Adversarial Reachability
for Program-level Security Analysis*

Soline Ducousso®, Sébastien Bardin', and Marie-Laure Potet?

! Université Paris-Saclay, CEA, List, Saclay, France
soline.ducousso@cea.fr, sebastien.bardin@cea.fr
2 Univ. Grenoble Alpes, VERIMAG, Grenoble, France

marie-laure.potet@univ-grenoble-alpes.fr

Abstract. Many program analysis tools and techniques have been de-
veloped to assess program vulnerability. Yet, they are based on the stan-
dard concept of reachability and represent an attacker able to craft smart
legitimate input, while in practice attackers can be much more powerful,
using for instance micro-architectural exploits or fault injection methods.
We introduce adversarial reachability, a framework allowing to reason
about such advanced attackers and check whether a system is vulnera-
ble or immune to a particular attacker. As equipping the attacker with
new capacities significantly increases the state space of the program un-
der analysis, we present a new symbolic exploration algorithm, namely
adversarial symbolic ezecution, injecting faults in a forkless manner to
prevent path explosion, together with optimizations dedicated to reduce
the number of injections to consider while keeping the same attacker
power. Experiments on representative benchmarks from fault injection
show that our method significantly reduces the number of adversarial
paths to explore, allowing to scale up to 10 faults where prior work
timeout for 3 faults. In addition, we analyze the well-tested WooKey
bootloader, and demonstrate the ability of our analysis to find attacks
and evaluate countermeasures in real-life security scenarios.

Keywords: Program analysis - Attacker model - Fault injection - Sym-
bolic execution

1 Introduction

Context. Major works have delved into program analysis over the last decades,
leveraging techniques such as symbolic execution [18,24,53], static analysis [43],
abstract interpretation [30] or bounded model checking [29], to hunt for software
vulnerabilities and bugs in programs, or to prove their absence [35,60], leading
to industrial adoption in some leading companies [6,18,43,60,66]. As bugs are an
attack entry point, removing them is a first step towards better software security.

Problem. Yet, stepping back from these successes, it appears that all these
methods consider a rather weak threat model, where the attacker can only craft

* Partially supported by grants ANR TAVA, PEPR Secureval and Carnot Flexsecurity.

smart “inputs of death” through legitimate input sources of the program, ex-
ploiting corner cases in the code itself. Tools only looking for bugs and software
vulnerabilities may deem a program secure while the bar remains quite low for
an advanced attacker, able for example to take advantage of attack vectors such
as (physical) hardware fault injections [58], micro-architectural attacks [61,70],
software-based hardware attacks [55,69,86] like Rowhammer [70], or any com-
bination of vectors [63]. While previously limited to high-security devices and
systems such as smart cards and cryptography modules [13,16], these fault-based
attacks can now target a wider spectrum of systems, such as bootloaders [57],
firmware update modules [19], security enclaves [69], etc. The reasoning behind
automated software-implemented fault injection also applies to Man-At-The-End
attacks [3] and is similar to the (manual) reasoning performed in control-flow
integrity to evaluate countermeasures [1,21].

Goal & Challenges. Our goal is to devise a technique to automatically and
efficiently reason about the impact of an advanced attacker onto program se-
curity properties, where the standard reachability framework only supports an
attacker crafting smart legitimate inputs. The first challenge is to provide a for-
mal framework to study what an advanced attacker can do to attack a program.
Interestingly, while such frameworks are routinely used in cryptographic pro-
tocol verification [7,26], none has been studied for program-level analysis. The
second challenge is to design an efficient algorithm to assess the vulnerability of
a program to a given attacker model, while adding capabilities to the attacker
naturally gives rise to a significant path explosion — especially in the case of
multiple fault analysis.

The rare prior works in the field, mostly focused on encompassing phys-
ical fault injections for high-security devices, rely mostly on mutant genera-
tion [25,28,49,50,79] or forking analysis [15,20,63,76], yielding scalability issues.
Moreover, most, of them are limited to a few predefined fault models and do not
propose any formalization of the underlying problem.

Proposal. We propose adversarial reachability, a formalism extending standard
reachability to reason about a program execution in the presence of an advanced
attacker, and we build a new algorithm based on symbolic techniques, named
adversarial symbolic execution, to address the adversarial reachability problem
from the bug finding point of view (bounded verification). Our algorithm pre-
vents path explosion thanks to a new forkless encoding of faults. We show it is
correct and k-complete with respect to adversarial reachability. To improve the
performance further, we design two new optimizations to reduce the number of
injected faults: Early Detection of fault Saturation and Injection On Demand.

Contributions. As a summary, we claim the following novelties:

— We formalize the adversarial reachability problem (Section 4), extending
standard reachability to take into account an advanced attacker, together
with the associated correctness and completeness definitions;

— We describe a new symbolic exploration method (Section 5), adversarial sym-
bolic execution, to answer adversarial reachability, featuring a novel forkless

fault encoding to prevent path explosion and two optimization strategies to
reduce fault injection. We establish their correctness and completeness;

— We propose an implementation of our techniques for binary-level analysis
(Section 6), on top of the BINSEC framework [38]. We systematically evalu-
ate its performances against prior work (Section 7), using a standard SWiF1
benchmark from physical fault attacks and smart cards. Experiments show
a very significant performance gain against prior approaches, for example
up to x10 and x215 times on average for 1 and 2 faults respectively — with
a similar reduction in the number of adversarial paths. Moreover, our ap-
proach scales up to 10 faults whereas the state-of-the-art starts to timeout
for 3 faults ;

— We finally perform a security analysis of the WooKey bootloader ! (Section
8), a very well tested real-life security-focused program. We were able to find
known attacks and evaluate the adequacy of some of the countermeasures.
Especially, we found an attack not reported in a recently proposed patch [63],
and proposed a new patch to the developers.

This work is a first step in designing efficient program analysis techniques able to
take into account advanced attackers. The approach is generic enough to accom-
modate many common fault models, including the bit flip from RowHammer,
test inversion or arbitrary data modification; still, instruction skips or modifica-
tions are currently out of reach. Also, while we investigate the bug finding side
of the problem (underapproximation), the verification side (overapproximation)
is interesting as well. These are exciting directions for future research.

Our dataset and benchmark infrastructure are made available through arti-
fact® for reproducibility purpose, and the code is open-sourced.

2 Motivation

We start by motivating the need for adversarial reachability, first with a descrip-
tion of several realistic attack scenarios on software involving advanced attackers
(Section 2.1), second with a small example showing the need for dedicated anal-
ysis (Section 2.2).

2.1 Fault Injection across Security Fields

We describe hereafter several real software-level security scenarios where the
attacker goes beyond crafting legitimate input to abuse the system under at-
tack. Interestingly, while these scenarios were historically focused on hardware-

! WooKey [14,89] is a secure USB mass storage device developed by the French Na-
tional Security Agency, and has recently served as a recent challenge among French
security evaluators.

2 DOI: 10.5281/zenodo.7507112
https://zenodo.org/record/7507112#.Y 7cLsKfMJhE

3 https://github.com/binsec/binsec-ase

hardened high-security systems (such as smart cards) and associated with com-
plex physical attack means, many recent scenarios do involve software-only at-
tacks on standard systems, with targets encompassing cryptographic libraries,
bootloaders, firmware updaters, security enclaves, etc.

Hardware Fault Injection Attacks [58] cause erroneous computations by
disturbing signal propagation in the chip with physical means such as electro-
magnetic pulses [39], laser beams [4, 85], or power [19] and clock glitches. The
associated fault models include bit-, byte- or word- set and reset, bit-flips, in-
structions corruption and instruction skips. State-of-the-art attacks involve mul-
tiple fault injections [59], as expected by the high level of attack potential in
Common Criteria vulnerability analysis.

Software-implemented Hardware Attacks push the hardware into unstable
states using software controlled mechanisms, like delays in memory buses induc-
ing bit-flips in data fetched from memory [55] or CPU voltage and frequency ma-
nipulations yielding bit-flips in the processor [69,86]. The notorious Rowhammer
attack [70] abuses memory accesses to induce bit-flips in flash memory.

Micro-architectural Attacks use micro-architectural behaviors in unexpected
ways. For example: Spectre (version v1) [62] exploits branch predictors in spec-
ulative executions, which can be seen as a test inversion followed by a rollback;
Load Value Injection [87] injects arbitrary data into transient execution; race
attacks [54] corrupt data of other running processes and can be seen as arbitrary
data faults.

Man-At-The-End Attacks considers an attacker having full observability and
control over a software code and its execution [3], with the goal to steal sensitive
data or code (reverse engineering attacks). The associated attacker model is
hence very powerful, with capabilities such as halting and modifying data and
code at any point of the execution.

CFI Reasoning In order to assess the power of Control-Flow Integrity (CFI)
mechanisms, researchers [1,21] define hypothetical attackers by their capabilities,
such as “write anything anywhere” or “write anything somewhere”, and manually
prove that their countermeasure is indeed able to thwart such an opponent.
While not per se an applicative security scenario, the techniques developed in
this paper could help automate such essential reasoning.

