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Characterization of bugs and attack vectors is in many practical scenarios as important as their finding.
Recently, Girol et al. have introduced the concept of robust reachability, which ensures a perfect reproducibility
of the reported violations by distinguishing inputs that are under the control of the attacker (controlled
inputs) from those that are not (uncontrolled inputs), and proposed first automated analysis for it. While it is
a step toward distinguishing severe bugs from benign ones, it fails for example to describe violations that
are mostly reproducible, i.e., when triggering conditions are likely to happen, meaning that they happen for
all uncontrolled inputs but a few corner cases. To address this issue, we propose to leverage theory-agnostic
abduction techniques to generate constraints on the uncontrolled program inputs that ensure that a target property
is robustly satisfied. Our proposal comes with an extension of robust reachability that is generic on the type of
trace property and on the technology used to verify the properties. We show that our approach is complete
w.r.t. its inference language, and we additionally discuss strategies for the efficient exploration of the inference
space. We demonstrate the feasibility of the method and its practical ability to refine the notion of robust
reachability with an implementation that uses robust reachability oracles to generate constraints on standard
benchmarks from software verification and security analysis. We illustrate the use of our implementation
to a vulnerability characterization problem in the context of fault injection attacks. Our method overcomes
a major limitation of the initial proposal of robust reachability, without complicating its definition. From a
practical view, this is a step toward new verification tools that are able to characterize program violations
through high-level feedback.
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1 INTRODUCTION

Formal verification techniques, such as symbolic execution [Cadar and Sen 2013] or bounded model
checking [Clarke et al. 2004], are popular approaches to detect bugs and vulnerabilities in programs.
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Yet, characterization of bugs and attack vectors is in many practical scenarios as important as their
finding, as in many situation an expert has to examine the reported violation for further actions
(e.g., deciding whether it must be fixed or not). Unfortunately, the aforementioned techniques fail
to provide a clear characterization of the detected violations—for example they cannot characterize
how easily an attacker could trigger a reported vulnerability. While it is possible in principle to
apply counting algorithms [Aziz et al. 2015; Darwiche 2000; Fremont et al. 2017; Gomes et al.
2008; Kim and McCamant 2018; Lagniez and Marquis 2019] to improve the understanding of a
vulnerability, such techniques remain costly and their results are difficult to exploit, typically for
vulnerability comparisons.

Problem. Recently, Girol et al. have introduced the concept of robust reachability [Girol et al.
2021, 2022] which ensures that some user-controlled input permits a perfect reproducibility of the
reported violations, independently of the values of the other (uncontrolled) inputs, and proposed
first automated analysis for it. While it is a step toward distinguishing severe bugs from benign
ones, it fails to describe violations that are mostly reproducible. For instance, a violation that can
be triggered for all but a few uncontrolled values or a violation requiring a specific but probable
relation on the uncontrolled input, are considered non robustly reachable, even though an attacker
could still fairly easily exploit them.

Goal. Our general goal is to build on the initial proposal of robust reachability by Girol et al. to make
it more flexible and thus more practical, by capturing more realistic scenarios. One natural direction
is to define a quantitative version of robust reachability, yet it requires advanced (and expensive)
model counters [Bardin and Girol 2022], and the feedback reported to the user is minimalist (a
mere value or ratio).

We follow here another direction. Robust reachability can actually accommodate assumptions
on the uncontrolled inputs, allowing to express for example that a given controlled input ay will
indeed succeed as long as uncontrolled input x, is even. Such assumptions can be seen as a logical
description of constraints on uncontrolled inputs that suffice to trigger a target vulnerability. This
description is easier to understand for the security export and can be forwarded to other tools
that handle logic constraints to automatically obtain qualitative comparison information such as
inclusion or equivalence. If the assumption is simple enough, it is also possible to perform an easy
approximate counting of the number of encompassed program inputs. Yet, it is currently up to
the user to provide such assumptions. We want to design an automatic method able to infer such
robust reachability constraints. By doing so, we hope to make robust reachability more practical,
while retaining its qualitative flavor. Ideally, this should also permit to obtain a method that is
independent of the type of properties considered, and of the practical verification technique used.

Proposal. We propose to leverage generic formula abduction techniques [Josephson and Joseph-
son 1994] to generate conditions on the program input that ensure that a given trace property
for a program is robustly satisfied. This is done alongside a straightforward extension of robust
reachability to more general program trace properties.

Abduction, in the general case, is the generation of a missing hypothesis that, when added to the
set of axioms, permits to deduce a previously unprovable goal. Abduction techniques targeting
the generation of program contracts are usually based on concrete rule definitions to compute
such hypotheses [Albarghouthi et al. 2016; Calcagno et al. 2009]. This restriction means that such
techniques are dedicated to a given type of program definition, a given type of property and a given
type of hypotheses. These restrictions imply that any such system needs to be adapted to handle
any variation of definitions it initially targeted.
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For first-order logic formulas, contradiction-based abductive reasoning [Echenim et al. 2018;
Reynolds et al. 2020] use an input inference language from which they build candidate solutions
that are verified against an abstract oracle. This setup makes it possible to remain independent
from the theory in which the formulas are expressed, as well as from the technology used to verify
that such formulas are correct solutions to the abduction problem (SMT-Solver, Resolution prover,
etc.), and hence to benefit directly from advances to these technologies. We adapt such generic
formula-level contradiction-based abduction techniques to program trace satisfiability in order to
generate sufficient preconditions.

Contributions. We claim the following contributions:

e We propose the first program-level abduction algorithm (Algorithm 1, Section 4.3) tailored to
robust trace property satisfaction, an extension of robust reachability. Given an inference
language, a program, a trace property, and assuming the existence of oracles for verifying
robust trace properties under assumption, we build a sufficient conditions on a program
uncontrolled inputs we can complement with a controlled input that ensures the unconditional
trigger of the target trace property. The technique is agnostic w.r.t. to these oracles, and we
clarify its properties (Theorem 4.9);

e We design dedicated pruning techniques to ensure that the computation time remains afford-
able (Section 5), and we prove that our optimized algorithm is correct and complete w.r.t. the
inference language (Theorem 4.9, Theorem 5.2) as long as oracles are;

e We implement a specialization of our algorithm to robust reachability of program locations
(Section 6.1, Section 6.2) and evaluate it on standard benchmarks from software verifica-
tion [Beyer 2012] and security analysis [Dureuil et al. 2016], demonstrating the feasibility of
the method and its practical ability to refine the notion of robust reachability (Section 6.4);

e We propose an application to a realistic security evaluation scenario where we study the
characterization of vulnerabilities introduced by fault injection attacks on typical implemen-
tations of a security primitive (Section 6.5). We show that our method permits a relevant
security evaluation that outperforms previous methods, both in the quantity of characterized
vulnerabilities and in the quality of the characterizations.

Interestingly, from a theoretical view, our approach overcomes a major limitation of robust
reachability without complicating its definition, without introducing any expensive quantitative
reasoning. This is achieved by a new theory-agnostic abduction procedure that differs from previous
work in that it exploits necessary constraints and can solve problems with (a subset of) universally
quantified variables. Moreover, from a practical view, this paves the way to new verification tools
able to better characterize program violations by providing high-level feedback.

2 MOTIVATING EXAMPLE

Let us consider the synthetic code sample in Figure 1. Here, the function kmemcpy tries to take
advantage of memory alignment to improve the copy efficiency—e.g., by using vectorized instruction
set such as SSE for x86 or NEON for ARM. Thus, when both the source and destination pointers, src
and dst, and the buffer size n are multiples of 32, the function copies memory bytes by chunks of
the same amount.

Buffer overflow. However, this so-called fast path suffers from an implementation error: the loop
does an additional round since ’<=’ is used instead of ’<’ at line 7. This way, 32 input bytes may
be unexpectedly copied beyond the size of the destination buffer. Such buffer overflow can be
especially harmful when the destination area is allocated on the stack—an attacker may overwrite
the return address of the function to which the buffer belongs and change the execution paths.
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typedef struct { unsigned char bytes[32]; } uint256_t;
void kmemcpy (void *dst, const void *src, size_t n)

if ((((intptr_t)dst | (intptr_t)src | n) & @b11111)) // slow path
for (size_t i = 0; i < n; i += 1) *((uint8_t*)dst + i) = *((uint8_t*)src + i);
else // fast path
for (size_t i = 0; i <= (n >> 5); i += 1) *((uint256_t*)dst + i) = *((uint256_t*)src + i);
}

e R Y. I IR RN

Fig. 1. Example of a faulty optimized memcpy function, vulnerable to non-deterministic buffer overflow

1 void f(const char *input) 1 int main (int argc, char *argv[])

2 { 2 £

3 char buf[64] = { 0 }; 3 char src[96] = "doing things";

4 kmemcpy (buf, input, 64); buf[63] = 0; 4 for (int i = 0; i < 32; i += sizeof(void (*)()))
5 puts(buf); 5 *(void (*x*)())(src + 64 + i) = &g;

6 return; 6 f(src);

7 } 7 return 0;

8 8 )

9 void g() { puts("hijacked"); exit(-1); }

Fig. 2. Example of a non-deterministic buffer overflow exploitation over the kmemcpy function of 1

An example of such an attack is given in Figure 2. Here, by carefully crafting the content of the
buffer input given to the function f, the attacker can jump at a chosen address (the address of
the hijacking function g) without any direct call to it. More precisely, the content of the controlled
buffer src is crafted to overwrite the return address of f by the address g; the loop in the main
at line 16 initializes 32 extra bytes with the value &g. These bytes can be copied by the function
kmemcpy beyond the buffer buf where the call instruction is pushing the return address on the
stack. However, the memory alignment of buffers is not controlled by the attacker and varies in
each runs. Thus, the buffer overflow does not occur on each execution and the program can return
both 0 (normal execution) or -1 (reaching g).

Reachability. We can express the vulnerability to control flow hijacking as a reachability property:
when the return statement is reached from an address that is not the caller’s address. Symbolic
execution tools [Cadar and Sen 2013] automate the query resolution. In particular, they provide a
concrete assignment of the input memory state for which the program reaches the requested target,
actually proving its feasibility. For instance, symbolic execution may return that a vulnerability
is reachable with the following assignment: &buf == 0xffffcc80, &input == 0xffffcd40 and
input[80..83] == {0xde, 0Oxad, Oxbe, 0Oxef}.

However, symbolic execution does not give insight on whether the target vulnerability is easy
to reach or not. Indeed, having a concrete example is not enough to characterize the dangerous
assignments because we do not know if the values the analysis returned are mandatory nor if there
exist relations between them.

