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Grégoire Menguy1 , Sébastien Bardin1 , Nadjib Lazaar2 and Arnaud Gotlieb3
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Abstract
Program annotations under the form of function
pre/postconditions are crucial for many software
engineering and program verification applications.
Unfortunately, such annotations are rarely available
and must be retrofit by hand. In this paper, we ex-
plore how Constraint Acquisition (CA), a learning
framework from Constraint Programming, can be
leveraged to automatically infer program precon-
ditions in a black-box manner, from input-output
observations. We propose PRECA, the first ever
framework based on active constraint acquisition
dedicated to infer memory-related preconditions.
PRECA overpasses prior techniques based on pro-
gram analysis and formal methods, offering well-
identified guarantees and returning more precise re-
sults in practice.

1 Introduction
Program annotations under the form of function pre/postcon-
ditions [Hoare, 1969; Floyd, 1993; Dijkstra, 1968] are cru-
cial for the development of correct-by-construction systems
[Meyer, 1988; Burdy et al., 2005] or program refactoring
[Ernst et al., 2001]. They can benefit both a human or an
automated program analyzer, typically in software verifica-
tion where they enable scalable (modular) analysis [Kirchner
et al., 2015; Godefroid et al., 2011]. Unfortunately, annota-
tions are rarely available and must be retrofit by hand into the
code, limiting their interest – especially for black-box third-
party components.
Problem. Efforts have been devoted to automatically in-
fer preconditions from the code, and contract inference is
now a hot topic in Program Analysis and Formal Meth-
ods [Cousot et al., 2013; Ernst et al., 2001; Padhi et al., 2016;
Astorga et al., 2018; Gehr et al., 2015]. Since this problem is
undecidable (as most program analysis problems), the goal is
to design principled methods with good practical results. Yet,
the state-of-the-art is still not satisfactory. While white-box
approaches leveraging standard static analysis [Hoare, 1969;
Floyd, 1993; Dijkstra, 1968; Cousot et al., 2013] can be help-
ful, they quickly suffer from precision or scalability issues,
have a hard time dealing with complex programming fea-
tures (loops, recursion, dynamic memory) and cannot cope

with black-box components. On the other hand black-box
methods, leveraging test cases to dynamically infer (likely)
function contracts [Ernst et al., 2001; Padhi et al., 2016;
Gehr et al., 2015], overcome static analysis limitations on
complex codes and have drawn attention from the software
engineering community [Zhang et al., 2014]. Yet, they
heavily depend on the quality of the underlying test cases,
which are often simply generated at random, given by the
users [Ernst et al., 2001] (passive learning), or automatically
generated during the learning process – but without any clear
coupling between sampling and learning [Padhi et al., 2016;
Gehr et al., 2015] – and so, show no clear guarantee on the
inference process.

Constraint Acquisition. Constraint programming (CP)
[Rossi et al., 2006] has made considerable progress over the
last forty years, becoming a powerful paradigm for modelling
and solving combinatorial problems. However, modelling a
problem as a constraint network still remains a challenging
task that requires expertise in the field. Several constraint ac-
quisition (CA) systems have been introduced to support the
uptake of constraint technology by non-experts. Especially,
rooted in version space learning, CONACQ is presented in its
passive and active versions [Bessiere et al., 2017]. Based on
solutions and non-solutions labelled by the user (acting as an
oracle), the system learns a set of constraints that correctly
classifies all examples given so far. This is an active field
of research, with many proposed extensions, for example al-
lowing partial queries [Bessiere et al., 2013]. However, even
though CONACQ enjoys strong theoretical foundations, such
CA systems are hard to put in practice, as they require to sub-
mit thousands of queries to a user. In automated program
analysis, the huge number of queries is not a problem as long
as a program plays the oracle.