2.2 Motivating Example

The motivating example in Figure 1 is a simple unrolled program inspired by
the VerifyPIN benchmark [42], from the domain of hardware fault injection and
smart cards. The user PIN digits ul to u4 are checked against the reference digits
refl to ref4, using the accumulator res. The attacker seeks to be authenticated
(validate the assert 1.16) without knowing the right digits (1.14).

Here, the attacker indeed cannot succeed by only crafting legitimate inputs.
However, an advanced attacker can leverage more powerful attack vectors to
inject faults into the program in order to succeed. For instance, corrupting

1 bool g authenticated;

2 int ul, u2, u3, ud, refl, ref2, ref3, refd;

3

4 void verifyPIN () {

5 int res = 1;

6 res = res * (ul =— refl);

7 res = res * (u2 — ref2);

8 res = res * (u3 = ref3);

9 res = res * (ud — refd);

10 g authenticated = res;

11}

12

13 void main(int argc, char const xargv[]) {

14 assert (ul!=refl || u2!=ref2 || u3l=ref3 || udl=refd);
15 verifyPIN ();

16 assert (g_authenticated = true); /* Security oracle x/
17 }

Fig. 1: Motivating example, inspired by VerifyPIN [42]

g _authenticated to true at 1.10 achieves the attacker goal. It could be obtained
for example through a physical- or Rowhammer- attack.

Program Analysis As expected, standard symbolic execution tools such as
Klee [22], angr [84] or BINSEC [38] do not report any violation here, as they
consider the simplest possible attacker. We can try to use SWiFI techniques
[15,20, 63, 76] (detailed in Section 3.1) from high-security system evaluation.
Yet, the standard forking approach does not scale with multiple faults: here,
166 paths are explored in 0.6 seconds for 1 fault, 2994 paths in 11 seconds for 2
faults, and it keeps on adding a factor x10 in explored paths and analysis time
for each extra fault, until the analysis timeouts (12 hours) above 4 faults. On the
contrary, our forkless algorithm presented in Section 5 simulates fault injection
without creating new paths and, in this example, shows a constant runtime as
the number of faults increases from 1 to 10 — we explore 9 paths in 0.2 seconds
in all cases.

3 Background

We provide in this section background information on software-implemented
fault injection, standard reachability and symbolic execution.

3.1 Software-implemented Fault Injection (SWiFI)

SWiFT tools [15,20,25,28,49, 50,63, 68,76, 79] have been developed in the com-
munity of high-secure systems to ease hardware fault injection campaigns, which
are time consuming and require special equipment. SWiFI evaluates a program

with the transformations induced by the effects of hardware faults, in order to
find interesting attack paths. We distinguish two main SWiFI techniques.

First, the Mutant generation approach [25,28,49,50,79] consists in analyzing
slightly modified versions of the program (named mutants), each of them embed-
ding a different faulty instruction. Each mutant is then analyzed on its own. The
main limitation of mutant generation is the explosion of mutants, in particular
for multiple faults. Also, as the different mutants differ only slightly, analyzing
each of them separately wastes lots of time repeating similar reasoning.

if (fault_here)
then x := fault_wvalue
X :=y + z else x := y + z
(a) Original statement (b) Forking transformation

Fig. 2: Forking code transformation in pseudo-code

Second, the forking approach [15,20,63,76] consists in instrumenting the

analysis (or the code, via instrumentation) to add all possible faults as forking
points (branches) controlled by boolean values indicating whether a particular
fault will be taken or not, plus constraints on the maximal number of faults
allowed. A forking data fault is illustrated in Figure 2. A standard program
analysis technique is then launched — typically symbolic execution or bounded
model checking. Compared with mutant generation, this method allows sharing
the analysis between the different possible faults. Still, the number of paths
explodes with the number of possible faults (forking points).
Scalability Issues These two approaches yield an explosion of the whole search
space w.r.t. the number of fault injection points in the program: the mutant
approach leads to consider up to C} (k among n)* mutants for a program under
analysis with n possible fault locations and k faults, while the forking approach
yields up to C}' paths to analyzed for a single original program path with n
possible fault locations and k faults.

In the following, we will consider the forking approach as the baseline — please

keep in mind that the mutant approach scales worse.
Fault Models Supported fault models vary for each tool, but they are usually
adapted from hardware fault models [47,82]. The most common fault models are
(1) data faults such as arbitrary data modifications, set and reset of bytes, words
or variables, bit-flips; and (2) instruction corruptions such as instruction skips
and test inversions. Most tools are limited to one (sometimes two) hard-coded
fault models. Only few SWiFI tools can handle multiple faults [63, 68, 76, 88] —
still with scalability issues.

* Remind that Cf = (%) = ptipy;

3.2 Standard Reachability Formalization

Considering a program P, we denote S the set of all possible states of P. A state
is composed of the code memory, the data memory (i.e. the stack and heap),
the state of registers and the location of the next instruction to execute. The
set of input states of a program P is noted Sy C S. The set of transitions (or
instructions) of the program is denoted 7. The execution of an instruction ¢ is
represented by a one-step transition relation —,€ S x S. We denote s — s’ when
s — ' for some ¢t € T. We extend the transition relation over any finite path
7w € T* through composition. The transitive reflexive closure of — is noted —*.
Finally, we use S — s’ as a shortcut for 3s € S.s — s’, and —<;, for reachability
in at most k steps.

We consider in the rest of the paper the case of location reachability: given
a location ! (instruction or code address) of the program under analysis, the
question is whether we can reach any state s at location [. More formally, L is
the finite set of locations of P, and we consider a mapping loc : S — L from
states to locations. For example, loc may return the program counter value. We
write S —* [as a shortcut for 35’ € S.5 —* s Aloc(s') = .

Definition 1 (Standard reachability). A location [is reachable in a program
P if Sy =* 1.

We now define correctness and completeness for a program analyzer.

Definition 2 (Correctness, completeness). Let V : (P,l) — {1,0} be a
verifier taking as input a program P and a target location [.
— V is correct when for all P, 1, if V(P,1) = 1 then [is reachable in P ;
— V is complete when for all P, 1, if | is reachable then V(P,l) =1 ;
— if V also takes an integer bound n as input, V is k-complete when for all
bound n and P,l, if l is reachable in at most n steps then V(P,l,n) = 1.

We want to stress out that while location reachability can be seen as a basic
case, we consider it sufficient here for two reasons: first, it keeps the formalism
light while still straightforward to generalize to stronger reachability properties
(e.g., local predicates of the form (I,), sets of finite traces, etc.); second, it
is already rather powerful on its own, as we can still instrument the code to
reduce some stronger forms of reachability to it (e.g., adding local assertions or
monitors).

3.3 Symbolic Execution

Symbolic execution (SE) [23,24,52,83] is a symbolic exploration technique for
standard reachability. Algorithm 1 gives a high-level view of a typical SE al-
gorithm, adapted for location reachability®. The analysis follows each possible

5 More complex properties can be verified with the same principles, such as local
predicate reachability, trace properties or hyper-properties [36].

Algorithm 1: Standard symbolic execution algorithm, taken from [48]

Input: a program P, a bound k, a target location [
Output: Boolean value indicating whether | can be reached within k steps.

1 for path m in GetPaths (k) do

2 if 7 reaches | then

3 & := GetPredicate(m)
4 if @ is satisfiable then
5 ‘ return true

6 end

7 end

8 end

9 return false

path 7 of a program up to a depth bound k. If 7 reaches the target, then we
check whether 7 is indeed feasible by computing its path predicate ® — a logical
formula representing the path constraints over the input variables along 7, and
sending it to a SMT solver [12], that will try to answer whether the formula
is satisfiable or not, and provide a model for free variables (e.g. inputs) if it is
(omitted here for simplicity). SE is correct for location reachability, and even
k-complete if we assume a perfect encoding of path predicates.

Algorithm 2: Assignment evaluation in SE

Input: path predicate @, assignment instruction x := expr
Output: Updated ¢

1 Function eval_assign(®, x, expr) is

2 return @ A (z 2 expr)
3 end

In this paper, we will focus on the evaluation of assignments and conditional
jumps for SE, detailed in Algorithms 2 and 3 respectively, as this is where our ad-
versarial symbolic execution will mainly differ from the standard one. It requires
going slightly deeper into details. In practice, the program paths are explored
incrementally. A worklist W L records all pending paths together with their as-
sociated path predicate and their next instruction to explore. On conditional
branches, the symbolic path is split in two (one for each branch, updating the
path constraint accordingly), and each new prefix is added to the worklist (Al-
gorithm 3). Assignments are dealt with straightforwardly, simply adding a new
logical variable definition to the path predicate ¢ (notation: = £ 7).