Robust reachability. To address this issue, Girol et al. have introduced the concept of robust
reachability [Girol et al. 2021] (recalled here in Section 3.3). Their framework allows to separate
the addresses of the input memory state between the ones an attacker can craft (here: the content
of input), called controlled variables, and the ones it cannot (here: the buffer addresses &input and
&buf), called uncontrolled variables. The framework looks for a concrete assignment on controlled
variables that reaches a given program state whatever the values of the uncontrolled ones. This
permits to distinguish vulnerabilities that are replicable from those that are not. We believe that
a replicable attack is more dangerous than an attack that is not and the framework of robust
reachability is able to make the distinction without the use of counting procedures.
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Here, the buffer overflow is never always reachable for a given content of input. For instance, it
will not happen if the buffer address &buf is 0xffffcc88. The framework then concludes that it is
not robustly reachable, leaving the above question open.

Robust reachability under assumption. For now, we know that there exists at least an assign-
ment leading to the buffer overflow, but also at least one that will not. Yet, we are actually looking
for a way to characterize how dangerous assignments are, without enumerating them.

This is where abduction comes into play. We try to generate a necessary and sufficient precondi-
tion over the state of the uncontrolled variables that makes the program state under study robustly
reachable. In short, our approach iteratively builds and tests several precondition candidates in
order to find an assumption such that all the compliant assignments lead to the buffer overflow. It
turns out that taking the fast path is both necessary and sufficient to override the return address
of function f. Our approach generates the constraint (&buf % 32 == 0 A &input % 32 == 0),
under which the buffer overflow is robustly reachable with a model that sets input[80. .83] to the
address of the hijacking function, such as e.g., input[80..83] == {0xde, Oxad, 0xbe, 0xef}.

This helps to understand what is the source of the nondeterminism of the attack and gives some
hints on the likeliness of its success. We then conclude that, although not robust, the vulnerability
is still serious and likely to be exploitable.

Targeted properties. We are primarily interested in properties relevant for software-level security.
The inference framework we propose considers a large class of reachability properties, as it builds
upon oracles for the targeted properties—and we will discuss the quality of the framework depending
on the quality of the oracles. Yet, our current implementation itself is restricted to location reachabil-
ity, that we see as a good trade-off between implementation simplicity and practical expressiveness,
as local assertion reachability (e.g., buffer overflows), finite trace reachability (e.g., use-after-free
bugs) or even k-hyper-reachability (e.g., information leakage) can be reduced to it through proper
program instrumentation—respectively with extra assert, monitors or self-composition.

Regarding controlled variables, note also that, as long as they cover an under-approximation of
what is controllable in reality, a robust symbolic execution (or any other under-approximation of
robust reachability) will return correct witnesses.

3 BACKGROUND AND NOTATIONS

We present a number of proof techniques for verifying trace properties, robust trace properties,
and the related definitions.

3.1 Notations

Let us consider a set of variables A and a set of values V. We call memory state s a total mapping
from variables to values, and denote by S# the set of all possible memory states on A. Variables are
understood in a general, abstract way: they encompass all the possible inputs, including memory
addresses, registers, etc. We call program a deterministic transition function —pe S# X S 4 and
denote by —7, its transitive reflexive closure. We assume that we can deterministically obtain a
program location from the memory state, typically by extracting the program counter. We call
trace a sequence t of states of S# and path a sequence 7 of program locations. We say that a
trace t follows the path 7 if both sequences have the same length and if for any sequence index i,
the program location of t[i] is equal to 7 [i]. Given a program —p, we denote by P* the set of all
program traces. We assume traces to be deterministic, that is, from an initial memory state s, there
is one and only one trace t € P* such that ¢[0] = s, and denote this trace —7, (s). Given a bound
k, we additionally denote by P* the set of program traces of maximal length k. For simplicity, we
identify the formal inputs to the program as a variable y on the memory states of S#. Given a
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program — p, we consider first-order predicates [Caferra 2013] on traces and on memory states. We
denote by ¢ [s] the evaluation of a formula ¢ for a memory state s. We consider the standard notion
of satisfiability and we denote logical entailments by |=. For simplicity, we assume that we only
consider predicates for which entailment is decidable. We will discuss what happens if this is not
the case in Section 4.4. In all the following, we consider oracles for trace property satisfaction and
robust trace property satisfaction, denoted by O3 and O3 respectively, the definition of which is
detailed in Section 3.4. We denote by A the set of controlled variables (Section 3.3).

3.2 Trace Properties

With these notations, we can define properties on program traces.

Definition 3.1 (trace property satisfaction). Given a program —p and a predicate on traces , we
say that —p satisfies ¢ if 3t € P*, y[t].

Note that it is often useful to restrict the length of program traces up to a bound k. In such a
case, we can say that —p k-satisfies ¢ if 3t € Pk, ¥[¢]. In all the following, we work without such
a bound but note that the properties can be restricted for traces of at most k memory states. This
can typically be used for reducing computation time.

As we aim to constrain program executions, it is useful to consider the satisfaction of trace
properties under an additional condition on program inputs.

Definition 3.2 (trace property satisfaction under assumption). Given a program —p, a predicate
on traces ¥ and a predicate ¢) on memory states. We say that —p satisfies  under the assumption
¢ if 3t € P*,¢[t] A ¢[t[0]]. Similarly, we say that —p k-satisfies y under the assumption ¢ if
3t € PX,y[t] A $[t[0]].

3.3 Robust Trace Properties

In the context of security however, the standard concept of trace property satisfaction may not be
enough to understand the severity of the vulnerability that has been found. In order to differentiate
between vulnerabilities that an attacker can trigger reliably from those he cannot, Girol et al.
have introduced the notion of robustness [Girol et al. 2021]. The core idea is to separate the
program inputs between the ones an attacker can choose, called controlled inputs, and the others,
called uncontrolled inputs. One then looks for traces satisfying the property for at least one
value of the controlled inputs but independently of the value of the uncontrolled inputs. Their
approach encompasses an important aspect of exploitability: replicability of the found bugs and
their exploitation in attacks. We follow the hypothesis that an attack that is replicable is far more
dangerous than an attack that is not. Robustness offers a way to perform such reasoning without
resorting to expensive counting problems.

Formally, we consider the memory states S, of a subset of variables Ac € A where Ac
represents the variables of the initial state that the attacker can control.

Definition 3.3 (robust trace property satisfaction). Given a program —p, a predicate on traces ¢
and a set of controlled variables Ac, we say that —p robustly satisfies i if we can find a value of
the controlled variables for which the predicate i is satisfied independently of the value of the
other variables, that is, if we have 3a € S, Vt € P*,t[0]| 4. = a = y[t], where t[0]| 5. denotes
the restriction of the memory state ¢[0] to the variables of Ac. We call this a a witness.

Similarly to what we introduced for trace properties, we can look for trace properties that are
robust under a restriction on the program inputs.
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Definition 3.4 (robust trace property satisfaction under assumption). Given a program —p, a
predicate on traces i and a set of controlled variables Ac, consider a predicate on memory states
¢. We say that —p robustly satisfies y under ¢ if 3a € Sa,., (It € P*,t[0]|a. = aAP[t[0]]) AVt €
P, (t[0]lac = a A @[t[0]]) = 1]

ProposITION 3.5. (1) Robust trace property satisfaction (resp. under assumption) implies prop-
erty satisfaction (resp. under assumption). The converse does not hold.

(2) When Ac = A, robust trace property satisfaction (resp. under assumption) is equivalent to
property satisfaction (resp. under assumption).

Another concept that is usually defined for program verification analysis techniques is program
assertions. While assumptions and assertions are equivalent in the non-robust case, the presence
of a universally quantified controlled memory introduces a disparity between the two notions. In
this framework, assertions can be produced in two ways: either by instrumenting the transition
function —p with an additional test representing the assertion, or by verifying a trace property
constructed as the conjunction of the original property with the assertion.

3.4 Trace Properties Oracle

We assume the existence of oracles for verifying trace properties satisfaction under assumption
and robust trace properties satisfaction under assumption. Oracles are useful abstractions for the
design of an algorithmic framework that is agnostic both on the type of the programs we consider
and on the type of trace-properties. Note that these oracles can be restricted to a subclass of trace
properties. We denote the oracle for trace property satisfaction under assumption (Definition 3.2)
by O33(—p, ¥, $) and for robust trace property satisfaction under assumption (Definition 3.4) by
OE'V(—> p, Ac, ¥, $). We assume that, when 037 terminates, it returns a pair b,s € B X S# where
b is the decision of the oracle and s is a witness of the decision used when b = T. Similarly, we
assume that, when O3Y terminates, it returns a pair b,a € B X S, where b is the decision of the
oracle and a is a witness of the decision used when b = T. Note that for both oracle types, when
b = 1, the witness has no relevance and will not be used. In order to simplify the notations, we
will abusively consider that these oracles simply return the Boolean when we do not wish to use
the witness.

Definition 3.6 (oracle correctness). An oracle for satisfaction O3 is correct when for any program
—p, trace property ¥, and assumption ¢, 07 terminates and 073 (—p, ¥, ¢) = T,s implies that
—p satisty ¢ under ¢ and y[—}, (s)]. Additionally, 077 is correct for a given subset of programs,
trace properties and assumptions if this proposition is satisfied for any triplet in this subset.

An oracle for robust satisfaction O3 is correct when for any program —p, set of controlled
variables Ac, trace property i and assumption ¢, O terminates and O3 (—p, Ac, ¥, ¢) = T, a
implies that — p robustly satisfies ¢ under ¢ with witness a. Additionally, 07" is correct for a given
subset of programs, sets of controlled variables, trace properties and assumptions if this proposition
is satisfied for any quadruplet in this subset.

Definition 3.7 (oracle completeness). An oracle for satisfaction O3 is complete when for any
program — p, trace property i and assumption ¢, 0= terminates and 033 (—p, ¥, ¢) = L, s implies
that —p does not satisfy ¢ under ¢. Additionally, 077 is complete for a given subset of programs,
trace properties and assumptions if this proposition is satisfied for any triplet in this subset.

An oracle for robust satisfaction 03" is complete when for any program — p, set of controlled
variables Ac, trace property ¥ and assumption ¢, 07 terminates and 03Y(—p, Ac, U, $) =L, t
implies that —p does not robustly satisfy 1 under ¢. Additionally, O3 is complete for a given
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subset of programs, sets of controlled variables, trace properties and assumptions if this proposition
is satisfied for any quadruplet in this subset.

