time 0.036s 0.036s 0.032s 0.059s 0.04s 0.437s 0.267s 0.244s 1.1s 0.499s
Median time 0.017s 0.017s 0.017s 0.018s 0.018s 0.018s 0.018s 0.017s 0.018s 0.018s

Table 12: Xyntia, XSmir, ProMBA and Gamba on B2comb

obfuscated by Tigress (MBA obfuscation level 3; TO=1h)

Success FP Precision Avg./Median Time Compr.

Xyntia 3.0% 1.3% 78.0% 24s / 1s 266×
XSmir 44.9% 3.2% 93.7% 365s / 143s 219×
ProMBA 5.2% 0% 100% 194s / 78s 90×
GAMBA 22% 0% 100% 256s / 60s 118×
We count a success if the result is less than five times the size of the ground truth.

Table 13: Evaluation on synthetic datasets (TO=1h)

B2comb

Xyntia

Success 3.4%
Precision / False positive 72.0% / 1.3%
Avg. compression 2.6x
Avg. / Median time 42.3s / 1.7s

XSmir

Success 47.7%
Precision / False Positive 92.8% / 3.2%
Avg. compression 1.4x
Avg. / Median time 332s / 29.9s

XSmir −
Success 27.8%
Precision / False positive 95.5% / 1.3%
Avg. compression 1.6x
Avg. / Median time 343s / 35.1s

candidate solutions per second). This highlights that good guidance
introduced with Smir counterbalances rules computing costs. Nev-
ertheless, adding too many inference rules would certainly impact
synthesis at some point, as adding too many rewriting rules may
hinder a solver. The evaluation shows that our set of inference
rules offers a good balance between expressiveness and speed. Still,
finding methods to limit rule overhead is a promising direction.

Ablation Study –Guidance Impact.Table 13 evaluates the impact
of our extended guidance on XSmir. To do so, we consider a new
version of XSmir, noted XSmir − where the inference rules are only
applied for the termination condition i.e., at line 5 of Algorithm 3
to check if there is an inference rule R s.t., 𝑓S (R(𝑒,S)) = 0. If so, it
returns R(𝑒,S). Otherwise, it computes the usual Xyntia objective
function, i.e., line 11 computes 𝑓S (𝑒′). Hence, unlike XSmir, the
guidance is not performed modulo inference rules.

XSmir− synthesizes only 27.8% of B2comb, compared to 47.7% for
XSmir. Overall, these results show that guidance modulo inference
rules is fundamental to make the most of Smir and XSmir.

Parameters Analysis. Wenow examine the impact of the objective
function choice and the inference rules order.
• The guidance depends on the objective function 𝑓S . We checked
that XSmir always outperforms Xyntia independently of the
following typical choices of 𝑓S : arithmetic, logarithmetic, ham-
ming and xor (see Table 14) on B2comb within 1h. Table 15 shows

Augmenting Search-based Program Synthesis with Local Inference Rules to Improve Black-box Deobfuscation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 14: Definition of the objective functions

Arithmetic 𝑓S (𝑒) =
∑

𝑖,𝑜∈S
|𝑒 (𝑖) − 𝑜 |

Logarithmetic 𝑓S (𝑒) =
∑

𝑖,𝑜∈S
log2(1 + |𝑒 (𝑖) − 𝑜 |)

Hamming 𝑓S (𝑒) =
∑

𝑖,𝑜∈S
bitcount(𝑒 (𝑖) ⊕ 𝑜)

XOR 𝑓S (𝑒) =
∑

𝑖,𝑜∈S
|𝑒 (𝑖) ⊕ 𝑜 |

Table 15: Impact of the objective function (B2comb, TO=1h)

Arith Logarith Hamm XOR

Xyntia

Succ. 1.9% 3.4% 3.1% 1.9%
Precision / FP 60.6% / 1.2% 72.0% / 1.3% 67.3% / 1.5% 58.8% / 1.3%
Avg. compr. 3.5x 2.6x 2.6x 3.6x
Avg. / Median time 187s / 2.2s 42.3s / 1.7s 107s / 1.6s 140s / 0.6s

XSmir

Succ. 40.7% 47.7% 47.1% 38.2%
Precision / FP 93.7% / 2.7% 92.8% / 3.7% 91.7% / 4.2% 94.2% / 2.4%
Avg. compr. 1.4x 1.4x 1.3x 1.5x
Avg. / Median time 328s / 17.1s 332s / 29.9s 315s / 44.9s 257s / 18.3s