5 Actually, a symbolic state usually comprises the path predicate itself plus a mapping
from program variable names to logical variable names, and assignments involve both

Algorithm 3: Conditional jump evaluation in SE

Input: path predicate @, conditional jump instruction if cdt then l; else .

Data: a worklist W L containing the pending path prefixes to explore — list of
pairs (path predicate, next location)

Output: WL updated in place

1 Function eval_conditional_jump(®, cdt, li, l.) is
if @ A cdt is satisfiable then
| Add (® Acdt, I;) to WL
end
if @ A (—cdt) is satisfiable then
| Add (® A —cdt, 1) to WL

end

® N e CN W N

end

4 Adversarial Reachability

In this section, we detail the advanced attacker model we consider and define
the adversarial reachability problem. Especially, advanced attackers can do more
than carefully crafting legitimate inputs to trigger vulnerabilities in a software.
They can use a wide variety of attack vectors (e.g. hardware fault injection at-
tacks, software-implemented hardware attacks, micro-architectural attacks, soft-
ware attacks, etc), in any combination, and multiple times. We suppose attack
vectors prerequisites have been met, and only consider the impact of the faults
on the program under attack.

Our attacker model has three components: (1) a set of attacker actions, equiv-
alent to fault models; (2) the maximum number of actions the attacker can
perform; and (3) a goal, expressed here as a location reachability query.

Formally, given a program P with set of states S, set of transitions 7" and
set of locations L, we extend the transition model described in Section 3.2 to
include an adversarial transition ~»4€ S x S related to an attacker A, i.e. Ty =
TU ~»4. To specify practical fault models, restrictions are applied onto ~» 4,
limiting what part of the state can be modified and how. For instance, when
considering arbitrary data faults, only the data memory and the register values
can be modified. Then, the transition relation of P under attacker A is denoted
as —a=— U~ g= (Ugert)U ~ 4. We extend the notations from Section 3.2 to
the relation +— 4. Especially, S —% s’ means 3s € S.s —% s', the adversarial
transition relation up to k is denoted 4 <.

Still, we need to take into account the maximum number of faults the at-
tacker can perform along an execution. Given a path m over T, 7 is said to be
legit if it does not contain ~» 4, and faulty otherwise. The number of occurrences
of transition ~» 4 in 7 is its number of faults. Given a bound m 4 on the fault

creating new logical names and updating the mapping. We abstract away from these
details.

capability of A, we define —7 Ama) by limiting the adversarial reachability rela-
tion to paths 7 with less than m 4 faults. We consider m 4 to be +oo in case the
attacker has no such limitation. For the sake of simplicity, in the following, we
will consider m 4 as an implicit parameter of A, and simply write —% instead of

*
H(A,mA)‘

Definition 3 (Adversarial reachability). Given an attacker A with a ma
faults budget and a program P, a location | € L is adversarially reachable if
So =% s Nloc(s') =1 for some s’ € S.

In the following, adversarial reachability of location [from a set of states Sy
will be denoted Sy —7% .

Proposition 1. Standard reachability implies adversarial reachability. The con-
verse does not hold.

Proof. Standard reachability can be viewed as adversarial reachability with an
attacker able to perform 0 faults.

We redefine what it means for an analysis answering adversarial reachability
to be correct, complete and k-complete.

Definition 4. Let V4 : (P, A 1) — {1,0} be a verifier taking as input a program
P, an attacker A with m s fault budget and a target location .
— Va4 is correct given A when for all P, 1, if Va(P, A1) = 1 then | is adver-
sarially reachable in P for attacker A;
— V4 is complete given A when for all P, I, if | is adversarially reachable for
attacker A then Vo(P, A1) =1 ;
— if V4 also takes an integer bound n as input, V4 is k-complete given A when

for all integer n and P,l, if | is adversarially reachable in at most n steps
then Vao(P, A,l,n) = 1.

5 Forkless Adversarial Symbolic Execution (FASE)

In this section, we present our forkless algorithm for adversarial reachability. The
analysis aims to find inputs and a fault sequence compatible with the considered
attacker model and reaching the target location. Our primary goal is to deal
with the potential path explosion induced by possible faults. Our design guiding
principles are the following:

— First, prevent path explosion as much as possible with a forkless fault en-
coding. Yet, this forkless encoding leads to logical formulas potentially more
complex and harder to solve in practice;

— Second, reduce as much as possible the complexity of the created formulas,
by avoiding the undue introduction of extra-faults along a path.

10

5.1 Modelling Faults via Forkless Encoding

The forkless encoding aims to address the path explosion induced by the forking
treatment of fault injection in prior works. It is designed mainly for data faults
and consists of wrapping arithmetically an assignment right-hand side, as shown
in Figure 3 for an arbitrary data fault. The activation of this fault location is
determined by the symbolic Boolean value fault here, and the corrupted value
of x is the fresh variable fault wvalue.

The point is to embed the fault injection as an expression inside the logical
formula, without any explicit path forking at the analysis top-level, in order to
let the analyzer reason about both legit executions and faulty executions at the
same time — this is akin to path merging in some ways, except that we do it only
for the treatment of fault injection (we could also see the approach as avoiding
undue path splits).

Multiple forkless arbitrary data encodings are possible. We chose to use the
ite expression operator, an inlined form of if-then-else at the expression level.
We also tried encodings inspired from branchless programming idioms (e.g.:
(b)-x+(1—b)-y. for ite(b, x,y) with b a Boolean value) — in our experiments they
worked as well as the ite operator. Other data fault models are supported, such
as set, reset, bit-flips, etc. Test inversion is also supported by applying faults to
the condition of conditional jumps. Table 1 illustrates various forkless encodings.
Note that the forkless encoding is not designed for instruction corruptions or in-
struction skips, as these modifications either yield permanent code modification
or span several instructions.

X 1= expr x:=ite fault here? fault wvalue:expr

(a) Original statement (b) Forkless transformation for arbitrary data fault

Fig. 3: Forkless injection technique

Table 1: Forkless encodings for various fault models
Fault model |original instruction|Forkless encoding

Arbitrary data|z := expr x :=ite fault _here ? fault value : expr
Variable reset |x := expr x :=ite fault _here 7 0200000000 : expr
Variable set |z := expr x = ite fault _here 7 OzfHfiffff : expr
Bit-flip T = expr x :=ite fault _here ?

(expr zor 1 << fault_wvalue) : expr
Test inversion |if cdt then goto 1 |if (ite fault _here 7 ledt : cdt)
else goto 2 then goto 1 else goto 2

11

Trade-off. While these sorts of encoding indeed allow a significant path re-
duction compared to forking approaches, the corresponding path predicates are
more complicated than standard path predicates, as they involve lots of extra-
symbolic variables for deciding whether the faults occur and for emulating their
effect. We show later in this section how to reduce these extra-variables.

5.2 Building Adversarial Path Predicates

Adversarial symbolic execution requires modifications to Algorithms 2 and 3, as
illustrated in Algorithms 4 and 5 respectively.

Algorithm 4: Forkless assignment evaluation

Input: path predicate @, assignment instruction x := expr, current number of
faults nby
Output: Updated @

Function eval_assign(®, z, expr) is
&', expr’ ,nbs ;= FaultEncoding(®, expr,nby)
return ¢’ A (x £ expr’)

W N

end

Algorithm 5: Forkless conditional jump evaluation

Input: path predicate @, conditional jump instruction if cdt l; else l.
Data: fault counter nby, maximal number of faults max ¢, worklist WL
Output: WL updated in place

Function eval_conditional_jump(®, cdt, I, le) is
if & Acdt A (nby < maxy) is satisfiable then
| Add (® Acdt, I;) to WL
end
/* Idem for else branch (—cdt) */
5 end

[

The assign evaluation process embeds a wrapper encoding the fault in a fork-
less manner. Note that Fault Encoding involves the declaration of fresh symbolic
variables for fault decisions and fault effects — hence the update of the path pred-
icate @. Also, the fault counter nbs is updated, and a new potentially faulted
expression expr’ is computed.

Note that checking if the fault counter nb; does not exceed the maximal
number of faults max; can be performed at different places. We found the best
trade-off is to augment the conditional jump queries to check if we could explore

12

each branch without exceeding maz; (see Algorithm 5), as checking at the end
of a path often involves exploring many unfeasible faulty paths.

We refer to this set of modifications as Forkless Adversarial Symbolic Execu-
tion (FASE).

5.3 Algorithm Properties
We now consider the properties of the FASE algorithm.

Proposition 2. The FASE algorithm is correct and k-complete for adversarial
reachability.

Sketch of proof. If our algorithm finds an adversarial path reaching the target lo-
cation [, by providing specific input values and a fault sequence, then an attacker
executing the program with the provided inputs and performing the proposed
faults will reach its goal. Our algorithm is based on symbolic execution with
bounded path depth and explores all possible attack paths according to the
considered attacker model, hence its k-completeness for adversarial reachability.