An oracle is an under-approximation of the property satisfaction if it is correct but incomplete.
It is an over-approximation if it is complete but incorrect. Note also that a non-terminating correct
oracle can be straightforwardly converted into a terminating correct oracle using a timeout and
by returning L in case the timeout was triggered. The same can be done for a non-terminating
complete oracle by returning T instead.

Example. An example of usual trace property with the corresponding oracles is program location
k-reachability. Symbolic execution [Cadar and Sen 2013] is an algorithmic proof method for
reachability problems. It broadly works by expressing k-reachability properties as quantifier-free
SMT constraints, the solving of which is delegated to SMT solvers [Barrett et al. 2009] such as Z3 [de
Moura and Bjgrner 2008] or cvc5 [Barbosa et al. 2022]. Symbolic execution is both correct and
complete for k-reachability as long as the theory used to express reachability constraints remains
decidable—which is usually the case.

Symbolic execution has been extended to robust symbolic execution [Girol et al. 2021, 2022]
for handling robust k-reachability properties. This algorithm relies on satisfiability requests for
universally quantified formulas, which is more expensive. Robust symbolic execution is similarly
correct and complete for robust k-reachability as long as the universally quantified theory in which
the reachability constraints are expressed remains decidable.

For both symbolic execution and robust symbolic execution, assumptions and assertions can
be introduced in the generated path predicates. We also point out that both standard and robust
symbolic executions can be extended to target other types of properties s.a. safety [Girol et al. 2022]
or hyper safety [Daniel et al. 2020].

3.5 Abduction

Abduction [Josephson and Josephson 1994] is usually defined as the search for missing preconditions
which entail an unexplained goal. More precisely, given a hypothesis ¢y and a goal ¢¢ that is not
a logical consequence of ¢y, abduction is the process of computing an additional hypothesis ¢,
that is consistent with ¢g and such that ¢ is a logical consequence of ¢g A Ppr. Additionally, the
missing hypothesis ¢ should be as general as possible. The search for ¢yr can be further restricted
to expressions of a given inference language.

e Abductive inference has been successfully used in a large number of software-based ap-
plications such as compositional program verification [Calcagno et al. 2009], specification
synthesis [Albarghouthi et al. 2016], knowledge base extensions [Koopmann et al. 2020] and
loop invariants generation [Dillig et al. 2013; Echenim et al. 2019]. For program verification,
abduction techniques [Albarghouthi et al. 2016; Calcagno et al. 2009] are defined as white-box
computation frameworks, which means that one needs to adapt such methods for any distinct
type of program and trace property they want to verify;

e Recent research on formulas abduction has focused on the design of theory-agnostic algo-
rithms [Echenim et al. 2018; Reynolds et al. 2020] that can be used as is when the problem at
hand can be expressed in first-order logic with no additional restriction. Such methods can
be applied independently of the theory used and of the type of solver employed to decide
such properties, but they cannot be applied straightforwardly for the abduction of program
properties.

In this work, we propose to adapt theory-agnostic formulas abduction techniques to handle the abduction
of program constraint with a similar level of genericity, that is, to obtain an algorithmic framework
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that is generic with respect to the type of program, the type of program properties and the technology
of the property verifier.

4 ABDUCTIVE INFERENCE OF ROBUST TRACE PROPERTY CONSTRAINTS

We present in this section an algorithmic framework for the abductive inference of robust trace
property constraints. We adapt theory-agnostic abduction techniques for handling varying verifi-
cation conditions through oracle calls. The core idea is to explore a language of candidate solutions
and to check these candidates with robust oracle calls. Given an inference language G, a program
—p, a trace property ¥ and a set of controlled variables Ac, the baseline algorithm (Algorithm 1)
iterates over the candidates of G and uses a robust oracle call to check if a given candidate is a
solution. The method maintains a set of solutions and iteratively simplifies it each time a new
solution is found to keep a minimal set of solutions (see Section 4.2). If the set of generated solutions
is found to be necessary for the satisfaction of i, the algorithm can stop the exploration of G
prematurely. We prove that, when the robust oracle has the expected correctness and completeness
property, our algorithm is correct and complete w.r.t. its inference language G, and returns the
minimal set of solutions in G. This baseline algorithm is simplistic and inefficient, but permits to
define the properties of the framework (Theorem 4.9) from which we can derive the results on
the final algorithm in Section 5 (Theorem 5.2). As this baseline solution remains inefficient, we
describe in Section 5 a collection of strategies to make the technique viable in practice.

Inference Language. As previously mentioned, our algorithmic framework for the generation of
robust trace property constraints is based on the exploration of a constraints inference language
provided as an input to the algorithm.

Definition 4.1 (inference language). We call inference language a finite set G of first-order predi-
cates on memory states. In all the following, we call candidate any predicate on memory states
¢ € G. Moreover, if ¢ is a sufficient robust trace property constraint for the target problem, we will
say that ¢ is a solution.

In practice, inference languages are usually built from applying Boolean connectors to a finite set
of literals built from program inputs (e.g., variables or memory accesses) and adequate operators
(e.g., linear arithmetic). Note that the following algorithmic construction does not require the
inference language to be closed by conjunction, although some of the optimization strategies
are easier to apply when this is the case. Note also that the inference language is thought to be
program-dependent, as, e.g., addresses corresponding to program variables and literal values from
which we can obtain meaningful trace property constraints will differ from program to program.
See, e.g., Section 6.3, for an example of concrete inference language definition.

Goal. Our goal is, given a program —p, an inference language G, a trace property ¢ and a set
of controlled variables Ac, to automatically generate sufficient robust trace property constraints
(Definition 4.2). This is a problem of abduction on trace property constraints. Our work aims to
use practical refinements that can improve verification time for distinct program explorations,
which usually leads to variating verification schemes for each tested candidate. This variation of the
verification condition is out of the scope of the aforementioned abduction techniques. Strategies
for the efficient implementation of this algorithmic framework will be presented in Section 5.

We propose an algorithm, named ARCINFER, presented as Algorithm 2 in Section 5.4, that
builds on the baseline algorithmic framework presented as Algorithm 1 in Section 4.3. Assuming
correct and complete oracles, our algorithm is correct, complete, and minimal w.r.t. to an input
inference language. Our algorithm additionally generates a weakest robust trace-property constraint
(Definition 4.6) if it can be built from the inference language.
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4.1 Preliminary Definitions

We start by providing a definition for sufficient trace property predicates over input memory states,
which describes constraints on inputs under which a trace property is guaranteed to be satisfied.

Definition 4.2 (sufficient robust trace property constraint). Given a program —p, a predicate on
traces ¥/, a set of controlled variables Ac, a predicate on memory states ¢ is a sufficient robust
constraint (with a witness a) if —p robustly satisfies ¢ under ¢ (with the witness a).

Definition 4.3 (necessary trace property constraint). Given a program — p, a predicate on traces
¥, a set of controlled variables Ac, a predicate on memory states ¢ is a necessary trace property
constraint for y if Vi € P*, ¢[t[0]] vV —¢/[#]

ProPoSITION 4.4. Given a program —p, a predicate on traces , a set of controlled variables Ac. If
¢s is a sufficient robust constraint for /, with a witness a and ¢, is a necessary constraint for , then
Vs € Sa,sla. #aV ¢s[s]V dnls].

Proor. If this is not the case, the we have a memory state s € S such that s|z. = a A ds[s] A
—Pn[s]. As s is a sufficient robust constraint for ¢ with the witness a, we have from Definition 3.4
that /[—} (s)]. Moreover, as ¢, is a necessary constraint for i/, we have from Definition 4.3 that
—y[—} (s)], hence the result. O

PRroPOSITION 4.5. Given a program —p, a predicate on traces , a set of controlled variables Ac,
and an oracle for trace property robust satisfaction O3", let ¢ be a predicate on memory state,

(1Y) if O3 is correct for —p, Ac, ¥, ¢ and O3 (—p, Ac, ¥, §) = T, a then $ is a sufficient robust
trace property constraint for Y in —p with witness a,
(b) if O3 is complete for —p, Ac, ¥, ¢ and ¢ is a sufficient robust trace property constraint for
Y in —p with witness a then OBV(—>p, Ac, U, ) = T,a,
2)a) if 032 is complete for —p,, ~¢ and O33(—p, ¥, ~¢) = L,s then ¢ is a necessary trace
p y
property constraint fory in —p,
(b) if O3 is correct for —p, ¥, ~¢ and ¢ is a necessary trace property constraint for y in —p
then 033 (—p, U, —¢) = L,s.

Definition 4.6 (weakest robust trace property constraint). Given a program —p, a predicate on
traces ¢/, a set of controlled variables Ac, a predicate on memory states ¢ is a weakest robust trace
property constraint if it is both a sufficient robust constraint and a necessary constraint.

4.2 Minimality Consideration

A point we have to consider w.r.t. the input inference language is that it may contain equivalent
solutions and/or solutions that can be derived from another, more general solution. To prevent
the generation of such solutions, we propose an ordering criterion that is similar to Echenim et
al. [Echenim et al. 2018]. The general idea is to remove from our set of solutions the candidates that
are entailed by another solution. Unfortunately, |= is not a total order on formulas. This means that
we need an additional criterion to deterministically choose between two equivalent solutions. This
can be done with any (arbitrary) total, well-founded order <, for example the lexicographic order on
the textual representation of the formula. Intuitively, this order should help prune candidates that
are syntactically complex to obtain a more comprehensive result. For instance, whilea =5Aa # 6
and a = 5 are logically equivalent, < should permit to select the second predicate.

With these two consideration, we can define a notion of minimality according to the lexicograph-
ical order (|, <).
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Definition 4.7 (minimal set of generating implicants). Given a set of predicates on memory states
@ ={¢1,...,Pn}, we denote by A,,;,(®) the minimal set of generating implicants of @, that is the
subset of ® obtained by deleting from ® any formula ¢ where there exists a formula ¢’ € ® implied
by ¢ (¢ = ¢’) and either not equivalent to it (¢’ [ @) or smaller (¢’ < ¢).

This operator is used by the algorithm to iteratively prune redundant solutions (Lemma 4.8).

LEMMA 4.8. Let —p be a program, { a trace property and Ac a set of controlled variables. Let
D ={¢1,...,¢Pn} be a set of predicates on memory states such that any ¢; € ® is a sufficient robust
trace property constraint for  in —p. We have that any ¢ € \,,.,(®) is a sufficient robust trace
property constraint for y in —p. Moreover, ]\, (®) does not contain any redundant sufficient robust
trace property constraint: for any ¢ € \,,;,(®), there areno ¢’ € \,...(®), " # ¢ such that ¢’ |= .