Table 16: Impact of the operators’ order (B2comb, TO=1h)

Orders Succ. Prec. FP Avg. Avg. Median
Compr. Time Time

1 (default) 47.7% 92.8% 3.7% 1.4x 332s 29.9s
2 47.1% 90.4% 5.0% 1.4x 362s 26.3s
3 45.2% 88.2% 6.1% 1.4x 324s 34.1s
4 44.9% 89.4% 5.3% 1.4x 295s 28.6s
5 47.3% 88.9% 5.9% 1.4x 341s 29.1s
6 48.7% 91.5% 4.5% 1.4x 354s 32.6s

Orders Associations

1 +, ×, ⊕,∧∨, ror, shiftl , ushiftr , affine , poly
2 affine , shiftl ,∧∨, ushiftr , ror, +, ×, poly, ⊕
3 shiftl ,∧∨, +, ushiftr , ⊕, affine , poly, ×, ror
4 poly, ushiftr , ⊕, affine , shiftl , +, ×, ror,∧∨
5 ×, ror, ⊕,∧∨, +, ushiftr , shiftl , affine , poly
6 ⊕, shiftl , +, ×,∧∨, ushiftr , ror, affine , poly

Table 17: XSmir with the product against the min inference

rule combinator (TO=1h)

B2comb

XSmir

Success 47.7%
Precision / False Positive 92.8% / 3.2%
Avg. compression 1.4x
Avg. time / Median time 332s / 29.9s

XSmir-min

Success 56.6%
Precision / False Positive 90.4% / 7.5%
Avg. compression 1.27
Avg. time / Median time 155s / 24s

that, as expected, XSmir always highly outperforms Xyntia
(≈+36ppt) with all tested objective functions;
• We study the impact of the inference rule order (Table 16). Over
6 inference rules order from Table 4, we observe no significant
result variation on B2comb within 1h. Both success and false
positive rates only vary of 4 ppt among the permutations;

• XSmir guides the search w.r.t. multiple inference rules by com-
puting the product of the objective function results (cf. line 5 and
10 in Algorithm 3). Table 17 shows the results on B2comb when
taking instead the minimum objective function result. It yields a
better success rate (56.6% against 47.7%) and halves the average
success time (155s against 332s), yet doubles the false positive
rate, which we consider bad. Overall, there is still room for im-
provement, and better combinators is a promising direction.

Conclusion. Internal evaluation demonstrates that the novel
guidance mechanism in XSmir is indeed important; that the
ordering of inference rules and the choice of the objective
function do not alter our main findings; that while the Smir
mechanism has some significant cost in term of search speed,
it is positively balanced by higher inference abilities; and
finally that the product inference rules combinator is a good
balance between success and false positives.

7 Discussions

Smir enables the application of black-box deobfuscation in a more
general manner than previous works, that were mostly applied
to virtual machine handlers. We discuss a few limits and possible
extensions hereafter.

Limits. Smir empowers the reverser with more control over the
synthesis process by crafting a set of dedicated rules that can help
overcome typical weaknesses of black-box synthesis as well as
specific hard patterns that could be found in obfuscated codes.

Still, Smir inherits the usual black-box deobfuscation limitations,
which are orthogonal to the work presented here. First, its expres-
siveness is restricted by the inference grammar G. While there is
no a priori limit as long as the operands in the grammar can be exe-
cuted against sample inputs, in practice this line of work considers
rather simple expression languages, not full fledge program gram-
mars (ex: no loop nor conditonal expression). Second, the method
crucially relies on the selected reverse window. In Section 6, these
are automatically extracted for the sake of systematic evaluation.
However, black-box deobfuscation is not restricted to such reverse
windows, as it can in principle cope with any single-entry single-
exit code subpart [39] – possibly including conditionals, loops or
even multi-threading – as long as the input/output are clearly iden-
tified and the underlying behaviour remains semantically simple.6
Automated detection of such complex reverse windows is an inter-
esting research direction. Finally, black-box inference may also,
in some cases, crucially depend on the I/O sampling strategy, for
example, for point functions [39].

Synthesis may also fail. Common failure cases of XSmir include
the need for nested constant values and large expressions. Also, an
interesting source of false positive is the division operator, that can
yield expressions incorrect at a single point. For instance, XSmir
sometimes generates x/x instead of 1, which differs only on x=0.
Detecting such patterns would reduce false positives even more.