Tightness of FASE. Consider a single path with no branching instruction
and an assert statement to be checked at the end, together with f possible fault
locations and a maximum of m faults. Then the forking SE yields up to C{, paths
to analyze, and as many queries to send to the solver. In the same scenario, FASE
will analyze only the original path, and send a single query to the solver.

Still, the Forkless encoding increases query complexity, as shown in Section
7. We present in the remainder of this section two mitigation techniques.

5.4 Optimization via Early Detection of Fault Saturation

(FASE-EDS)

Algorithm 6: FASE-EDS conditional jump evaluation
Input: path predicate @, conditional jump instruction if cdt then l; else I
Data: fault counter nby, maximal number of faults max, worklist WL
Output: WL updated in place

1 Function eval_conditional_jump_EDS(®P, cdt, lt, l.) is
if & Acdt A (nby < maxy) is satisfiable then
| Add (D A cdt, 1) to WL
else if & A cdt A (nby == maxy) is satisfiable then
Stop injection in this path
Add (P A cdt, Iy) to WL
end
/* Idem for else branch (—cdt) x/
8 end

i =R, G VU V)

13

The first angle we explore to minimize query complexity is to reduce the
number of injection points by stopping the injection process as soon as possible.
Indeed, fewer injection points mean fewer extra symbolic variables and in general
smaller and simpler queries for the SMT solver. We call this optimization Early
Detection of fault Saturation, and write FASE-EDS when it is activated.

Its difference compared to FASE is in handling conditional jumps, illustrated
in Algorithm 6. Instead of checking whether a branch can be explored without
exceeding the maximum number of faults, we double the check: (1) first we check
whether the branch can be explored with strictly fewer faults than allowed. If
the query is satisfiable, the analysis continues down that branch as usual; (2) if
not satisfiable, we check whether the branch is feasible with exactly the maximal
number of faults allowed. If not, the branch is infeasible and we stop as usual. Yet,
if it is feasible, then we know that we have spent all allowed faults. We can thus
continue the exploration without injecting any new fault in the corresponding
search sub-tree, leading to simpler subsequent queries.

Proposition 3. FASE-EDS is correct and k-complete for the adversarial reach-
ability problem.

Proof. FASE-EDS remains correct as it does not modify the path predicate
computation, and it remains k-complete as it only prunes fault injections that
are actually infeasible — and would have been proven so by the solver, later in
the solving process.

5.5 Optimization via Injection on Demand (FASE-IOD)

The second angle explored to reduce query complexity through the reduction of
injection points is to inject faults on demand, only when they are truly needed.
We call this optimization Injection On Demand, and write FASE-IOD when it
is activated.

To inject faults on demand, we now build two path predicates along a path:
the working path predicate ¢ based on which solver queries are built (where we
try to minimize fault injection), and the normal adversarial path predicate g
computed in previous sections (encompassing all the faults seen so far).

Algorithm 7: FASE-IOD assignment evaluation

Input: path predicate @, faulted path predicate @, assignment instruction
x := expr, current number of faults (in ®r) nby
Output: Updated @, ¢r

Function eval_assign_IO0D(®, Pr, cdt, =, expr) is
&%, expr’,nby := FaultEncoding(®r, expr, nby)
return (@ A (z £ expr), D A (x 2 expr’))

end

W R

14

Algorithm 8: FASE-IOD conditional jump evaluation
Input: path predicate @, conditional jump instruction if cdt then I else l.
Data: fault counter nby, maximal number of faults maz s, under

approximation counter under _counter, worklist W L
Output: WL updated in place

1 Function eval_conditional_jump_IO0D(®, ®r, cdt, I, l.) is

2 if & Acdt A (nby < maxy) is satisfiable then

3 | Add (® A cdt, Pr Acdt, l;) to WL

4 else if under_counter < maxy then

5 if §r Acdt A (nby < mazxy) is satisfiable then

6 b= Pp

7 under _counter := under_counter + 1

8 Add (P Acdt, Pr Acdt, 1) to WL

9 end
10 end

/* Idem for else branch (—cdt) */

11 end

Algorithms are updated accordingly. Especially, assignment evaluation is du-
plicated as shown in Algorithm 7: The normal symbolic assignment, with the
original right-hand-side expression expr, is added to @, while @ is updated with
the fault encoding of the assignment, expr’.

The on-demand reasoning takes place in the conditional jump instruction
process detailed in Algorithm 8. The basic idea is to first check branch feasibility
with the simpler path predicate @, encompassing the least number of faults. We
continue this way as long as we can, meaning we rely on standard reachability
as much as we can.

When encountering a branch infeasible with @, we then check whether this
branch is feasible with all the possible faults seen so far, i.e. using @p. If no
that is a stop, otherwise we know that & does not encompass enough faults to
go further. We then replace & by @ (called a switch) at this stage, and thus
continue with strictly more faults. Note that this is straightforward as ¢ and
@ only differ on fault injections. Then again, the new @ will not accumulate any
fault (until a new switch) while #r continues accumulating all possible faults.

As a bonus, the number of path predicate switches gives us an under-
approximation under _counter of the number of faults already needed in the
path under analysis. We use it to stop the injection early, when at least maxy
faults have been used.

Proposition 4. FASE-IOD is correct and k-complete for the adversarial reach-
ability problem.

Proof. FASE-IOD explores the same feasible paths as FASE, hence preserving
its properties.

15

5.6 Optimizations Combination

Algorithm 9: FASE-IOD and FASE-EDS combination, conditional
jump evaluation
Input: path predicate @, faulty path predicate @, conditional jump
instruction if cdt then l; else .
Data: fault counter nby, maximal number of faults max s, under
approximation counter under _counter, worklist WL
Output: WL updated in place

1 Function eval_conditional_jump_EDS_IOD(®, ®r, cdt, lt, l.) is

2 if @ Acdt A (nby < mazy) is satisfiable then

3 | Add (D Acdt, r Acdt, li) to WL

4 else if under_ counter < maxy then

5 if &r Acdt A\ (nby < mazxy) is satisfiable then

6 b= Pp

7 under _counter := under _counter + 1

8 Add (P Acdt, Pr Acdt, lt) to WL

9 else if & A cdt A (nby == maxy) is satisfiable then
10 b :=Pp

11 Stop ¢’ update and queries

12 Add (@ A cdt, Dr A cdt, I:) to WL
13 end
14 end

/* Idem for else branch (—cdt) */

15 end

Both optimizations can be combined together as illustrated in Algorithm
9. Taking FASE-IOD as a basis, saturation detection is added in the faulted
path predicate @r queries at conditional branch handling. If the saturation is
detected, the main path predicate switch to @r but @ stops being updated and
queried further down that path, which stops fault injection.

Proposition 5. The combination of FASE-EDS and FASE-IOD is correct and
k-complete for the adversarial reachability problem.

Proof. This combination also explores all possible paths for the considered at-
tacker models, like FASE, hence preserving its properties.

6 Implementation

We now provide details about our forkless adversarial symbolic execution (FASE)
implementation, named BINSEC/ASE, for Adversarial Symbolic Execution. The
code is made open-source” .

" https://github.com /binsec/binsec-ase

16

Binary-level Fault Injection. While our method works for any program ab-
straction level, we choose to implement it for the binary level, which makes more
sense in many security scenarios. We implement, our forkless adversarial symbolic
execution on top of the BINSEC symbolic engine [10,38,40]. It has already been
used in a number of significant case studies [9, 36, 37,80,81], and it is notably
able to achieve bounded verification (k-completeness) and to reasonably deal
with symbolic pointers [44].

We modified the path predicate computation of BINSEC 0.4.0 as described in
Section 5, and implemented our dedicated optimizations FASE-EDS, FASE-IOD
and FASE EDS+IOD. BINSEC consists of 60kloc of Ocaml and our modifica-
tions add 6kloc. The attacker goal is specified as a local predicate to reach,
using BINSEC directives. We currently support data faults such as arbitrary
modification, bit-flip and reset. Test inversion is emulated through faulting the
condition of conditional jumps. We let the user define an injection target range,
made of multiple code address intervals. For large programs, it enables focusing
on the security critical sections. Finally, we also provide a blacklist for some
memory locations which will never be faulted. The blacklist is mostly used for
the stack register (esp in x86, which is concretized in the analysis) and the pro-
gram counter, as our fault model does not include tampering with the stack nor
arbitrary control faults.

Details. Our exploration strategy is depth first, the underlying SMT solver is
Bitwuzla [71]. We constrain the faulted values to differ from the original values
in fault encodings, such that only true corruptions are reported as active faults.

7 Ewvaluation

We now evaluate our new algorithm for software verification against multi-fault
attacks. We consider the following research questions.

— RQ1: is our tool correct and complete? In particular, can we find attacks

on vulnerable programs and prove secure resistant programs?

— RQ2: can we scale in number of faults without path explosion?

— RQ3: what is the impact of our optimizations?
Besides this evaluation, we also show the use of our method in a number of
different security scenarios (Section 7.5), and on a larger case study (Section 8).