ProOF. Let @ = {¢1,...,¢P,} a set of predicates on memory states such that any ¢; € ®is a
sufficient robust trace property constraint for ¢ in —p. The first point comes from A,,,;,(®) being
a subset of @. For the second point, by contradiction assume we have (¢, ¢’) € A,,;,,(®) such that
¢ # ¢’ and ¢’ |= ¢. Then by instantiating Definition 4.7 on ¢’, we get ¢ = ¢’ A =(¢ < ¢’). By
instantiating Definition 4.7 again on ¢, we get ¢’ = ¢ A =(§" < ¢). As < is antisymmetric, we
deduce that ¢ = ¢’, which contradicts our assumption. O

4.3 Baseline Algorithm

With these initial considerations, we can define an initial algorithmic framework for the generation
of sufficient robust trace property constraints (Algorithm 1). It takes as inputs the inference language
G, the program — p, the target trace property ¢ and the set of controlled variables Ac. The algorithm
returns a set of sufficient robust trace property constraints R.

Algorithm 1: BASELINERCINFER(G, —p, I/, Ac)

Input: G: inference language, —p: program, i: target trace property, Ac: controlled
variables

Output: R: sufficient constraints

Parameters: O77: trace property oracle, O3": robust trace property oracle

1 if T,s < O33(—p, ¢, T) then // ensure 1 satisfiable
2 Re—{y=s}tify=sec Gelsel; // init R with satisfying trace
3 for ¢ € G do

4 if 07 (—p, Ac, ¥, §) then // check candidate ¢
5 Re— A,in(RU{$}); // update and minimize R
6 if 2033 (—p, 9, ~(Vyer ¢’)) then // check weakest
7 L return R;

8 return R;

9 return {L};

This algorithm uses a classical validation loop over the constraints of G, and the loop is adapted
to verify robust trace properties. The generation and the verification of robust trace properties
are handled by robust oracle queries. It is important to note that the algorithm makes no direct
conclusion on the domain of the controlled variables for the generated constraints. Typically, when
multiple sufficient robust trace property constraints are returned, they may not permit the robust
satisfaction of ¢ with the same controlled value.
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While BASeLINERCINFER exhibits good properties for the generation of robust trace property
constraints (cf. Theorem 4.9), its naive exploration of the inference language (Line 3 of Algorithm 1)
renders it prohibitively inefficient. In order to make the technique viable, we will propose in
Section 5 strategies for the efficient exploration of G, yielding an optimized inference algorithm
(Algorithm 2).

THEOREM 4.9. Let —p be a program, { a trace property, Ac a set of controlled variables and G an
inference language.

(1) If both OF3 and O terminate, then BASELINERCINFER terminates.
(2) If 07 is correct, then BASELINERCINFER is correct, that is, at any step of the algorithm, any
¢ € R is a sufficient robust trace property constraint for { in —p.
(3) If 077 and O3 are complete for weakness oracle queries of Line 6, that is, for y and any
assumption ¢ € G U {=V yco ¢’ | © C G}, then BASELINERCINFER is complete w.rt. G, that
is, for any candidate ¢ € G that is a sufficient robust trace property constraint for  in —p,
we have the existence of a witness a € Sa,. such that both Is € Sz, ¢[s] A s|a. = a and
Vs € Sa, (Ps] Aslac = a) = V yer ¢ [s]. Informally, this means that all the sufficient robust
trace property constraint of G are encompassed by the ones returned by the algorithm.
(4) If O3 and O3 are correct and complete for all queries, that is, for y and any assumption
peGU{=Vyeod'|© C G}, then
(a) If BASELINERCINFER did not return from Line 7, then BASELINERCINFER is minimal w.rt. G,
that is, for any candidate ¢ € G that is a sufficient robust trace property constraint for  in
—p, either ¢ € R or there exists ¢’ € R such that ¢ £ ¢’ and ¢’ < ¢.
(b) If BASELINERCINFER returned from Line 7, then \/ ycp ¢ is a weakest robust trace property
constraint fory in —p.

Proor. (1) This is obtained by terminating oracle queries and by construction as G is finite.

(2) R is only updated at Line 5 of Algorithm 1. This is only done under the condition that
OE'V(—>p, Ac, ¥, ¢$) = T, a (Line 4). By Definition 3.6, Definition 3.4 and Lemma 4.8, we have
that R only contain sufficient robust trace property constraint after the update if this was
verified initially. The initialization of R at Line 2 ensures that this is always the case.

(3) If we return at Line 8 or at Line 9 of Algorithm 1, completeness is ensured by Definition 3.7
and by the exhaustive exploration of G. If we return at Line 7, by Proposition 4.5, we have
that \/4cg ¢ is a necessary trace property constraint for ¢ in —p. We have the result by
Proposition 4.4.

(4)a) If we return at Line 9, this is a consequence of the absence of solutions in G. If we return
at Line 8, this is a consequence of the fact that all the candidates are tried at Line 4 and of
Lemma 4.8.

(b) This is a direct consequence of Proposition 2 and of the fact that disjunctions of sufficient
robust trace property constraints are sufficient robust trace property constraints.
O

4.4 Discussion

Infinite inference language. When G contains an infinite number of candidates, the termina-
tion of BASELINERCINFER is preserved only if a weakest robust trace property constraint can be
obtained by building disjunctions of elements of G and if the robust oracle 03" is complete for the
corresponding query at Line 6 of Algorithm 1. Still, as Point 2 of Theorem 4.9 holds, it is possible to
interrupt the algorithm at any stage to recover possible solutions to the abduction problem.
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Initial assumption. When working on program verification, an initial restriction on input vari-
ables may already exist, either from external knowledge or to check a particular scenario. Algo-
rithm 1 can be run under an initial assumption ¢, to generate sufficient robust trace property
constraints in this specific case. This can be done by replacing all assumptions of the oracle queries
by their conjunction with ¢y. The results of Theorem 4.9 hold as long as we propagate the oracle
correctness and completeness expectations for the conjunctions of assumptions with ¢y.

Timeouts. In practice, the verification time of some oracle queries can be unaffordable. For such
cases, we can add a timeout on each query to reduce the execution time. This can be seen as a
terminating under-approximation of the oracle, which means that the computation might miss
some solutions. We can maintain, alongside the results of Algorithm 1, a set of candidate constraints
for which the algorithm could not decide under the given timeout.

Undecidable inference languages. Constraints expressed in partially-decidable theories impose
either incorrectness or incompleteness on the oracles used to verify them, which is again a case of
over-approximating or under-approximating oracles. Alternatively, partial decidability can occur
for entailment. This can arise at two locations, either in the pruning rules of Algorithm 1, in which
case we can work as if the implication was not proven to ensure the completeness of the algorithm,
or in the computation of A,,;,(-). In this second case, we can also consider that the implication is
not verified, which preserves the results of Theorem 4.9, except points 3 and 4.

5 STRATEGIES FOR EFFICIENT CONSTRAINTS ABDUCTION

The efficiency of the algorithmic framework presented in Section 4 thus strongly depends on our
ability to reduce the number of candidates that need to be verified with an oracle query. Modern
abduction algorithms have proposed clever strategies for inference language exploration [Echenim
et al. 2018; Reynolds et al. 2020]. The core principle of such methods is the use of counter-examples
to prune incorrect candidates, supplemented by information retrieval to cut redundant candidates
and find satisfying solutions faster. In this Section, we build an exploration function by borrowing
relevant candidate pruning strategies from those methods. We adapt the ideas for trace property
and robust trace property verification (Section 5.2) and extend the framework to benefit from the
joint generation of necessary robust trace property constraints (Section 5.1). Additionally, we study
the construction of an exploration heuristic to guide the exploration of the constraint language
(Section 5.3). The joint application of these strategies leads to the definition of a viable algorithmic
framework for the generation of robust trace property constraints (Algorithm 2 and Algorithm 3).
We show that the resulting framework preserves the results of Theorem 4.9 under the requirement
of some additional scope for the oracles.

5.1 Reducing the Number of Robust Oracle Queries

First, it is possible to verify that at least a trace satisfying the target trace property exist under the
current candidate constraint. When this verification fails, we can prevent an unnecessary robust
oracle query. To do so, we precede robust oracle queries by a non-robust oracle check. The rationale
is that we expect non-robustness verification to be both more likely to succeed—as this is required
for robust satisfaction—and less costly than robust verification. When such tests fail, we can also
derive a necessary constraint (Proposition 4.5). Additionally, we can keep track of a set of robust
property-breaking constraints, denoted U, representing constraints that do not suffice to obtain
robust trace property satisfaction.

Second, at each step, we can explicitly check and monitor whether a candidate is a necessary
trace property constraint, which can, again, be kept in a set N. We can exploit such constraints to
build a solution faster than the direct exploration of constraint language, by trying candidates built
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by adding (conjunction) such constraints to the candidates of G. However, this construction may
create candidate constraints that are out of the inference language G. To avoid this, we define an

operator maxg as follows: maxg : ¢%, G, N — maxz({ng,K C N|dx A /\¢’€N</>7< ¢ e g}) where

< : Ni, N; — CARD(N;) < CARD(N,) V (CARD(N;) = CARD(N;) A Npen, @ < Ngpen, $). maxg is
used in the language exploration function (Algorithm 3).

Both necessary robust trace property constraints and robust property-breaking constraints can
be reused to prune redundant candidates during the exploration of the inference language. We can
prune candidates that are consequences of the known necessary trace property constraints, as such
formulas are mechanically less restrictive necessary robust trace property constraints. A similar
reasoning can be done for constraints breaking the non-robust satisfaction of the targeted trace
property, as any constraint more restrictive only encompasses input states known not to produce
a trace satisfying this trace property. Similarly, candidates that have for consequence a sufficient
robust trace property constraint can be skipped as the corresponding solution is less general than
what is already known.

5.2 Counter-Examples Guidance for Robust Constraints

Another usual inference language pruning strategy consists in the generation of consistent counter-
examples against which candidate constraints can be checked for satisfiability. When all the
variables are uncontrolled, a counter-example is a program input from which the target trace
property cannot be satisfied. When a candidate constraint is satisfied by such an input state, we
know that this candidate is not a sufficient robust trace property constraint as it is possible for an
input state to both satisfy the constraint and not lead to the satisfaction of the target trace property.