6It is even possible in principle to synthesize code with (bounded) loops or conditions
as all executable operations can be added to the XSmir grammar. Yet, it would drasti-
cally increase the search space size. Especially, loops are beyond SOTA synthesizers
capabilities. For conditionals, the major challenge is to correctly sample the input to
activate all branches. Using ideas from CEGIS (counter-example guided synthesis)
seems then mandatory, hence leaving the black-box setting.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Vidal Attias, Nicolas Bellec, Grégoire Menguy, Sébastien Bardin, and Jean-Yves Marion

Genericity of Smir and XSmir. Our proposal is very generic and
can be applied and customized in many ways. Adding inference
rules can be easily done for any search-based synthesis method,
be it enumerative [2, 15] or stochastic [2, 28]. Also, while we pre-
sented the approach in a black-box scenario, it can also be used in a
greybox deobfuscation scenario [21], where synthesis is recursively
attempted on each sub-expression of the obfuscated expression.
Finally, customization to specific examples can be achieved either
by extending the inference grammar, or by adding new inference
rules, giving flexibility to an advanced reverser.

Rules rationale.We designed rules for standard bitvector opera-
tors and generalized them to affine, masks and polynomial relations.
Following the principles from Section 5.2, we either check if some
inverse operation could be applied or if full enumeration is possible.
Finding new rules could follow the same process. We believe it
is worth the effort: as obfuscation does not change the semantics
of the underlying code, new inference rules will easily transfer
between use cases and obfuscation techniques.

8 Related work

Black-box deobfuscation. [12, 39] has already been extensively
discussed. Smir extends synthesis to handle usual hard-to-synthesize
expressions, making it possible to apply black-box deobfuscation
beyond the usual virtualization scenario.

White- and grey-box deobfuscation. Recent advances leverage
static program analysis, especially symbolic methods, to simplify ob-
fuscated programs [3, 7, 14, 32, 51, 54, 60]. These are white-box and
usually show strong guarantees. Conversely, they are inherently
impacted by syntactic complexity, impeding their use on heavily
obfuscated binaries. More importantly, efficient countermeasures
have been proposed [44, 45, 55].

David et al. [21] proposed QSynth, a grey-box approach where
black-box synthesis is applied recursively to the expression under
analysis and its sub-expressions. Our method can be used to replace
the cache-based black-box recovery method from QSynth.

Program synthesis. [2, 28] aims to infer a program based on a
user-given specification. The specification can take various forms,
e.g., a logical formula, a trace, or a set of input/output relations,
a.k.a Programming by Example (PBE) [28]. In this work, we propose
the Smir PBE framework that uses inference rules i) to elevate a
candidate solution to a final one; and ii) to guide the synthesis.

Other works use automated reasoning to complement candidate
solutions. Cegis(𝜏) [1] attempts to find non-trivial constant val-
ues by generating incomplete programs and using an SMT solver
to fill in the gaps with appropriate constant values. It is, however,
computationally heavy [1] and it requires a ground-truth (e.g., an ex-
pression) to perform counter-example guided synthesis. Thus, it is
not suited for black-box deobfuscation. DryadSynth [22] combines
previous candidate solutions using bottom-up deduction rules. It only
enables the combination of already seen candidate expressions, and
cannot create new sub-terms (like constant values). Moreover, these
bottom-up deduction rules do not guide the synthesis. This is thus
very different from our mechanism, and possibly complementary.

Regarding guidance, different approaches [8, 35, 61] use machine
learning to bias the search toward likely solutions. EuPhony [35]

uses a custom probabilistic model to enumerate expressions more
likely to be a solution — according to the training. However, Barke
et al. [8] showed that it is brittle outside its own benchmarks and
proposed Probe [8] to learn likely programs just-in-time, avoid-
ing training datasets overfitting. Li et al. [61] use Large Language
Models for guidance. These approaches could benefit from Smir
and conversely. Neo [24] implements a CDCL-like algorithm to
learn from past mistakes and guide enumerative synthesis with
additional constraints. However, it is not applicable to black-box
deobfuscation since it checks against a ground-truth.

Finally, deductive synthesis [30, 38, 48] is not to be confused with
our contribution. Deductive synthesis aims at generating programs
starting from the specifications and using rewrite rules to deduce
a program, in a top-down fashion. Similarly, some work do rule
inference [42, 43], trying to learn new rewrite rules from a corpus
of programs to improve inference of whole programs from specifi-
cation, while we exploit inference rules, that deduce a final solution
from a candidate one, bridging the gap between bottom-up and
top-down synthesis.