7.1 Experimental Setting

The Machine Used. We ran our experiments on a cloud machine with a proces-
sor Intel Dual Xeon 4214R, with 48 CPU cores and 384GB of RAM. Experiments
ran in parallel on the 48 cores, each run using only one core.

The Attacker Model chosen in this evaluation can perform a varying number
of faults. Its goal is expressed as a security oracle directly written in C for each
benchmark, the computation of which is not faulted.

17

The Benchmark used here is a standard set of programs from the SWiFI
literature on physical fault injections and high-security devices, characterized
in Table 2. First, the 8 versions of VerifyPIN from the FISSC [42] benchmark
suite, dedicated to the evaluation of physical fault attack analyses. VerifyPIN is
an authentication program. There are one unprotected and 7 different protected
versions, some vulnerable, some resistant to one test inversion fault. We added
2 manually unrolled versions of the unprotected VerifyPIN, with a PIN size of
4 and 16, to add diversity in the benchmarks with programs without loops.
An oracle is provided by FISSC, checking if the user PIN truly corresponds to
the reference PIN. Second, we take the 2 versions of the npo2 program from
Le et al. [65], together with their oracles. Npo2 is a program computing an
integer’s upper power of two. The attacker’s goal is to perform a silent data
corruption, i.e. change the end result without triggering countermeasures. One
version is vulnerable to one arbitrary data fault, the second is resistant due to
extra arithmetic checks.

Compilation. The benchmarks are written in C and have been compiled with
gec for the Intel x86-32 architecture, using the flag “-O0” to preserve counter-
measures. For BINSEC compatibility, we use the “static” flag to include the
necessary library functions directly in the binary.

Table 2: Benchmarks characteristics and statistics of a standard SE analysis

BINSEC analysis - no fault
Program group (#) C loc| x86 loc|#instruction|#paths| #branch Time
(explored) in a path
Section 7
VerifyPINs (8) 80-140|160-215 192-269 1 17-34 < 0.1s
VerifyPIN unrolled (2)| 40-85(140-430 142-442| 5-17 5-17 < 0.1s
npo2 (2) 50|200-220 607-653 3 31-33 < 0.1s
Section 8
WooKey bootloader | 3.2k] 2350 290k] 17] 18k 9s
Section 7.5
CRT-RSA (3) 125-170(400-600| 108k-29M 1| 5k-1.3M|0.4s - 1m27
Secret keeping
machine (2) 100-200|240-360 1k-1.3k 1| 130-150 < 0.1s
VerifyPIN_0
with SecSwift 80 430 430 1 22 < 0.1s

BINSEC Settings. We limit the maximal depth of an analysis to the depth
necessary to perform an exhaustive non-faulty analysis, rounded to the upper
hundred. We exhaustively explore all the possible paths up to this bound and
do not stop at the first identified attack, in order to have comparable results.
We set the global analysis timeout for 1 day. We fault values and not addresses,

18

we do not directly fault the stack pointer nor the program counter, and we do
not fault the status flags unless explicitly specified.

7.2 Correctness and Completeness in Practice (RQ1)

We first show that our tool works as expected on several codes with known
ground truth. (1) We check that indeed, with no fault allowed, no attack is
found in any of the benchmarks; (2) We check that indeed the insecure npo2
program is vulnerable to a single arbitrary data fault while the secure version is
not — it can still be exploited with two faults; (3) According to their authors, the
VerifyPIN versions 0 to 4 are vulnerable to one test inversion, while VerifyPIN
5 to 7 are resistant to it. We indeed reproduce these results. When allowing two
faults, all VerifyPIN become vulnerable; (4) When using one arbitrary data fault
against the VerifyPINs, all versions are found vulnerable. We manually check
that indeed the identified attack paths make sense; (5) Our manually unrolled
versions of VerifyPINs do not contain conditional branching instructions in the
targeted function, making them resistant to test inversion. We check that this is
the case, while they are still vulnerable to a single arbitrary data fault.

Conclusion. Our tool indeed can showcase a program vulnerability to fault
injection attacks and prove resistance to fault injection attacks, as expected by
the correctness and k-completeness properties of the underlying algorithms.

7.3 Scalability (RQ2)

For this evaluation, we focus on an attacker capable of arbitrary data faults, as
those weigh the heaviest on the analysis.

We take FASE-IOD as our best performing technique (see Section 7.4). We
evaluate here its capability to handle multi-fault and avoid path explosion, com-
pared to the forking technique. Results are illustrated in Figures 4 and 5. Note
that all FASE variants explore the same number of paths, and are thus repre-
sented as FASE in Figure 5. For each benchmark, we took the arithmetic mean
for 100 runs. Values presented here are the geometric mean over the benchmarks.

FASE-IOD is 10x times faster than Forking for 1 fault, and x200 times faster
for 2 faults on average. For the best case benchmark, we are x224 times faster for
1 fault and x6121 for 2. Starting from three faults onward, Forking experiences
timeouts, rendering values non comparable. Half of the benchmark timeouts for
3 faults, three quarters for 4 faults, 11 over 12 for 6 faults and all of them after
that. FASE-IOD never timeouts in this experiment. This scaling is enabled by
avoiding path explosion. On average, Forking explores x50 times more paths for
2 faults than for one, while FASE-IOD only explores x3 times more paths. From
Figure 4, we see FASE on its own already scales better than Forking, being
x3 times faster for 1 fault and x108 times faster for 2, and never experiencing
timeouts either.

Conclusion. FASE-IOD shows improved scalability in terms of the maximum
number of faults allowed, for the arbitrary data fault model, compared to the
forking technique.

19

Analysis time (in s)

10°

. = =
i3 2 <

Number of explored paths.

=
b

10%
"
10 100
FASE @
10° —— FASE-EDS <
—— FASE-IOD £
—— FASE-EDS+I0D a
10 — Forking a
(O timeouts 2
<
10t —— FASE
—— FASEEDS
—— FASE-IOD
o —— FASE-EDS+I0D
10 100
12 3 4 6 8 10 1 2 3 4 6 8 10
Number of faults Number of faults
Fig. 4: Analysis time
275x1072
5 25x1072
£
S 225x102
<
S
S 2x107?
3
2
o
£ 175x1072
=
2
= -
S 15x102 FASE
) —— FASE-EDS
g —— FASE-IOD
—— all FASE versions Z 125% 107 —— FASE-EDS+I0D
— Forking — Forking
(O timeouts QO timeouts
1 2 3 a4 6 8 10 1 2 3 4 6 8 10

Number of faults

Number of faults

Fig.5: Average number of explored paths, Average solving time per query

Number of queries sent to the solver

2

o
2

2

=
2

=
2

]
g
°
H
v
k3
—— FASE o
— FASE-EDS 2
—— FASE-IOD]
—— FASE-EDS+I0D 2
— Forking g
(O timeouts s
5
T
2
£ 5 —— FASE
210 — FASE-EDS
—— FASE-IOD
—— FASE-EDS+10D
1 2 3 4 8 10 1 2 3 4 6 8 10

Number of faults

Number of faults

Fig.6: Number of queries sent to the solver

20

7.4 Performance Optimization (RQ3)

We evaluate our forkless variants: FASE, FASE-EDS, FASE-IOD and FASE
EDS+IOD, to determine which performs best for arbitrary data faults. Results
are illustrated in Figures 4, 5 and 6.

We vary again the maximum number of faults from 1 to 10. Note that all
FASE variants explore the same number of paths for each number of faults, as
the optimizations reduce the number of faults injected but do not lose correct-
ness nor k-completeness. FASE indeed generates complex queries®, taking on
average around twice the time necessary for Forking queries to be solved. FASE-
EDS then gains a little bit in that regard. FASE queries take only x1.04 longer to
solve on average for all fault numbers. The real improvement comes with the On-
Demand logic of FASE-IOD (x2.02 times faster on average over all fault numbers)
and FASE EDS+IOD (x2.02 also), where query complexity drops to the level of
Forking. This improvement in query complexity is achieved algorithmically at
the price of query creation. However, due to more queries being arithmetically
simplified, fewer queries are sent in the end to the solver for FASE-IOD (x0.88
on average over all fault values compared with FASE) and FASE EDS+IOD
(x0.98). FASE-EDS sent approximately the same number of queries as FASE.
The number of queries sent to the solver explodes for Forking, correlated with
the path explosion experienced. In terms of performance, two trends appear
as the number of faults allowed increases. FASE and FASE-EDS tend to be be-
tween x2 and x3 times slower than FASE-IOD and FASE EDS+IOD. In the end,
FASE-IOD proves to be the fastest optimization (x1.1 times faster than FASE
EDS+IOD on average over all number of faults), likely due to the combination
of on-demand logic and fewer queries than FASE EDS+I0D.

Conclusion. We retain FASE-IOD as our best performing forkless adversarial
algorithm, at most x3.06 faster than FASE.