Goal and contributions. In this paper, we explore the po-
tential of Constraint Acquisition for black-box precondition
inference. To the best of our knowledge, this is the first appli-
cation of CA to program analysis and our overall results show
its potential there. Our main contributions are the following:

• We propose PRECA, the first ever (CONACQ-like)
framework based on active constraint acquisition and
dedicated to infer preconditions (Section 4). We show in
Section 4.3 that PRECA enjoys much better theoretical
correctness properties than prior black-box approaches.



Indeed, if our learning language is expressive enough,
PRECA is guaranteed to infer the weakest precondition;

• We describe a specialization of PRECA to the impor-
tant case of memory-related preconditions (Section 5).
Especially, we propose a dedicated constraint language
(including memory constraints) for the problem at hand,
as well as domain-based strategies to make the approach
more efficient in practice (Section 5.2);

• We experimentally evaluate the benefits of our technique
on several benchmark functions (Section 6.1). The re-
sults show that PRECA significantly outperforms prior
precondition learners, be it black-boxes or white-boxes –
which came as a surprise. For example, PRECA with 5s
budget per sample performs better than prior approaches
with 1h per sample.

Overall, it turns out that seeing the precondition inference
problem as a Constraint Acquisition task is beneficial, leading
to good theoretical properties and beating prior techniques.

2 Background
2.1 Preconditions and Weakest Preconditions
A program function, or simply a function, F : In→ Out can
be seen as a partial mapping from inputs to outputs. Given an
input x ∈ In, execution of F over x can: (i) terminate and
return y ∈ Out, noted F (x) = y; (ii) diverge (i.e., never ter-
minate) or raise a runtime error, in that case F is not defined
over x. Given a function F and a predicate Q over F outputs
called a postcondition, Hoare logic [Hoare, 1969] defines the
precondition (a predicate over F inputs) of F w.r.t. Q.
Definition 1 (Precondition). Given a function F and a post-
condition Q, P is a precondition of F w.r.t. Q iff for all x s.t.
x |= P , F (x) = y and y |= Q, noted {P}F{Q}.

A function F can have several preconditions for a given
postcondition Q. Still, not all preconditions are useful, some
being too restrictive. Thus, we aim for the most generic one,
called the weakest precondition (WP) [Hoare, 1969]. Au-
tomatically computing the weakest precondition of F w.r.t.
Q has been a strong drive for program analysis since the
70’s. Yet, as the whole problem is undecidable, standard ap-
proaches must rely on manual annotations or approximations.
Definition 2 (Weakest precondition). Let a function F and
a postcondition Q. The weakest precondition of F w.r.t. Q
notedWP(F,Q) is the most generic precondition i.e. for all
P s.t. {P}F{Q}, P ⇒WP(F,Q).
Example 1. Let int div(int a) {return 100/a} the
function under analysis. Here, In = Out = [-2n-1; 2n-1-1]
with n the size of an int. Note that it is undefined when a =
0. Hence, for postcondition Q1 = true, a precondition could
be a = 5. However, it is too restrictive as other values of a
can return safely. The less restrictive one, i.e. WP(F,Q1),
is a ̸= 0. Now, consider the postcondition Q2 = “the return
value must be ≥ 0”. ThenWP(F,Q2) is a > 0.

2.2 Constraint Acquisition
The constraint acquisition (CA) process can be seen as an in-
terplay between the learner and the user. For that, the learner

needs to share some common vocabulary to communicate
with the user. This vocabulary is a finite set of variables X
taking values in a finite domain D. A constraint c is defined
on a subset of variables and a relation specifying which values
are allowed. A constraint network is a set C of constraints.
An example e ∈ DX satisfies a constraint c if the projection
of e on c variables is in c. An example e is a solution of C if
and only if it satisfies all constraint in C.

In addition to the vocabulary, the learner owns a language
Γ of bounded arity relations from which it can build con-
straints on specified sets of variables. The constraint bias,
denoted by B, is a set of constraints built from Γ on (X,D),
from which the learner builds a constraint network. A con-
cept is a Boolean function f over DX . A representation of
a concept f is a constraint network C for which f−1(true)
equals the solutions set of C. A membership query takes an
example e and asks the user to classify it. The answer is yes
iff e is a solution of the user concept. For any example e, κ(e)
denotes the set of all constraints in B rejecting e.