9 Conclusion

Black-box deobfuscation is a promising research area, yet limited
by current synthesis capabilities. Applying it at scale beyond the
virtualization case is still an open problem, as it requires to recover a
wide range of semantically distinct behaviors, including for example
arbitrary constant values, linear or polynomial expressions, etc.
With a view to expand the scope of black-box deobfuscation from
virtualization to generic programs, we propose Search Modulo
Inference Rules (Smir), the first synthesis framework combining
search with inference rules in order to recover usually hard-to-
synthesize expressions. We implement the approach in XSmir, a
novel black-box deobfuscator able to fully recover most basic blocks
from real-world binaries, be they obfuscated or not, demonstrating
superior performance compared to state of the art in terms of higher
success rate and lower false positive rates, and achieving potentially
high compression on heavily obfuscated code.

Ethical Considerations

Practical deobfuscation tools and techniques helps in malware anal-
ysis and to assess the strength of current obfuscators used for legit-
imate Intellectual Properties protection, and are thus important for
security. On the other hand, deobfuscation tools could be used to
help malicious reversers stealing intellectual property included in
software. Such a dual use is unfortunately common in security, and
the community generally considers that open research brings more
benefits than harm. The present work stands in this long lasting
line of research on obfuscation and deobfuscation techniques.

Acknowledgments

This work has benefited from a government grant managed by
the National Research Agency under France 2030 with reference
“ANR-22-PECY-0007”; from the BPI under Plan France 2030 with
reference DOS0233319/00; and from the European Union’s Horizon
Europe research and innovation programme ENSEMBLE under
grant agreement No 101168360.

Augmenting Search-based Program Synthesis with Local Inference Rules to Improve Black-box Deobfuscation CCS ’25, October 13–17, 2025, Taipei, Taiwan

References

[1] Alessandro Abate, Haniel Barbosa, and Clark Barrett et al. 2023. Synthesising
Programs with Non-trivial Constants. J. of Automated Reasoning (2023).

[2] Rajeev Alur, Rastislav Bodík, and Garvit et al. Juniwal. 2013. Syntax-guided
synthesis. In Formal Methods in Computer-Aided Design, FMCAD. IEEE.

[3] Sebastian Banescu, Christian Collberg, and Vijay et al. Ganesh. 2016. Code ob-
fuscation against symbolic execution attacks. In Annual Conference on Computer
Security Applications, ACSAC.

[4] Boaz Barak. 2016. Hopes, fears, and software obfuscation. Commun. ACM (2016).
[5] Boaz Barak, Oded Goldreich, and Impagliazzo et al. 2012. On the (im) possibility

of obfuscating programs. Journal of the ACM (JACM) (2012).
[6] Haniel Barbosa, Clark Barrett, and Martin Brain et al. 2022. cvc5: A Versatile and

Industrial-Strength SMT Solver. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer.

[7] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded
DSE: Targeting Infeasibility Questions on Obfuscated Codes. In Symposium on
Security and Privacy, SP 2017. IEEE.

[8] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time learning
for bottom-up enumerative synthesis. Proc. ACM Program. Lang. (2020). Issue
OOPSLA.

[9] Clark Barrett, Christopher L. Conway, and Morgan Deters et al. 2011. CVC4. In
Conference on Computer Aided Verification (CAV ’11). Springer.

[10] Lucas Barthelemy, Ninon Eyrolles, and Guénaël et al. Renault. 2016. Binary
permutation polynomial inversion and application to obfuscation techniques. In
Proceedings of the 2016 ACM Workshop on Software PROtection. 51–59.

[11] Tim Blazytko. [n. d.]. Binary Ninja plugin to identify obfuscated code and other in-
teresting code constructs. https://github.com/mrphrazer/obfuscation_detection.

[12] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.
Syntia: Synthesizing the Semantics of Obfuscated Code. In Usenix Security.

[13] Cameron Browne, Edward Powley, and Daniel et al. Whitehouse. 2012. A sur-
vey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in games (2012).

[14] David Brumley, Cody Hartwig, and Zhenkai Liang et al. 2008. Automatically
Identifying Trigger-based Behavior in Malware. In Botnet Detection: Countering
the Largest Security Threat. Springer.

[15] José Cambronero, Sumit Gulwani, and Vu Le et al. 2023. FlashFill++: Scaling
Programming by Example by Cutting to the Chase. Proc. ACM Program. Lang.
POPL (2023).