7.5 Other Experiments and Fault Models

CRT-RSA. Puys et al. [78] describe three versions of CRT-RSA: unprotected,
Shamir version and Aumuller version. Only the last one is shown to resist the
BellCoRe attack [16] which uses a single reset fault to break the cryptography.
We were able to automatically reproduce the attack with 1 reset fault on the
unprotected version of CRT-RSA, after 3s of analysis, and we were not able to
find attacks on the other two versions in 10 days time.

Secret-keeping Machine. Dullien [41] proposes two versions of a secret-keeping
machine. The one based on linked lists is manually shown to be exploitable by
an attacker able to perform a single bit-flip in the memory (not in registers),
while the array version is shown to be secure against that. For this benchmark,

8 When counting the number of ite operators introduced in queries, from having barely
any in a run without faults, we reach around 2,800 ite per query on average for FASE
and 1,500 for FASE-IOD for one fault.

21

we activated faults on variables used as addresses. We were able to reproduce
the attack on the linked list implementation with one bit-flip fault and to show
the array implementation is secure for this fault model. In addition, if we allow
faults in registers too, the array implementation becomes vulnerable.

SecSwift Countermeasure. We applied the SecSwift countermeasure, a llvm-
level protection developed by STMicroelectronics [27,45], to VerifyPIN version 0.
We were able to find attacks yielding an early loop exit on this binary with either
a single test inversion or a single arbitrary data fault. These paths belonging
to the CFG of the program, these attacks are not unexpected, yet it is still
interesting that our method finds them automatically.

8 Case Study: the WooKey Bootloader

We now confront our tool to a real-life security system, WooKey.

Presentation of WooKey. First presented in 2018 by ANSSI, the French sys-
tem security agency, the WooKey platform [14,89] is “a custom STM32-based
USB thumb drive with mass storage capabilities designed for user data encryp-
tion and protection, with a full-fledged set of in-depth security defenses”. Their
choice to be open source and open hardware makes WooKey a relevant case
study: it is a real-life, complex device, security focused and available for repro-
ducibility. Note also that Wookey has been extensively analyzed, as it was the
target of an ANSSI cybersecurity challenge for security professionals [5].

Security Scenario and Goal of our Study. We focus on WooKey bootloader,
a dual-bank system enabling hot firmware updates. The system is hardened,
especially redundant test protections are present in critical sections to protect
against test inversion faults. We consider the same attacker model as the ANSSI
challenge did [5]: the attacker seeks to manipulate the bootloader logic to boot
on the older firmware, more likely to contain security vulnerabilities. We also
consider an attacker able to perform a single arbitrary data fault. We see in
Table 2 that WooKey bootloader size is orders of magnitude larger than the
programs used for evaluation in Section 7. Wookey is available as C code. We
compile it like we did for the evaluation benchmarks (Section 7.1).
We conduct the following three analyses:

1. automatically analyze WooKey at binary-level to check whether we are able
to find previously known faults [63], and/or new ones: we are indeed able
to find the two faults identified by prior work [63] (A1, A2), as well as an
attack that they did not report® (A3);

2. automatically analyze at binary-level the patch version of Wookey proposed
by Lacombe et al. [63]: we found that the proposed patch indeed blocks the
two known attacks (A1 and A2), but not the unreported attack (A3);

3 After discussion with the authors [63], it turns out that they actually found this

path but did not report it in the article, as they did not consider it as a real attack
w.r.t. the Wookey challenge.

22

3. propose a definitive patch by adding a counter-measure for A3 and remove
parts of the counter-measures which are shown to be useless here. The patch
is proven correct w.r.t. our attack model.

We discuss these results in the following and we present briefly in Section 8 the
discovery of two more known faults. Overall, it demonstrates that our technique
can scale to binary-level real-size systems.

Analyze Key Parts of Wookey. Lacombe et al. find an attack in the loader
exec_req_selectbank function (A1) and another in the loader exec req

flashlock function (A2). They correspond to data corruption in branching con-
ditions. We are able to find both attacks, linking faults back to their locations
in the C code with debug information. We also find an additional, unreported,
attack, faulting another part of the loader exec req flashlock function (A3).

Analyze a Security Patch of WooKey. We now evaluate the protection
scheme proposed by Lacombe et al. [63] for these attacks. It consists of four
extra counter-measures named from CM1 to CM4. We found indeed that the
full protection prevents attacks Al and A2, as claimed by the authors of the
patch. Yet, our analysis shows that the protection does not prevent A3.

Propose a New Patch and Evaluate It. We manually inspect these different
analysis results to understand what happens. We have especially been able to
identify the root cause of A3 and propose a dedicated countermeasure for it
(named CMA). Also, by analyzing each counter-measure in isolation, we have
been able to understand that counter-measures CM1 and CM3 do not block any
attack path as they are redundant with other tests in the code and can be safely
removed. Overall, our new patch (CMA + refined former patch) is shown by
our tool to protect against all the attacks, for an attacker able to perform one
arbitrary data fault.

Table 3: Table summarizing the effects of countermeasures

Protection scheme Al1|A2|A3

1.3(1.31|1.25
Normal Wookey e
Prior patch (CM1+CM2+CM3+CM4)| X | X | /
Our patch (CM2+CM4+CMA) X1 x| X

Legend - v attack path found by our tool / X: no attack found

Other Attacks on WooKey. We were also able to find two other known at-
tacks on Wookey. (Attack vector combination) The iso8716 library, used in
WooKey for secure communication, presents a vulnerability to fault injection
which enables a software buffer-overflow in function SC_get _ ATR [63]. Us-
ing an attacker with a single arbitrary data fault, we were able to reproduce
this attack; (Faulty redundant test) Martin et al. [68] shows an incorrect im-

23

plementation of a redundant test to prevent single test inversion faults in the
loader set state function. We reproduce this result.

9 Discussion

Fault Models. Our current approach does not support advanced control faults
such as instruction corruption or instruction skip. Instruction corruption is out
of scope as it permanently changes an instruction, while we modify computation
results. It is related to self-modification, a notoriously difficult point to address in
adversarial binary-level code analysis [17,77]. Instruction skip (or other arbitrary
control jumps) could be modeled by local modification of the program counter,
yet at the price of a huge path explosion. Also, regarding micro-architectural
attacks, modeling Spectre attacks is difficult due to the speculative windows
mechanism and its associated rollback.

Other Formal Methods. While in the paper we focus on symbolic execution,
we believe the main optimization ideas developed here can be used with other
formal techniques, e.g. Bounded Model Checking [29,31], Abstract Interpretation
[34] or CEGAR [30]. Note that for each of them, fault injection may result either
in path explosion or precision loss. Still, our forkless encoding should be able to
help at least all approaches based to some extent on path unrolling.

Other Properties. The forkless encoding can surely benefit other classes of
properties to be achieved by the attacker, especially those known to be sup-
ported by (extensions of) symbolic execution, for example: trace properties such
as use-after-free, k-hyperreachability properties (secret leakage, privacy leakage,
violation of constant-time, etc.) [36], the recent robust reachability proposal [48]
for replicable bugs, etc. Our formalism itself is quite generic and can accom-
modate a wide range of properties, as we mainly keep the property unchanged
but modify the underlying transition system. We could for example imagine an
attacker willing to activate a non-terminating execution (denial of service).

Forkless Encoding and Instrumentation. Several prior works use code-level
instrumentation [68] or LLVM-level instrumentation [63,65,76] in order to lever-
age standard program analyzers as is. The forkless encoding we propose can
also be used this way, for more flexibility but without additional optimizations.
Actually, we performed some experiments with Klee and a C-level forkless instru-
mentation, and do observe significant improvement over forking instrumentation.

10 Related Work

SWiFI. Prior work in SWiFT has already been discussed in Section 3. All meth-
ods in this domain consider low-level formalism: C [28,68], LLVM [63, 76], bi-
nary [15,20,25,50]. Half of the techniques rely on the mutant approach [25,28,49,
50,79], and the other half relies on forking [15,20,63,76]. While most approaches

24

target attack finding (with symbolic execution and bounded model-checking),
some do aim at full verification [79], especially with deductive verification [28,68].
Very few works consider multi-faults [63,68,76]. Interestingly, Lacombe et al. [63]
propose a static way of reducing injection points on C programs, that is com-
plementary to our own method — still, static analysis at binary-level is known to
be hard. Note that a few methods do consider instruction skips [20,49, 50], yet
with path explosion issues.

Robustness Analysis. SWiFI is also used for robustness evaluation [32, 56,
64, 65,72, 74,88,90], in order to verify the correct behavior of error handling
mechanisms. They rely also on forking or mutant techniques. The fault models
are similar to hardware fault injection, yet multi-fault is not really an issue there,
as faults are supposed to originate from safety issues (e.g. cosmic rays) and have
no reason to accumulate unreasonably.