We now define convergence. Given a set E of examples la-
belled by the user yes or no, we say that a network C agrees
with E if C accepts all examples labelled yes in E and does
not accept those labelled no. The learning process has con-
verged on the network L ⊆ B if (i) L agrees with E and (ii)
for every other L′ ⊆ B agreeing with E, we have L′ ≡ L.

CONACQ is a CA system that submits membership queries
to a user. CONACQ uses a concise representation of the
learner’s version space into a clausal formula. Formally, any
constraint c ∈ B is associated with a Boolean atom a(c) stat-
ing if c must be in the learned network. CONACQ starts with
an empty theory and iteratively expands it by generating and
submitting to the user an informative example. An informa-
tive example ensures to reduce the learner’s version space in-
dependently from the user answer. If no informative example
remains, this means that we converged and CONACQ returns
the theory encoding the learned network.

3 Motivation
We focus on memory-related preconditions – e.g., predicates
stating on which inputs a function can be executed without
leading to a memory violation – in a black-box manner. Let
us consider the prototype of function find_first_of in
Listing 1 (from Frama-C [Kirchner et al., 2015] test suite).
We aim to infer which values of a, m, b and n are accepted
without relying on the source code – still we can execute the
code over chosen input and observe results.

void f i n d f i r s t o f ( i n t * a , i n t m, i n t *b , i n t n )

Listing 1: Function prototype

From white-box to black-box. White-box analysis (such
as P-Gen [Seghir and Kroening, 2013]) uses the program
source code to infer preconditions. Yet several practical sce-
narios are impractical for white-box methods. First, having
the whole source code is often unrealistic (many projects em-
bed third-party components). Second, in practice program
analyzers focus on a single programming language, but many
projects use combinations of them (e.g., inline assembly in
C code). Third, despite huge progress in the past decades,



white-box program analysis still suffers on large or com-
plex codes (unbounded loops, recursion, dynamic allocation,
etc.) possibly leading to serious scalability or precision is-
sues. Fourth, obfuscation is common in certain ecosystems to
make reverse engineering harder and thwart white-box anal-
ysis. In all these scenarios, black-box methods are the sole
option (cf. experiments on Section 6, RQ4). Yet, as general-
ization is involved, black-box methods can compute incorrect
preconditions (i.e., formula actually being not preconditions).
Black-box passive learning is not enough. Black-box
methods should exercise the function under analysis on a rep-
resentative set of test cases to infer relevant preconditions.
A solution is to assume that users can provide such tests
and leverage passive learning. Yet, this is often unrealistic
– especially when the source code is not available. More-
over, random testing is rarely satisfactory, e.g., with 100 ran-
dom test cases, both Daikon [Ernst et al., 2001] and PIE
[Padhi et al., 2016] infer here an incorrect precondition for
find_first_of.
Active learning. Gehr et al. [Gehr et al., 2015] performs
active learning, generating test cases automatically. Such ap-
proaches are more actionable and less sensitive to user bias.
Still, methods developed so far lack theoretical guarantees.
Indeed, they cannot ensure that all useful test cases have been
considered. Gehr et al. method infers in ≈ 700s an incorrect
precondition for find_first_of, generating 177 test cases.
PRECA insights. Our method performs black-box pre-
condition inference through active constraint acquisition
[Bessiere et al., 2017]. Unlike previous active approaches,
PRECA mixes the sampling and learning phases which en-
ables to show good theoretical properties. Indeed, when a test
case is generated, PRECA directly observes how the function
behaves on it and updates its search space accordingly. As
such, given a set of constraints B called the bias, PRECA
will generate all test cases to ensure convergence modulo B.
Thus, if all queries can be exactly classified and if B is ex-
pressive enough, PRECA returns the weakest precondition.
Regarding our example, it infers the (correct) weakest precon-
dition (m > 0⇒ valid(a))∧ (m > 0 ∧ n > 0⇒ valid(b)),
where valid(p) ≡ (p ̸= NULL), in 172s, with 45 test cases.