[16] Roxane Cohen, Robin David, and Florian Yger et al. 2025. Identifying Obfuscated
Code through Graph-Based Semantic Analysis of Binary Code. CoRR (2025).

[17] C. Collberg, S. Martin, J. Myers, and B. Zimmerman. [n. d.]. The Tigress C
Diversifier/Obfuscator. http://tigress.cs.arizona.edu/

[18] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Surreptitious Software:
Obfuscation, Watermarking, and Tamperproofing for Software Protection.

[19] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations.

[20] Robin David, Sébastien Bardin, and Thanh Dinh et al. Ta. 2016. BINSEC/SE: A
dynamic symbolic execution toolkit for binary-level analysis. In Software Analysis,
Evolution, and Reengineering (SANER). IEEE.

[21] Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth-A Program
Synthesis based Approach for Binary Code Deobfuscation. In BAR 2020 Workshop.
Internet Society.

[22] Yuantian Ding and Xiaokang Qiu. [n. d.]. Enhanced Enumeration Techniques for
Syntax-Guided Synthesis of Bit-Vector Manipulations. ([n. d.]).

[23] Chris Eagle. 2011. The IDA pro book. no starch press.
[24] Yu Feng, Ruben Martins, and Osbert et al. Bastani. 2018. Program synthesis using

conflict-driven learning. In PLDI’18. ACM.
[25] UNH SoftSec Group. 2021. MBA-Solver Code and Dataset. https://github.com/

softsec-unh/MBA-Solver .
[26] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-

output examples. In POPl’11. ACM.
[27] Sumit Gulwani. 2016. Programming by examples. Dependable Software Systems

Engineering 45, 137 (2016), 3–15.
[28] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.

Foundations and Trends® in Programming Languages (2017).
[29] hot3eed. 2024. Reverse Engineering Snapchat (Part I): Obfuscation Techniques.

https://hot3eed.github.io/snap_part1_obfuscations.html.
[30] Shachar Itzhaky, Hila Peleg, and Nadia et al. Polikarpova. 2021. Cyclic program

synthesis. In POPl. ACM.
[31] Pascal Junod, Julien Rinaldini, and Johan Wehrli et al. 2015. Obfuscator-LLVM –

Software Protection for the Masses. In Workshop on Software Protection. IEEE.
[32] Johannes Kinder. 2012. Towards Static Analysis of Virtualization-Obfuscated

Binaries. In Working Conference on Reverse Engineering, WCRE.
[33] Jaehyung Lee and Woosuk Lee. 2023. Simplifying Mixed Boolean-Arithmetic Ob-

fuscation by Program Synthesis and Term Rewriting. In Conference on Computer
and Communications Security.

[34] Jaehyung Lee and Woosuk Lee. 2023. Simplifying Mixed Boolean-Arithmetic Ob-
fuscation by Program Synthesis and Term Rewriting. In Conference on Computer
and Communications Security, CCS. ACM.

[35] Woosuk Lee, Kihong Heo, and Rajeev Alur et al. 2018. Accelerating search-based
program synthesis using learned probabilistic models. In PLDI. ACM.

[36] Binbin Liu, Junfu Shen, and Jiang Ming et al. 2021. MBA-Blast: Unveiling and
Simplifying Mixed Boolean-Arithmetic Obfuscation. In USENIX Security.

[37] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle. 2019. Iter-
ated local search: Framework and applications. In Handbook of metaheuristics.

[38] Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to Program
Synthesis. ACM Transactions on Programming Languages and Systems (1980).

[39] Grégoire Menguy, Sébastien Bardin, and Bonichon et al. 2021. Search-Based
Local Black-Box Deobfuscation: Understand, Improve and Mitigate. In Conference
on Computer and Communications Security.

[40] Aina Niemetz andMathias Preiner. 2023. Bitwuzla. In Computer Aided Verification.
Springer.

[41] National Security Agency (NSA). [n. d.]. Ghidra. https://ghidra-sre.org/
[42] Maxwell Nye, Armando Solar-Lezama, and Joshua et al. Tenenbaum. 2020. Learn-

ing compositional rules via neural program synthesis. In Conference on Neural
Information Processing Systems.

[43] Andres Nötzli, Andrew Reynolds, and Haniel et al. Barbosa. 2019. Syntax-Guided
Rewrite Rule Enumeration for SMT Solvers. In Theory and Applications of Satisfi-
ability Testing. Springer.