Formalizations and Fault Models. While it is common in the field of au-
tomated formal verification of cryptographic protocols to consider models of
attackers (typically, extensions of the “Dolev-Yao” model) — either by specifying
what the attackers can do [2] or what they cannot do [7], only very few for-
malizations of software-level attacker capabilities have been proposed so far. In
software security, control-flow integrity attacks have been categorized by the ca-
pability an attacker needs [21], but these efforts have been restricted to manual
reasoning. Interestingly, Given-Wilson et al. [51] propose a formalization of fault
injection using Turing machines, but to our knowledge, no algorithm has been
built for it. Also, Fournet et al. [46] propose a type system for program-level
non-interference, taking into account an active adversary modeled as adversarial
components able to perform any action at certain steps of the program.

Mutation Testing. Sometimes called software fault injection, mutation test-
ing [33,75] aims to generate a comprehensive test suite by building test cases
discriminating various mutants of a program, and is recognized as a very pow-
erful testing criterion. As it focuses on coverage, mutant explosion cannot be
avoided. Dedicated SE techniques [8,11,67, 73] have been designed.

11 Conclusion

We formalize the concept of adversarial reachability, extending standard reach-
ability to include the presence of an advanced attacker in program analysis, and
we propose a dedicated symbolic algorithm for adversarial reachability, integrat-
ing a novel forkless encoding of faults together with dedicated optimizations.
Our technique is shown to significantly reduce the number of paths to explore,
and scales up to 10 faults on a standard SWiFI benchmark, where prior forking
attempts timeout for 3 faults. Also, we show that our method scale to realistic
size examples, such as the WooKey project where we have been able to replay
known fault attacks and to find a previously unreported vulnerability.

25

References

1.

10.

11.

12.

13.

14.

15.

16.

Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Transactions on Information and System
Security (TISSEC) 13(1), 1-40 (2009)

Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. In: International Colloquium on Automata, Languages, and Program-
ming. pp. 46-58. Springer (2004)

Akhunzada, A., Sookhak, M., Anuar, N.B., Gani, A., Ahmed, E., Shiraz, M., Fur-
nell, S., Hayat, A., Khan, M.K.: Man-at-the-end attacks: Analysis, taxonomy, hu-
man aspects, motivation and future directions. Journal of Network and Computer
Applications 48, 44-57 (2015)

Anceau, S., Bleuet, P., Clédiére, J., Maingault, L., Rainard, J.l., Tucoulou, R.:
Nanofocused X-ray beam to reprogram secure circuits. In: International Conference
on Cryptographic Hardware and Embedded Systems. pp. 175-188. Springer (2017)
ANSSI, Amossys, EDSI, LETI, Lexfo, Oppida, Quarkslab, SERMA, Synacktiv,
Thales, Labs, T.: Inter-cesti: Methodological and technical feedbacks on hardware
devices evaluations. In: SSTIC 2020, Symposium sur la sécurité des technologies
de linformation et des communications (2020)

Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier: Tech-
nology transfer of formal methods inside microsoft. In: International Conference
on Integrated Formal Methods. pp. 1-20. Springer (2004)

Bana, G., Comon-Lundh, H.: A computationally complete symbolic attacker for
equivalence properties. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 609-620 (2014)

Bardin, S., Chebaro, O., Delahaye, M., Kosmatov, N.: An all-in-one toolkit for
automated white-box testing. In: International Conference on Tests and Proofs.
pp. 53-60. Springer (2014)

Bardin, S., David, R., Marion, J.Y.: Backward-bounded dse: targeting infeasibility
questions on obfuscated codes. In: 2017 IEEE Symposium on Security and Privacy
(SP). pp. 633-651. IEEE (2017)

Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A.: The bincoa
framework for binary code analysis. In: International Conference on Computer
Aided Verification. pp. 165-170. Springer (2011)

Bardin, S., Kosmatov, N., Cheynier, F.: Efficient leveraging of symbolic execution
to advanced coverage criteria. In: 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation. pp. 173-182. IEEE (2014)

Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of model
checking, pp. 305-343. Springer (2018)

Barthe, G., Dupressoir, F., Fouque, P.A., Grégoire, B., Zapalowicz, J.C.: Synthesis
of fault attacks on cryptographic implementations. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. pp. 1016—
1027 (2014)

Benadjila, R., Renard, M., Trebuchet, P., Thierry, P., Michelizza, A., Lefaure, J.:
Wookey: Usb devices strike back. Proceedings of SSTIC (2018)

Berthier, M., Bringer, J., Chabanne, H., Le, T.H., Riviére, L., Servant, V.: Idea:
embedded fault injection simulator on smartcard. In: International Symposium on
Engineering Secure Software and Systems. pp. 222-229. Springer (2014)

Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: International conference on the theory and appli-
cations of cryptographic techniques. pp. 37-51. Springer (1997)

26

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Bonfante, G., Fernandez, J., Marion, J.Y., Rouxel, B., Sabatier, F., Thierry, A.:
Codisasm: Medium scale concatic disassembly of self-modifying binaries with over-
lapping instructions. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. pp. 745-756 (2015)

Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
Whitebox fuzz testing in production. In: 2013 35th International Conference on
Software Engineering (ICSE). pp. 122-131. IEEE (2013)

Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: optimizing voltage fault
injection attacks. JACR Transactions on Cryptographic Hardware and Embedded
Systems pp. 199-224 (2019)

Bréjon, J.B., Heydemann, K., Encrenaz, E., Meunier, ., Vu, S.T.: Fault attack
vulnerability assessment of binary code. In: Proceedings of the Sixth Workshop on
Cryptography and Security in Computing Systems. pp. 13-18 (2019)

Burow, N., Carr, S.A., Nash, J., Larsen, P., Franz, M., Brunthaler, S., Payer,
M.: Control-flow integrity: Precision, security, and performance. ACM Computing
Surveys (CSUR) 50(1), 1-33 (2017)

Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI. vol. 8, pp.
209-224 (2008)

Cadar, C., Ganesh, V., Pawlowski, P.M., Dill; D.L., Engler, D.R.: Exe: Automat-
ically generating inputs of death. ACM Transactions on Information and System
Security (TISSEC) 12(2), 1-38 (2008)

Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Communications of the ACM 56(2), 82-90 (2013)

Carré, S., Desjardins, M., Facon, A.; Guilley, S.: Openssl bellcore’s protection helps
fault attack. In: 2018 21st Euromicro Conference on Digital System Design (DSD).
pp. 500-507. IEEE (2018)

Cervesato, I.: The dolev-yao intruder is the most powerful attacker. In: 16th Annual
Symposium on Logic in Computer Science—LICS. vol. 1, pp. 1-2. Citeseer (2001)
Chauvet, H., de Ferriére, F., Bizet, T.: Software fault injection for secswift quali-
fication (2021), https://jaif.io/2021/media/JAIF2021%20-%20deFerriere.pdf
Christofi, M., Chetali, B., Goubin, L.: Formal verification of an implementation of
crt-rsa vigilant’s algorithm. In: PROOF'S workshop: pre-proceedings. vol. 28 (2013)
Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des. (2001)

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM (2003)

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. In: Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 168-176. Springer (2004)

Cotroneo, D., De Simone, L., Liguori, P., Natella, R.: Profipy: Programmable soft-
ware fault injection as-a-service. In: 2020 50th annual IEEE/IFIP international
conference on dependable systems and networks (DSN). pp. 364-372. IEEE (2020)
Cotroneo, D., Natella, R.: Fault injection for software certification. IEEE Security
& Privacy 11(4), 38-45 (2013)

Cousot, P.: Abstract interpretation. ACM Computing Surveys (CSUR) 28(2), 324~
328 (1996)

Cousot, P.; Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The astreé analyzer. In: Programming Languages and Systems (2005)

27

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Daniel, L.A., Bardin, S., Rezk, T.: Binsec/rel: Efficient relational symbolic execu-
tion for constant-time at binary-level. In: 2020 IEEE Symposium on Security and
Privacy (SP). pp. 1021-1038. IEEE (2020)

Daniel, L.A., Bardin, S., Rezk, T.: Hunting the haunter-efficient relational symbolic
execution for spectre with haunted relse. In: NDSS (2021)

David, R., Bardin, S., Ta, T.D., Mounier, L., Feist, J., Potet, M.L., Marion,
J.Y.: Binsec/se: A dynamic symbolic execution toolkit for binary-level analysis.
In: SANER (2016)

Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography. pp. 7-15. IEEE
(2012)

Djoudi, A., Bardin, S.: Binsec: Binary code analysis with low-level regions. In: In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 212-217. Springer (2015)

Dullien, T.: Weird machines, exploitability, and provable unexploitability. IEEE
Transactions on Emerging Topics in Computing 8(2), 391-403 (2017)

Dureuil, L., Petiot, G., Potet, M.L., Le, T.H., Crohen, A., Choudens, P.d.: Fissc:
A fault injection and simulation secure collection. In: International Conference on
Computer Safety, Reliability, and Security. pp. 3-11. Springer (2016)