However, in our case, when we consider a property that is not robustly satisfiable, we cannot
obtain a counter-example with this method, as the uncontrolled variables are universally quantified.
Moreover, the interleaving of controlled and uncontrolled variables can require complex counter-
examples including case disjunctions on the sates of the controlled variables. When a candidate
constraint ¢ is not a sufficient robust trace property constraint, we propose to look for a counter-
example expressed as an uncontrolled memory state, compatible with ¢, but from which the target
property cannot be robustly satisfied. We propose to derive these counter-examples from more
restrictive alternative robust satisfaction queries on an alternative property l; that ensures that ¢
cannot be satisfied in the same trace. By testing the previously obtained counter-examples against
yet-to-be-tested constraint candidates, we can skip those that are satisfied as they would not permit
to achieve robust trace property satisfaction (we have already found a set of input values from
which the target property is not satisfied).

PROPOSITION 5.1. Given a program —p, a set of controlled variables Ac, a trace predicate ,

let x; be a trace predicate such that Vt € P, l’ﬁ\[t] = —y[t].

Assuming that KZ is satisfiable, then for any X C A\ Ac, if —p robustly satisfies (ﬁ\forz\’ under ¢
(for, eg, a witness x), then any predicate on memory states ¢’ such that ¢’ A y|x = x is satisfiable is
not a sufficient robust constraint for  under ¢.

A straightforward choice for the alternative set of controlled variables is Az = A \ Ac. We
point out that it is possible to use more than one such “non-satisfaction” trace property at the
expense of more oracle tests when looking for counter-examples. Moreover, one can notice that
this pruning strategy misses some of the more general cases for which no uncontrolled input would
satisfy x[ independently of the controlled input but it would still be possible to find a satisfying
uncontrolled input for each controlled input.
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5.3 Inference Language Ordering Heuristic

Finally, in order to help the algorithm to find a good candidate among the remaining ones, we
propose a strategy for building an ordering heuristic on the elements of G.

Reusing trace examples. As we are using additional non-robust oracle queries, we can maintain
a set V of example traces that satisfy the target trace property. These traces can be used to sort the
candidates by making the conjecture that the more of such traces satisfy a constraint, the more likely
this constraint is to describe a set of inputs that can satisfy the target property. We propose for this
a lexicographic sorting function using the sorting key: ¢ +— (count(A, ), —CARD({s € V| #[s]}))
on candidate constraints, where count (A, ¢) counts the number of conjunctions in ¢.

Cutting from necessary robust trace property constraints. As this exploration heuristic works
out of the presence of necessary robust trace property constraints, it is also possible to remove
constraints that include their conjunction from the language, as long as we retry previously tested
constraints each time the set of necessary robust trace property constraints is updated, to ensure
completeness.

Improving the initial solution. Another thing that can be done is to use the initial witness
example s obtained at Line 1 of Algorithm 2 to deduce that some variables are required to have
the value they have in s for the trace to satisfy the target property. We can then initialize the set
of necessary trace property constraints with the formula corresponding to these equalities. Such
subsets can be found by enumeration. As a complete enumeration is too expensive, we propose to
perform a partial enumeration on a set of user-given variables.

Note that such constraints may not be present in the inference language. If this is the case, we can
either prevent unknown constraints from being added or allow the algorithm to return solutions
that are conjunctions of an element of G with such constraints.

We will denote by browse the tool function we use to explore the inference language G. When
using the heuristics introduced in this section, it can be defined by browse : G,V + sorted(G, ¢ —
count(A, §), —CARD({s € V| #[s]})) where V is a set of memory states from which we obtain the
satisfaction of the target trace property. This is the definition we will use in all the following but
note that other choices are possible as long as no candidates are missed.

5.4 Complete Algorithm for Abductive Inference

With these considerations, we propose a refined algorithm for the generation of sufficient robust
trace property constraints, ARCINFER, presented in Algorithm 2. The algorithm takes as input an
inference language G, a program —p, a trace property i/, a /-breaking trace property (Z in the
sense of Proposition 5.1, a set of controlled variables A and prunef = (nec, cex, browse), a tuple
of boolean flags to decide whether we apply a given pruning strategy or not. It returns a triplet
(R, N,U) where R is a set of sufficient robust trace property constraints, N is a set of necessary
robust trace property constraints and U is a set of property-breaking constraints.

Algorithm 2 queries the exploration function NEXTRC (Algorithm 3) for selecting candidates from
G. For each iteration of the loop at Line 4 of Algorithm 2, a call to NExTRC is made. Algorithm 3
is executed until it yields a candidate, at which point its execution is put on hold until the next
time NEXTRC is queried. Algorithm 3 applies the pruning and ordering strategies presented in
this section and maintains internally a set V of counter-examples to the robust satisfaction of the
targeted trace property. The candidate is returned to Algorithm 2 as a tuple @, ¢, n, Sr where
¢x is the initial candidate that was obtained from G, ¢ is the actual candidate, built by adding the
known necessary constraints and following the precautions mentioned in Section 5.1 and Jy;, Ig
are flags that indicate whether the candidate constraint ¢ should be tested as a necessary (resp.
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Algorithm 2: ARCINFER(G, —p, , U/, Ac, prunef)

Input: G: inference language, — p: program, : prop, : prop breaking i, Ac: controlled
variables, prunef: strategy flags

Output: R: sufficient constraints, N: necessary constraints, U: breaking constraints

Note: OF7: trace property oracle, O2": robust trace property oracle

1 if T,s « O3 (—p, ¥, T) then // ensure ¥ satisfiable
2 V — {s}; // init satisfying memory states examples
3 RNU ——{y=stify=seGelsed,{T},{L}; // init result sets
4 while ¢, ¢, SN, Sr «— NEXTRC(G, —p, lﬁ,l]/\,ﬂc, V,R,N,U,prunef) do // explore
G

5 if 6p and T,s «— 033(—)}), ¥, ¢) then // ensure Y satisfiable under ¢
6 V«—VU({s}; // new trace example
7 if 03Y(—p, Ac, ¥, $) then // check candidate ¢
8 Re— A,in(RU{¢}); // update and minimize R
9 if =033 (—p, ¥, ~(V yer ¢)) then // check weakest
10 L return (R, {V ycp ¢’} U);

1 else

12 L U«—UU({¢}; // new breaking constraint
13 else if 6y then

14 L N «— N U {-¢}; // new necessary constraint
15 if 6 and —|033(—>p, Y, —¢x) then

16 L N «— N U {¢px}; // new necessary constraint
17 | return (R,N,U);

18 return ({1}, {L}, {L});

sufficient) constraint in Algorithm 2. Note that we chose to always check if candidates are necessary
constraints as long as the option to build them is set. Look for better heuristics could help mitigate
the number additional oracle queries that these checks produce while still finding enough necessary
constraints to permit the algorithm to find complex constraints.

THEOREM 5.2. Let —p be a program, y a trace property, 12/\ a trace property breaking , Ac a set of
controlled variables, G an inference language and prunef = (nec, cex, browse) a tuple of boolean
flags.

(1) Ifprunef = (L, L, 1) then all points of Theorem 4.9 hold for ARCINFER.

(2) Ifprunef.browse = T then all points of Theorem 4.9 are preserved.

(3) Ifprunef.cex = T and 0?3 and O3 are correctforl}\ with any assumption in G, then all

points of Theorem 4.9 are preserved.

(4) Ifprunef.nec = T and O3 and O3Y are complete fory and any assumption of G and their
negation, then Point 1, Point 2, Point 3 and Point 4b are preserved. Point 4a is not preserved as the
necessary constraints are added greedily to the candidate constructed at Line 3 of Algorithm 3—the
resulting constraint is thus not necessarily minimal w.r.t. <. ARCINFER still remains minimal-
equivalent w.r.t. G, that is, for any candidate y € G that is a sufficient robust trace property
constraint fory in —p, either y € R or there exists ¢ € R such that  is equivalent to ¢.
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Algorithm 3: NExTRC(G, —p, ¥, ¥, Ac, V, R, N, U, prunef)

1
2
3

4

Input: G: inference language, —p: program, y: prop, EZ: prop breaking ¥/, Ac: controlled

variables, V: examples of input states of —p satisfying i, R: known sufficient
constraints, N: known necessary constraints, U: known breaking constraints,
prunef: strategy flags
Output: ¢g: core candidate, ¢p: candidate, Sn: check for necessary flag, dg: check for
sufficient flag
Note: OF7: oracle for trace property satisfaction, O3": oracle for robust trace property
satisfaction

Ve—0; // init. counter-examples
for ¢ € browse(G, V) if prunef.browse else G do // get candidate from G

if ¢ is unsatifiable then

¢ — P A A emaxg (d6.N) @ 1f prunef.nec else ¢g; // add nec. constraints

5 Lcontinue; // skip: inconsistent

6 if prunef.cex and 3m, X € V,$ A y|x = m is satisfiable then

7 L continue; // skip: sat. by counter-example

8 if 3ps € R, ¢ E @5 then

9 continue; // skip: stronger than known suff. constraint

10 if prunef.nec and 3¢, € U, ¢, = ¢ then

11 L continue; // skip: weaker than known break. constraint

12 if prunef.nec and (A4, en #n) F ¢ then

13 L continue; // skip: weaker than known nec. constraint

14 if prunef.cex and T, cex «— O (—p, X, 1, ¢) for X C A\ Ac then

15 VeeVu {cex}, X; // new counter-example

16 yield ¢, ¢, prunef.nec, L; // forward for nec. check

17 else

18 L yield ¢, ¢, prunef.nec, T; // forward for nec. and suff. checks
Moreover,

(5) IfO33 is complete for  and any assumption of G and their negation, then ARCINFER is correct
for necessary constraints, that is, at any step of the algorithm, any ¢ € N is a necessary

trace property constraint for y in —p.

(6) IfFO?Y is complete for  and any assumption ¢ € G, then ARCINFER is correct for breaking
constraints, that is, at any step of the algorithm, for any ¢ € U, ¢ is not a robust trace proerty

constraint for .

Proor. (1) Termination is ensured as we still only make oracle queries. Correctness is ensured
as R is not updated at any other point. Completeness and minimality are ensured as we only
prune candidates from Line 4 of Algorithm 3, which ensures that Definition 3.4 does not hold,
and from Line 8 of Algorithm 3, where the absence of pruning will lead to the removal of the

candidate from R by the application of A,;,(-).
(2) No element of G is missed, they are tested in a different order.
(3) This is a consequence of Proposition 1 and Proposition 5.1.
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(4) Point 5 and Point 6 ensure that the constraints of N and U are correctly constructed. By
Proposition 4.4, we have that only non sufficient robust constraints conditions are pruned.

(5) This a direct consequence of Proposition 2.

(6) This a direct consequence of Proposition 1.

5.5 Discussion

All the points discussed in Section 4.4 remain applicable to ARCINFER. We mentioned two additional
points the relevance of which is induced by our exploration strategies.