[44] Mathilde Ollivier, Sébastien Bardin, and et al. Bonichon. 2019. How to kill
symbolic deobfuscation for free (or: unleashing the potential of path-oriented
protections). In Annual Computer Security Applications Conference.

[45] Mathilde Ollivier, Sébastien Bardin, and Richard et al. Bonichon. 2019. Obfus-
cation: where are we in anti-DSE protections?(a first attempt). InWorkshop on
Software Security, Protection, and Reverse Engineering.

[46] Oreans Technologies. 2020. Themida – Advanced Windows Software Protection
System. http://oreans.com/themida.php.

[47] Alex Petrov. 2023. Hands-Free Binary Deobfuscation with gooMBA. https://hex-
rays.com/blog/deobfuscation-with-goomba.

[48] Nadia Polikarpova and Ilya Sergey. 2019. Structuring the synthesis of heap-
manipulating programs. POPL (2019).

[49] Benjamin Reichenwallner and Peter Meerwald-Stadler. 2023. Simplification of
General Mixed Boolean-Arithmetic Expressions: GAMBA. In WORMA’23.

[50] Rolf Rolles. 2009. Unpacking Virtualization Obfuscators. In USENIX Conference
on Offensive Technologies (WOOT’09).

[51] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic
deobfuscation: from virtualized code back to the original. In DIMVA.

[52] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization.
ACM SIGARCH Computer Architecture News (2013).

[53] Moritz Schloegel, Tim Blazytko, and Moritz Contag et al. 2022. Loki: Hardening
Code Obfuscation Against Automated Attacks. In USENIX Security.

[54] Sebastian Schrittwieser, Stefan Katzenbeisser, and Johannes Kinder et al. 2016.
Protecting Software Through Obfuscation: Can It Keep Pace with Progress in
Code Analysis? ACM Comput. Surv. (2016).

[55] Jon Stephens, Babak Yadegari, and Christian Collberg et al. 2018. Probabilistic
Obfuscation Through Covert Channels. In IEEE EuroS&P.

[56] El-Ghazali Talbi. 2009. Metaheuristics: From Design to Implementation. Wiley
Publishing.

[57] VM Protect Software. 2020. VMProtect Software Protection. http://vmpsoft.com.
[58] Dominik Wermke, Nicolas Huaman, and Yasemin Acar et al. 2018. A Large

Scale Investigation of Obfuscation Use in Google Play. In Computer Security
Applications Conference, ACSAC.

[59] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated
Code. In Conference on Computer and Communications Security.

[60] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
Generic Approach to Automatic Deobfuscation of Executable Code. In Symposium
on Security and Privacy, SP.

[61] Li Yixuan, Julian Pasert, and Elizabeth Polgreen. 2024. Guiding Enumerative
Program Synthesis with Large Language Models. In Computer Aided Verification.

[62] Yongho Yoon,Woosuk Lee, and Kwangkeun Yi. 2023. Inductive program synthesis
via iterative forward-backward abstract interpretation. PLDI (2023).

[63] Yongxin Zhou, Alec Main, and Gu et al. 2007. Information Hiding in Software
with Mixed Boolean-arithmetic Transforms. In Conference on Information Security
Applications.

https://github.com/mrphrazer/obfuscation_detection
http://tigress.cs.arizona.edu/
https://github.com/softsec-unh/MBA-Solver
https://github.com/softsec-unh/MBA-Solver
https://hot3eed.github.io/snap_part1_obfuscations.html
https://ghidra-sre.org/
http://oreans.com/themida.php
https://hex-rays.com/blog/deobfuscation-with-goomba
https://hex-rays.com/blog/deobfuscation-with-goomba
http://vmpsoft.com

	Abstract
	1 Introduction
	2 Background
	2.1 Programming-by-example
	2.2 Obfuscation and (Black-box) Deobfuscation

	3 Motivation
	4 Overview
	5 Search Modulo Inference Rules
	5.1 General framework
	5.2 Inference rules
	5.3 Implementation in XSmir

	6 Evaluation
	6.1 Methodology
	6.2 XSmir on obfuscated code (RQ1)
	6.3 XSmir compression capabilities (RQ2)
	6.4 XSmir on non-obfuscated code (RQ3)
	6.5 XSmir vs White-box Deobfuscation (RQ4)
	6.6 XSmir Internal Evaluation (RQ5)

	7 Discussions
	8 Related work
	9 Conclusion
	Acknowledgments
	References