Facebook: Infer static analyzer. https://fbinfer.com/

Farinier, B., David, R., Bardin, S., Lemerre, M.: Arrays made simpler: An efficient,
scalable and thorough preprocessing. In: LPAR. pp. 363-380 (2018)

de Ferriere, F.: Software countermeausres in the llvin risc-v compiler (2021),
https://open-src-soc.org/2021-03 /media/slides/3rd-RISC-V-Meeting-2021-03-30-
15h00-Fran%C3%A70is-de-Ferri%C3%A8re.pdf

Fournet, C., Rezk, T.: Cryptographically sound implementations for typed
information-flow security. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. ACM
(2008)

Gangolli, A., Mahmoud, Q.H., Azim, A.: A systematic review of fault injection
attacks on iot systems. Electronics 11(13), 2023 (2022)

Girol, G., Farinier, B., Bardin, S.: Not all bugs are created equal, but robust
reachability can tell the difference. In: International Conference on Computer Aided
Verification. pp. 669-693. Springer (2021)

Given-Wilson, T., Jafri, N., Lanet, J.L., Legay, A.: An automated formal process
for detecting fault injection vulnerabilities in binaries and case study on present.
In: 2017 IEEE Trustcom/BigDataSE/ICESS. pp. 293-300. IEEE (2017)
Given-Wilson, T., Jafri, N., Legay, A.: Combined software and hardware fault
injection vulnerability detection. Innovations in Systems and Software Engineering
16(2), 101-120 (2020)

Given-Wilson, T., Legay, A.: Formalising fault injection and countermeasures. In:
Proceedings of the 15th International Conference on Availability, Reliability and
Security. pp. 1-11 (2020)

Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation. pp. 213-223 (2005)

Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing.
Communications of the ACM 55(3), 40-44 (2012)

28

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Goyal, B., Sitaraman, S., Venkatesan, S.: A unified approach to detect binding
based race condition attacks. In: Int’l Workshop on Cryptology & Network Security
(CANS). p. 16 (2003)

Gravellier, J., Dutertre, J.M., Teglia, Y., Moundi, P.L.: Faultline: Software-based
fault injection on memory transfers. In: 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). pp. 46-55. IEEE (2021)

Hari, S.K.S., Tsai, T., Stephenson, M., Keckler, S.W., Emer, J.: Sassifii An
architecture-level fault injection tool for gpu application resilience evaluation. In:
2017 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). pp. 249-258. IEEE (2017)

Van den Herrewegen, J., Oswald, D., Garcia, F.D., Temeiza, Q.: Fill your boots:
Enhanced embedded bootloader exploits via fault injection and binary analysis.
TACR Transactions on Cryptographic Hardware and Embedded Systems pp. 56—
81 (2021)

Karaklaji¢, D., Schmidt, J.M., Verbauwhede, I.: Hardware designer’s guide to
fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
21(12), 2295-2306 (2013)

Kim, C.H., Quisquater, J.J.: Fault attacks for CRT based RSA: New attacks, new
results, and new countermeasures. In: IFIP International Workshop on Information
Security Theory and Practices. pp. 215-228. Springer (2007)

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:
A software analysis perspective. Form. Asp. Comput. (2015)

Kocher, P., Horn, J., Fogh, A.] Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., et al.: Spectre attacks: Exploiting speculative
execution. In: SP (2019)

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., et al.: Spectre attacks: Exploiting speculative
execution. Communications of the ACM 63(7), 93-101 (2020)

Lacombe, G., Feliot, D.; Boespflug, E., Potet, M.L.: Combining static analysis
and dynamic symbolic execution in a toolchain to detect fault injection vulner-
abilities. In: PROOFS WORKSHOP (SECURITY PROOFS FOR EMBEDDED
SYSTEMS) (2021)

Larsson, D.; H&hnle, R.: Symbolic fault injection. In: International Verification
Workshop (VERIFY). vol. 259, pp. 85-103. Citeseer (2007)

Le, H.M., Herdt, V., Grofe, D., Drechsler, R.: Resilience evaluation via symbolic
fault injection on intermediate code. In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp. 845-850. IEEE (2018)

Le, Q.L., Raad, A., Villard, J., Berdine, J., Dreyer, D., O’Hearn, P.W.: Finding
real bugs in big programs with incorrectness logic. Proceedings of the ACM on
Programming Languages 6(OOPSLA1), 1-27 (2022)

Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Correnson,
L.: Time to clean your test objectives. In: Proceedings of the 40th International
Conference on Software Engineering. pp. 456-467 (2018)

Martin, T., Kosmatov, N., Prevosto, V.: Verifying redundant-check based counter-
measures: a case study. In: Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing. pp. 1849-1852 (2022)

Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: Software-based fault injection attacks against intel sgx. In: 2020 IEEE
Symposium on Security and Privacy (SP). pp. 1466-1482. IEEE (2020)

29

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

Mutlu, O., Kim, J.S.: Rowhammer: A retrospective. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39(8), 1555-1571
(2019)

Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020), https://arxiv.org/abs/2006.01621

Palazzi, L., Li, G., Fang, B., Pattabiraman, K.: A tale of two injectors: End-to-
end comparison of ir-level and assembly-level fault injection. In: 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE). pp. 151-
162. IEEE (2019)

Papadakis, M., Malevris, N.: Automatic mutation test case generation via dynamic
symbolic execution. In: 2010 IEEE 21st International Symposium on Software Re-
liability Engineering. pp. 121-130. IEEE (2010)

Pattabiraman, K., Nakka, N., Kalbarczyk, Z., Iyer, R.: Symplfied: Symbolic
program-level fault injection and error detection framework. In: 2008 IEEE In-
ternational Conference on Dependable Systems and Networks With FTCS and
DCC (DSN). pp. 472-481. IEEE (2008)

Petrovic, G., Ivankovic, M., Kurtz, B., Ammann, P., Just, R.: An industrial appli-
cation of mutation testing: Lessons, challenges, and research directions. In: 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). pp. 47-53. IEEE (2018)

Potet, M.L., Mounier, L., Puys, M., Dureuil, L.: Lazart: A symbolic approach
for evaluation the robustness of secured codes against control flow injections. In:
2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation. pp. 213-222. IEEE (2014)

Preda, M.D., Giacobazzi, R., Debray, S., Coogan, K., Townsend, G.M.: Modelling
metamorphism by abstract interpretation. In: International Static Analysis Sym-
posium. pp. 218-235. Springer (2010)

Puys, M., Riviere, L., Bringer, J., Le, T.h.: High-level simulation for multiple fault
injection evaluation. In: Data Privacy Management, Autonomous Spontaneous Se-
curity, and Security Assurance, pp. 293-308. Springer (2014)

Rauzy, P., Guilley, S.: A formal proof of countermeasures against fault injection
attacks on crt-rsa. Journal of Cryptographic Engineering 4(3), 173-185 (2014)
Recoules, F., Bardin, S., Bonichon, R., Lemerre, M., Mounier, L., Potet, M.L.:
Interface compliance of inline assembly: Automatically check, patch and refine. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
pp- 1236-1247. IEEE (2021)

Recoules, F., Bardin, S., Bonichon, R., Mounier, L., Potet, M.L.: Get rid of inline
assembly through verification-oriented lifting. In: 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). pp. 577-589. IEEE
(2019)

Richter-Brockmann, J., Sasdrich, P., Guneysu, T.: Revisiting fault adversary
models—hardware faults in theory and practice. IEEE Transactions on Comput-
ers (2022)

Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for c. ACM
SIGSOFT Software Engineering Notes 30(5), 263-272 (2005)

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In: IEEE Symposium on Security
and Privacy (2016)

30

85.

86.

87.

88.

89.
90.

Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Inter-
national workshop on cryptographic hardware and embedded systems. pp. 2-12.
Springer (2002)

Tang, A., Sethumadhavan, S., Stolfo, S.: {CLKSCREW}: Exposing the perils of
{Security-Oblivious} energy management. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1057-1074 (2017)

Van Bulck, J., Moghimi, D., Schwarz, M., Lippi, M., Minkin, M., Genkin, D.,
Yarom, Y., Sunar, B., Gruss, D., Piessens, F.: Lvi: Hijacking transient execution
through microarchitectural load value injection. In: 2020 IEEE Symposium on
Security and Privacy (SP). pp. 54-72. IEEE (2020)

Winter, S., Tretter, M., Sattler, B., Suri, N.: simfi: From single to simultaneous
software fault injections. In: 2013 43rd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). pp. 1-12. IEEE (2013)
https://github.com/wookey-project, accessed july 2021

Zavalyshyn, 1., Given-Wilson, T., Legay, A., Sadre, R., Riviere, E.: Chaos duck: A
tool for automatic iot software fault-tolerance analysis. In: 2021 40th International
Symposium on Reliable Distributed Systems (SRDS). pp. 46-55. IEEE (2021)

31