Candidates constraints on controlled variables. While it is possible to populate the inference
language with candidate constraints involving the controlled variables, this is likely to interfere
with the robust oracle queries. Indeed, by computing concrete values for controlled variables, the
robust oracle inherently builds stronger constraints. This means that such constraints are useless
for ensuring robust satisfiability. While additional initial constraints on controlled variables may
be added for problem definition, it is thus useless to include them in the inference language.

A trickier case arises for constraints constraining both controlled and uncontrolled variables.
While, again, there are no correctness issues, the details are harder. This means that if it is necessary
to link controlled variables to uncontrolled variables to obtain a sufficient constraint, it is unlikely to
be guided by the ordering heuristic. Moreover, as part of the variables are more strongly constrained,
they are also unlikely to be efficiently pruned from a counter-example.

Inference language construction. ARCINFER is well adapted for inference languages that can
be constructed as conjunctions of literals for which both the positive and negative variants can be
considered. This type of construction ensures that all the assumptions of the queries during the
execution of ARCINFER remain in the inference language, which simplifies the oracles requirements.
Moreover, this construction mingles well with the reuse of the necessary robust trace property
constraints due to the constraint construction at Line 3 of Algorithm 3.

General abductive generation. If we replace oracle queries with SMT queries for property
satisfaction, Algorithm 1 falls back to an abduction algorithm for first-order predicates. In particular,
this means that the language-exploration strategies exposed in Section 5 could be applied to first-
order abduction problems for 3V formulas. More generally, the framework presented in this paper
is not inherently limited to the abductive inference of program trace properties. As long as oracles
for verifying a given contextualized predicate and its robust counterpart can be defined, the same
methodology can be applied without adaptation. Indeed, neither the algorithmic framework nor
the exploration strategies of Section 5 use the underlying program out of the oracle queries.

6 EXPERIMENTAL EVALUATION

We now present an evaluation of our abduction algorithm. We build this evaluation on existing
oracles for trace property and robust trace property satisfiability: location reachability and location
robust reachability properties (Section 6.1). We detail our implementation of the abduction algorithm
(Section 6.2), we evaluate our approach on two benchmarks built from sv-comp [Beyer 2012] and
FIssc [Dureuil et al. 2016] (Section 6.3), and we assess the evaluation results w.r.t. the following
research questions (Section 6.4):

RQ1. Can ARCINFER compute non-trivial robust k-reachability constraints in non-robust cases?
RQ2. Can ARCINFER compute weakest robust k-reachability constraints (in the sense of Defini-
tion 4.3)?

RQ3. What are the algorithmic performances of ARCINFER for language exploration?
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RQ4. How do the strategies of Section 5 influence the performance of ARCINFER?
We additionally propose a detailed applicative case study for the vulnerability assessment of the
VerifyPIN benchmarks (F1ssc) against fault injection attacks (Section 6.5).

6.1 Restriction to k-Reachability

For practical reasons, we restrict our evaluation to the search of sufficient robust constraints for
k-reachability properties. As mentioned in Section 3.4, k-reachability properties are trace properties
that decide whether a given trace executes a program instruction at a selected target location #,
after at most k instructions (i.e. k consecutive applications of —p from the initial memory state).
Oracles for k-reachability and robust k-reachability under assumption include symbolic execution
and robust symbolic execution. Correct and complete algorithms for k-bounded symbolic execution
and k-bounded robust symbolic execution are available in the literature [Cadar and Sen 2013; Girol
et al. 2021]. These algorithms generate path predicates, that are first-order formulas representing
the execution of a given program path. They enumerate all the paths of at most k successive
instructions and use an underlying SMT-Solver [Barbosa et al. 2022; Barrett et al. 2009; de Moura
and Bjerner 2008] to look for the existence of a witness.

k-reachability breaking properties. In order to apply the counter-example guidance described
in Section 5.2, we need to define properties that ensure the non-k-reachability of the target location.
This can be done by a k-reachability property to an alternative target location £ in a concurrent path
w.r.t. £ if £ is outside of an unbounded loop. Otherwise, this can be done by merging the reachable
locations after exactly k instructions, and by instrumenting the program to jump at an alternative
location after the instruction at location ¢ is executed. Note that this second case is not applicable
for unbounded reachability.

Oracle definitions. We define OEEH and OSE'Ev our oracles for bounded reachability and robust
bounded reachability as calls to the aforementioned symbolic execution and robust symbolic
execution algorithms. The witness can be obtained from the model returned by the SMT-Solver
when a solution is found.

6.2 Implementation and Setup

PYABD is a Python program implementing ARCINFER (Algorithm 2) and function NExTRC (Algo-
rithm 3) for k-reachability (Section 6.1). It leverages Binsec [David et al. 2016; Djoudi and Bardin
2015] and BINsSEc/RSE [Girol et al. 2021, 2022], for the symbolic execution and robust symbolic
execution queries respectively, and the SMT solver cvc5 [Barbosa et al. 2022] for pruning candidate
constraints on inconsistency, counter-example satisfiability and for checking logical implication
between constraints. Since robust symbolic execution depends on quantified formulas, we use
Z3 [de Moura and Bjerner 2008] for all the (robust) symbolic execution queries. We consider the
theory of bitvectors and arrays (QF_ABV), well adapted for binary-level code analysis.

Inputs. PYABD takes as main inputs a binary file under analysis (our experiments span the x86 and
ARMv7-M architectures), specifications of reachability targets (target property and for counter-
example guidance), and a file describing the inference language.

Additional parameters. PYABD supports the separate activation of each pruning and ordering
rules in Algorithm 3, in order to evaluate their impact. In the following, we denote by PYABD
or pyabd+allopt the execution of Algorithm 3 with prunef = (T, T, T), by pyabd+cex counter-
examples pruning only (prunef = (L, T, L)), by pyabd+nec necessary constraints pruning only
(prunef = (T,L1,1) and the initialization in Section 5.3), and by pyabd+noopt the use of no
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(constraint) ::= (constraint) A {constraint)

| - (nliteral) (nliteral> n= %dg = *a8

; | *d3zp = *aéz
| (literal) | *a3, = 0x000000: (xag)
(literal) ::= (nliteral) | xag =ug
| *as2 =03 | *a3z; = 0x000000: vg

Fig. 3. Template grammar for the Eg (X #,, 2 A,,, X4, 24,) inference language; depends on the initial sets
of addresses mapping to 8-bit values (2 z,, with ag € X z,), addresses mapping to 32-bit values (X #,,,
with a3; € X g,,), 8-bit values (X, with vg € £q;) and 32-bit values (Xqy,, with 03, € Xqy,), and where
0x000000: vg denotes the zero-extension of a 8-bit value to a 32-bit value

(nliteral) := xag < *aj
| *asz; < *aj,
| *ag < vg

Fig. 4. Template grammar of the additional rules for the Ig(Z #,, 2.4,,, 295, Zs,) inference language;
depends on the initial sets of addresses mapping to 8-bit values (X 7,, with ag € X z,), addresses mapping
to 32-bit values (2 g,,, with a3, € X g,,), 8-bit values (X, with vg € Xqy) and 32-bit values (Zqy,, with
032 € Doy,

additional strategies (prunef = (L, L, 1)), which is equivalent to running BASELINERCINFER as
long the inference language does not contain unsatisfiable constraints.

6.3 Benchmarks

SV-COMP. We automatically adapt C verification tasks from the sv-comp benchmarks [Beyer 2012]
to binary-level reachability problems (x86 architecture). We select programs from the categories
bitvector, list, loops,nla-digbench,ntdrivers-simplified, and openssl-simplified. The
program sizes range from 30 to 1752 Loc, with an average of 115 Loc. Out of 147 programs, we select
the 64 ones for which BINSEC reaches the target location in less than 60 seconds and BINSEC/RSE
terminates under 60 seconds.

FISSC. ri1ssc [Dureuil et al. 2016] is a collection of C programs with counter-measures against fault
injection attacks [Yuce et al. 2018]. We select the VerifyPIN benchmarks, which present 10 variants
of a PIN authentication procedure. The programs are compiled for the ARMv7-M architecture, and
we exhaustively simulate, on each program, the skipping of a single machine instruction using
code mutation, leading to 4810 distinct mutant binary programs. We select the 719 mutants for
which BINSEC reaches the target location (defined as an authentication with distinct input and
secret PINs) under 60 seconds. BINSEC/RSE also terminates under 60 seconds for all these programs.

Inference languages. Consider an initial set of addresses mapping to 8-bit values X #,, an initial
set of addresses mapping to 32-bit values X #,,, an initial set of 8-bit values X, and an initial
set of 32-bit values X£q,,, which contain selected memory addresses and values for the program
we consider. A first language, denoted Eg (2 4, 2 4,,, 24, 2,), or simply (Eg), is constructed
from the conjunction of equalities and disqualities between the aforementioned memory addresses
and values. This language is constructed from the grammar presented in Figure 3. We curate this
language further to exclude the most trivial semantically equivalent constraints.
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A second language, denoted Ig (2 4, = a5, 24, 23,), or simply (Ig), adds inequalities between
selected memory addresses and selected values. It is constructed by adding the rules of the grammar
presented in Figure 4 to the grammar of Figure 3. Again, I (2 4,, 2 4., 2V, 23,) 1s curated to
exclude semantically equivalent elements.

A detailed description of how we build the sets X #,, 2 #,,, Zj, 2, for each target program is
available in Appendix B.

Finally, note that each set can be extended by user-provided elements. In particular, when we
use controlled addresses, we add the controlled addresses to X 4, (or 2 4,, if we control registers).

Controlled variables. We consider two configurations:

m a configuration with controlled variables, denoted m, specific to each benchmark, to evaluate
PYABD for the generation of sufficient robust reachability constraints;

O a configuration with no controlled variables, denoted O, to evaluate PYABD for the generation
of sufficient reachability constraints.

Note that in O the method is equivalent to a standard precondition generator. Regarding controlled
variables (m): for sv-comp they are arbitrarily chosen among the program variables, while for FISSC
we define the input PIN bytes as controlled and the rest of the memory addresses as uncontrolled.
This configuration supports the authentication with an incorrect input PIN without prior knowledge.

Experimental Setup. The global timeout for a PYABD run is set to 1 hour per input program. The
timeouts for Binsec and BINSEC/RSE is set to 60 seconds in all contexts. All the SMT solver calls
have a timeout of 10 seconds. All our tests are run in parallel on an Intel(R) Xeon(R) Gold 5220
CPU @2.20GHz machine with 36 cores, 72 threads, and 96 GB of RAM.

6.4 Results

RQ1—Sufficient robust k-reachability constraints. Table 1 shows the number of programs for
which PYABD finds a robust k-reachability constraint distinct from the one returned by its initial
symbolic execution query (Line 3 of Algorithm 2), either with controlled variables (m) or without
(O). We distinguish between sufficient robust k-reachability constraints only (# of sufficient rrc) and
robust k-reachability constraints that are also weakest k-reachability constraints (# of weakest rrc).
The table also contains, for comparison purposes, the number of programs for which the target
location is robustly k-reachable (# of robust cases).

PYABD always characterizes more programs than BINsEc/RSE. With controlled variables (m), for
SV-COMP, 75 % (111/147) of the programs are inherently robustly k-reachable, but PYABD finds a
sufficient characterization for almost half of the remaining cases. For rFi1ssc, PYABD generates a
sufficient robust k-reachability constraint for half of the programs. Without controlled variables
(O), PYABD generates constraints for significantly more programs, because such constraints exhibit
a link between the previously controlled and uncontrolled variables, and such constraints cannot
be computed when those variables are separated in the robust reachability setup.

For sv-comp, adding inequalities to the inference language permits to find a solution in more
cases. This is because such programs require inequality constraints on inputs to ensure robust k-
reachability. The opposite happens for F1ssc, as equality and disequality suffice to express satisfying
solutions. As the inference language is larger, PYABD sometimes fail to reach the solution it found
with the smaller (Eg) language under the timeout. Still, this concerns at most 9 programs, in the
setup without controlled variables, which shows that our approach scales relatively well w.r.t. the
size of its inference language.

Conclusion. These results show that our method to compute robust k-reachability constraints
can find non-trivial sufficient constraints, refining the results from robust symbolic execution.
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Table 1. PYABD analysis results for each benchmark configuration, with (m) or without (0O) controlled variables.
We detail the total number of programs analyzed, the number of programs for which the target location is
robustly k-reachable, and the number of programs for which PyAsp finds sufficient robust k-reachability
constraints (rrc), split between any sufficient rrc, and the weakest rrc constraints only.

sv-comp (Eg) sv-comp (Ig) F1ssc (Eg) FI1ssc (Ig)

[ O [ O [ O [ O

# programs 147 64 147 64 719 719 719 719

# of robust cases 111 3 111 3 129 118 129 118
# of sufficient rrc 122 5 127 24 359 598 351 589
# of weakest rrc 111 3 120 4 262 526 261 518

RQ2—Weakest robust k-reachability constraints. We look again at Table 1 to characterize
if the generated robust k-reachability constraints (rrc) describe the complete input set that k-
reaches a target location (weakness). For sv-comp, no weakest rrc is found with (Eg) for cases
that were not inherently robustly k-reachable. With the larger language (Ig), PYABD generates 9
and 1 additional complete robust k-reachability characterizations, resp. with or without controlled
variables. For Fi1ssc, with controlled variables, PYABD doubles the number of cases for which we
find a weakest robust k-reachability constraint w.r.t. BINSEC/RSE. Without controlled variables,
most of the constraints found by PYABD are weakest, suggesting that, when the inference language
is expressive enough, PYABD is able to generate a complete characterization. Moreover, the use of
larger than necessary inference language (Ig) does not degrade significantly the number of weakest
constraint found (1 less with controlled variables, 8 without).

Conclusion. PYABD is indeed able to infer weakest constraints of robust reachability when the
underlying inference language is expressive enough.

RQ3—Inference language exploration. Table 2 details a number of metrics monitored during
the execution of PYABD on each benchmark, on three distinct subsets of programs: any PYABD
result (*), PYABD finds a sufficient constraint (T) and PYABD finds a weakest constraint, including
robust programs (W). The metrics reported are averages for the number of literals in G, the number
of candidates that are considered by PYABD, the number of candidates that are evaluated by a
robust oracle query, the number of returned solutions and the length of solutions.

Note (1) that the average number of considered candidates is increased by the programs for
which no solution is found, as the whole inference language has to be explored, and (2) that the
average number of literals is decreased by the robust cases, for which it is 0 as no inference language
generation has been made by PYABD.

The number of tested candidates before the weakest robust k-reachability constraint is found is
2.3 for the F1ssc benchmark with controlled variables with the (Eg) inference language (resp. 2.2
with the (Ig) inference language), 6.8 without controlled variables (resp. 11.7). For sv-comp, with
the (Ig) language, these numbers are 1.7 with controlled variables and 4.7 without. This shows that,
with the help of necessary constraints and the browse heuristic, our method is much more efficient,
being able to converge to the complete solution by trying a small number of candidates.

The average length of the generated constraints remains relatively small when PYABD finds a
weakest robust k-reachability constraint. If we remove the cases where the target location was
already robustly k-reachable (present in Table 2), this gives 1.7 and 3.1 conjunctive elements for
FISsc respectively with and without controlled variables with the (Eg), 1.8 and 1 for sv-comp with
the (Ig) language. When the weakest robust k-reachability constraint could not be computed, both
the number of solutions and their complexity tend to increase, up to an average 5.8 constraints
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Table 2. Internal metrics monitored during the execution of PYABD, for each benchmark configuration, with
(m) or without (O) controlled variables. Each line reports, for each configuration, the average number (#):
of literals in the inference language, of candidates considered, of candidates checked, of returned robustly
k-reachable constraints, of language literals in the returned constraints. The three groups of lines report,
from top to bottom, metrics for: all the cases including timeouts (*), cases for which PYABD finds a sufficient
constraint (T), and cases for which PYABD finds a weakest constraint (W).

sv-comp (Eg) sv-comp (Ig) FIssc (Eg) F1ssc (Ig)

] O | m| [ O ] O

# literals in G 560.0 3463.7 862.2 59944 771.7 2141.6 1125.3 3233.3

# C. considered 63334.0 78665.5 13175.4 24457.9 11646.0 14032.3 18259.5 13905.4

) # C. checked 51.0 577.3 37.1 583.4 121.2 126.6 117.7 127.0
# solutions 5.8 1.6 1.4 1.0 1.5 0.9 1.4 0.9

avg. solution length 0.3 0.1 0.3 0.5 0.6 1.9 0.5 1.8
# literals in G 78.1 247.6 224.8 3175.6 436.6 1638.4 587.8  2589.5

# C. considered 10372.8 43418.0 7246.1 26265.3 7770.7 5747.2 11766.6 5099.3

(T) # C. checked 32.5 366.4 15.5 760.2 77.4 70.3 74.3 74.2

# solutions 7.0 21 1.7 2.8 2.9 1.0 2.7 1.1

avg. solution length 0.4 0.8 0.4 1.2 1.1 23 1.0 2.2
# literals in G - - 108.3 119.0 278.8 662.4 385.2 1156.1

# C. considered 1.0 1 34.3 7.2 41.0  205.3 61.0 41.0

(W)  #C. checked 1.0 1 1.7 5 2.3 6.8 2.2 11.7
# solutions 1.0 1 1.3 1.8 1.1 1.0 1.1 1.0

avg. solution length 0.2 0 0.2 0.2 0.9 2.4 0.8 2.2

with an average of 0.3 conjunctive elements for the sv-comp benchmark with controlled variables
on the (Ig) language. This is typical of inference languages that are not expressive enough, and
on which we can only iterate over a set of incomplete solutions that describe existing subsets of a
weakest robust k-reachability constraint.

Conclusion. Our method explores the inference language much more efficiently than the
baseline algorithm. In particular, a very small proportion of candidates are actually tested with
a robust symbolic execution query. Moreover, when weakest constraints are generated, the total
number of considered candidates is small. Otherwise, sufficient constraints are found while only
exploring a small portion of the inference language.

RQ4—Influence of the strategies of Section 5. We look at the influence of optimization strategies
(Section 5). Figure 5 shows the impact of different choices for the prunef parameter of Algorithm 2
on the generation of the first sufficient robust k-reachability constraint, on sv-comp with (Ig)
(top), and on F1ssc with (Eg) (right), both with (left) and without (right) controlled variables. More
detailed plots are available in the supplementary material.

Overall, the combination of all the strategies in PYABD is better than any other tested combination.
This means that each strategy was observed to reduce analysis time. It can be noted that when we
use necessary k-reachability constraints (prunef.nec = T), this may degrade the performance on
a few cases because of the additional computation time required at initialization (sv-comp, 0O0). In
all the other cases, each strategy improves the capabilities of PYABD to generate sufficient robust
k-reachability constraints.

By detailing internal metrics for when all strategies are used, we observed that each strategy
influences the algorithm in a very different way. The use of counter-examples is where most of the
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Fig. 5. Cactus plot showing the influence of the strategies of Section 5 on the computation of the first
sufficient k-reachability constraint with PYABD.

pruning comes from. Conversely, necessary constraints do not help much with pruning candidates
but permit to populate candidate solutions with required elements quickly, which helps finding
a solution faster as we do not have to wait to reach this element during the inference language
exploration. Finally, the use of the ordering heuristic permits to try more relevant candidates at the
beginning, which tends to help with the global language exploration.

Conclusion. All the strategies of Section 5 improve the efficiency of PYABD, w.r.t. number of
programs for which we find a solution under a time constraint, and computation time for each
solution.

General conclusions. While PYABD struggles with the exploration of the inference language for
the baseline case, the use of the strategies of Section 5 permit the viable generation of sufficient
robust k-reachability constraints, among which many are weakest constraints when the inference
language is expressive enough. Also, the method scales relatively well wr.t. to the size of the
inference language, and each strategy of Section 5 has its use. Finally, these strategies permit to
significantly reduce the number of oracle queries to make in order to obtain a satisfying solution.

6.5 Case Study: Vulnerability Assessment for FIA on the Fissc VerifyPIN

We now consider an applicative case study based on the analysis of the VerifyPIN benchmarks
(r1ssc). The underlying security scenario is the following: a security expert uses software-based fault
injection methods to drive a fault injection attacks campaign on expensive hardware benches [Hoff-
mann et al. 2021]. In this setting, it is important to find as many vulnerabilities as possible, but also
to avoid reporting unrealistic vulnerabilities, as they would waste both expert and equipment time.

Table 3 (top group of rows) reports the results of several vulnerability analysis methods, including
the use of ISA-level simulation (Qemu) which is typical of this case study. In the F1ssc benchmarks,
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simulation using arbitrary inputs (QEmU) discovers 169 exploitable fault locations (real vulnera-
bilities), while symbolic execution (BINSEC) reports 719 potential vulnerabilities. Robust symbolic
execution (BINSEC/RSE) confirms 118 robustly reachable vulnerabilities (the most serious), which
were all detected by the simulation, but does not help concluding for the many other potential cases
found by the symbolic execution. Our method characterizes 598 of the potential vulnerabilities
reported by BINSEC, where the returned constraint helps classifying the risk associated with each
fault injection location. Typically, the constraints generated for 226 cases show that an unautho-
rized authentication under fault injection is possible with a reduced number of known PIN digits.
Conversely, vulnerabilities that require to initialize some registers with exact initial values are
usually discarded in a threat model excluding write access to the target memory.

To improve the security assessment of each vulnerability, a security expert typically evaluates
the expected number of vulnerable inputs for each vulnerability. In the F1ssc benchmark, this can
be counted as the minimal percentage of tuple values (user PIN, card PIN) for which unauthorized
authentication is possible, reported in Table 3 (bottom group of rows). The analysis with PYABp
is based on (Eg); the evaluation of the expected number of vulnerable inputs is based on an
enumeration of the generated constraints, and we distinguish between two assessment methods:
PyABD® (optimistic) considers that subconstraints containing input variables other than PIN are
always evaluated to false, and PYABD® (pessimistic) considers that subconstraints containing such
variables are always evaluated to true. Typically, in a robust constraint such as userPIN[0] == R0,
as the register RO is not a PIN variable, the constraint is always evaluated to false for PyAbd® and
to true for PyAbd”.

We also consider two simulation-based analysis methods: QEmMU emulates program execution
with a single, arbitrarily chosen, set of program inputs (distinct user and card PINs); QEMU+L
iterates over all the possible PIN values and counts the number of unauthorized authentications
(all other input variables are fixed with arbitrary values).

The results in Table 3 (bottom group of rows) are consistent with the theoretical properties of
the tools and demonstrate the interest of our method for the assessment of program vulnerabilities.
PYABRD finds all the robust vulnerabilities that were already known from the Binsec/RSE runs. It
better characterizes 108 programs that can be exploited by PIN combinations only, and 372 additional
programs that can be exploited under favorable initial conditions. Some of these vulnerabilities
have a significant number of exploitable inputs (up to 5% of PIN inputs). The analysis results of
QEMU+L return a vulnerability assessment comprised between the assessments of PyAsp® and
PyABD', because the chosen initialization state of input values other than PINs leverages more
vulnerabilities. However, QEMU+L cannot characterize the expected vulnerability on the other input
variables, while this would be possible with a detailed analysis of PYABD results.

Table 4 reports the computation times for each analysis method, including the computation times
after which the first and the last constraints are returned by PYABD. As expected, single-input
simulation (QEmU) is the fastest but the most imprecise. The computation time for PYABD (16’57")
is degraded by timeouts, i.e. cases where no solution is found. When a solution is found, the
last generated solution is returned after an average of 2’45", which is 13X as long as the average
computation time of BINSEC/RSE. Again, this is better than exhaustive simulation, which always
has a computation time of more than one hour.

7 RELATED WORK

The link with the initial robust reachability proposal has been already lenghty discussed. We provide
hereafter discussion with other abduction techniques and (standard) precondition inference.
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Table 3. Analysis results for the VerifyPIN fault mutants (Fissc). Top group of rows: overall results. Bottom
group: number of vulnerable mutants for which at least a given percentage of tuples (userPIN / cardPIN) lead
to an incorrect authentication. Analysis methods considered: PyAso® on PIN values ; PyAsp® on PIN values
plus additional constraints on other input variables; Binsec; BiInsec/RSE; single simulation with Qemu; and
exhaustive simulation Qemu+L. Each analysis method considers a total of 4810 mutant programs.

PyABp® PyABDp’ BINSEC/RSE BINSEC QEMU QEMU+L

unknown 170 170 273 170 243 284

not vulnerable (0 input) 4414 4042 4419 3921 4398 4220
vulnerable (> 1 input) 226 598 118 719 169 306
> 0.0001% 226 598 118 - - 306

> 0.01% 209 582 118 - - 281

>0.1% 173 514 118 - - 210

> 1.0% 167 472 118 - - 199

>5.0% 166 471 118 - - 196

> 10.0% 118 401 118 - - 148

> 50.0% 118 401 118 - - 135

100.0% 118 399 118 - - 135

Table 4. Analysis times (hours:minutes:seconds) for VerifyPIN (Fissc) for the analysis methods considered
in Table 3. For PYABp®'P, we report the complete analysis time (PYyABp®/P), the time for returning the first

constraint (PYABDO/P orp

first st » i€ timeouts excluded).

), and the time for returning the last constraint (PYABD

PyABp®? PyABpY? PyABD®Y BINsEC/RSE BINsEc QEMU QEMU+L

first last
average 0:16:57 0:01:53 0:02:45 0:00:13  0:00:04 0:00:01 1:08:43
median 0:01:25 0:00:46 0:00:46 0:00:06  0:00:03 0:00:01 1:11:38

General-purpose formula abduction. Extensive work has been made on efficient algorithms
for general abduction in propositional logic [de Kleer 1992; Matusiewicz et al. 2011; Previti et al.
2015]. Extensions and alternative algorithms have been proposed for parts of first-order logic and
complemented to handle specific theories [Bienvenu 2007; Echenim et al. 2017; Marquis 1991].
Recent approaches [Dillig and Dillig 2013; Echenim et al. 2018; Reynolds et al. 2020] aim to solve
the problem while being agnostic of the underlying theory by relying on SMT solvers to verify
candidates. Our method adapts the general-purpose abduction framework for both the generation and
the verification of robust precondition for satisfying reachability properties in the presence of controlled
variables. This is achieved by the three following improvements.

o First, we propose a new strategy for counter-example guidance in the presence of controlled
variables, which permits to apply counter-example guidance in our context with a subset of
universally quantified variables. This was not possible with the methods used in previous
work;

e Second, we are the first to generate and reuse necessary constraints in this setup of constraint
generation. Those constraints serve a purpose that is close to the effect obtained by using
unsat-cores [Reynolds et al. 2020] but is applicable in a more general context, even with
generic oracles;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 91. Publication date: January 2024.



Inference of Robust Reachability Constraints 91:27

o Finally, we propose a new heuristic for ordering the candidate constraints of the inference
language, an idea mentioned in previous work [Echenim et al. 2018; Reynolds et al. 2020] but
never explicitly studied.

Dedicated abductive techniques for program verification. Abductive reasoning has been suc-
cessfully applied to program verification tasks such as including loop-invariants generation [Dillig
et al. 2013; Echenim et al. 2019] and specification synthesis [Albarghouthi et al. 2016; Calcagno
et al. 2009; Zhou et al. 2021]. We are the first to apply an abductive inference technique in the context
of robust reachability.

Precondition and specification inference. There are several prior precondition inference tech-
niques for standard reachability. White-box analyses work by reasoning on the source code structure
to derive and refine satisfying solutions [Astorga et al. 2018; Cousot et al. 2013; Gulwani et al.
2008; Urban and Miné 2015]. Alternatively, black-box approaches rely on sets of examples and
counter-examples to infer satisfying solutions w.r.t. their underlying programs [Gehr et al. 2015;
Menguy et al. 2022; Padhi et al. 2016]. While they can offer satisfying performance, they can also
miss solutions and are prone to overfitting.

8 CONCLUSION

We propose a novel approach based on abduction to automatically infer robust reachability con-
straints, i.e., sufficient conditions on a program uncontrolled input under which a target property
can be reached. We specialize our approach for robust reachability of local assertions and implement
it on top of an existing (robust) symbolic execution engine, demonstrating on standard benchmarks
from software verification and security analysis its ability to indeed refine the notion of robust
reachability in practice.

From the theoretical point of view, the approach allows to overcome a major limitation of the
initial robust reachability setting without complexifying it, and especially without introducing any
expensive quantitative reasoning. From the practical point of view, this paves the way to new
verification tools able to better characterize program violations by providing the human expert
with high-level feedback.

A BENCHMARKS

SV-COMP extracts. In order to analyze a wide diversity of programs, we adapt verification tasks
from the sv-comp benchmarks, written in C, to reachability problems on binary programs. For
each program, a script automatically stubs the verification functions, and associates the assertion
annotations in the source code to reachability targets in the compiled x86 binary. The script and
the program binaries will be published for reproducibility purposes.

We triage all the programs to identify the ones of interest as follows. A first BINsEc run discovers
a set of 386 programs for which the targeted location is reachable. A second run with Binsec/RSE
permits to select a subset of programs that robust symbolic execution can handle. This second
set contains either 147 or 64 programs, depending on whether we use controlled variables or not.
Overall, the selected programs come from the categories bitvector, list, loops, nla-digbench,
ntdrivers-simplified, and openssl-simplified.

FISSC. rissc is a collection of C programs with counter-measures against fault injection attacks.
We select the VerifyPIN benchmarks, which present 10 variants of a PIN authentication procedure.
The authentication proceeds by comparing a secret and an input PIN code, stored in 4 digits. The
authentication is restricted to 3 attempts, but an attacker can leverage fault injection to authenticate
with a wrong input PIN.
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Binary programs are compiled for the ARMv7-M architecture with five compiler optimization
levels (-00, -01, -02, -03, -0s). On each resulting program, we apply a simple fault model (single
instruction skip) to each possible target fault location in the VerifyPIN function, using code mutation,
resulting in 4810 distinct mutant programs. We select the 719 mutants for which BINSEC can reach
the target location (that is, authentication succeeds with distinct input and secret PINs). Those 719
mutants are also supported by Binsec/RSE. Simulation analysis methods (QEmMU and QEMU+L) are
based on QEMU version 4.2.1.

B PRACTICAL INFERENCE LANGUAGES CONSTRUCTION

For the inference languages presented in Section 6.3, the sets X #,, = a5, 24, 23, are obtained as
from the symbolic execution queries. After the initial symbolic execution query ensuring that the
target location is reachable (see e.g. Line 1 of Algorithm 2), we can extract from the witness memory
state a subset of “interesting” addresses and values from which to build the sets £ a,, = 4,,, 24, s, -
We extend the sets X 7,, 2 #,,, 2, 24, by following each time a new model is generated during
the execution of PYABD. In both cases, this is done as follows: X, and X, are built by taking
all the values that appear in the witness, depending on whether they are 8-bit or 32-bit values.
2 a, and X #,, are built similarly by taking the memory addresses of the witness mapped to any
value that is not the most frequently appearing value, since this is likely to correspond to the value
assigned by the underlying solver to unconstrained variables. This distinction permits to discard a
large part of the memory addresses and to keep the inference language at a reasonable size.
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