Alg. Active? Success. #Test cases Time
Daikon no no 100 0.6s
PIE no no 100 11s
Gehr et al. yes no 177 700s
P-Gen (white-box) (do not apply) - -
PRECA yes yes 45 172s

Table 1: find_first_of results, no source code

4 Precondition Acquisition
Given a function under analysis F , we aim to infer the weak-
est precondition of F w.r.t. some postcondition Q through
CA. Note that, as generalization is involved, we are not sure
a priori to compute a real precondition, hence the word-
ing ”likely-precondition” introduced in Daikon [Ernst et al.,
2001]. Guarantees are studied in Section 4.3. To our knowl-
edge, this is the first time CA is used for program analysis.

Algorithm 1: PRECA
In : A function F ; a postcondition Q; a bias B;

variables X;
Out : A constraint network over F input encoded by

Ω consistent with oracle answers or collapse;
1 begin
2 Ω← ⊤
3 while true do
4 e← QueryGeneration(B,X,Ω)
5 if e = nil then
6 if Ω is SAT then
7 return network(Ω)

8 else return “collapse”

9 if runOracle(F,Q, e) ̸= yes then
10 Ω← Ω ∧ (

∨
c∈κ(e) a(c))

11 else Ω← Ω ∧ (
∧

c∈κ(e) ¬a(c))

4.1 Problem at Hand
We show here that precondition inference can be translated
to a CA problem. In our context the user is replaced by an
oracle, which automatically answers queries – implemented
in practice by running the program on given inputs – and the
target concept isWP(F,Q). The set of variables X equals
(M) where M is the initial memory state to run F . M is a
map from symbols – like F arguments and global variables
– to their values and the domain D of M is the finite set of
all its possible mappings – thus, DX equals In, the definition
domain of F . The constraint language Γ and the bias B are
sets of constraints over M . We describe precisely Γ and B
in Section 5.1. Finally, a membership query e is a complete
assignment of M s.t. F can be executed over e.

4.2 Description of PRECA
We detail here our approach, dubbed PRECA, composed of
1. the oracle; 2. the acquisition module.
Oracle. Given a function F and a postcondition Q, PRECA
queries an oracle to classify membership queries. It takes F ,
Q and an input e ∈ In = DX and answers in finite time. The
oracle must comply to the following specification:

runOracle(F,Q, e) =

{
yes or ukn if e |=WP(F,Q)
no or ukn otherwise

Note that the oracle answers ukn when it cannot classify e,
extending the CONACQ framework where the user must an-
swer only by yes or no. In practice, such oracle runs F over
e with a timeout. If the execution timeouts it returns (i) ukn,
otherwise it returns (ii) yes if F (e) = y and y |= Q; (iii) no
if F (e) = y and y ̸|= Q or if execution raises a runtime error.
Acquisition module. PRECA (see Algo.1) starts from an
empty theory Ω and iteratively expands it by processing ex-
amples generated at line 4. PRECA submits these examples
to the oracle for a classification (runOracle call at line 9).
If the oracle answers yes, we must discard all constraints of
B in κ(e), those rejecting e, by expanding Ω with negative



unit clauses (line 11). However, if the oracle answers no or
ukn, Ω is expanded with a clause consisting of all literals a(c)
s.t. c ∈ κ(e) (line 10). Bear in mind that QueryGeneration
function returns informative examples aiming to reduce Ω to a
monomial (conjunction of unit clauses). QueryGeneration
is used exactly as it appears in [Bessiere et al., 2017]. If
there is no example to return, this means that Ω is monomial.
Now if Ω is not satisfiable, a ”collapse” message is returned
(line 8). This happen when the concept to learn is not repre-
sentable by B. Otherwise, we return the constraint network
encoded by Ω through the network function (line 7).

4.3 Theoretical Analysis
We show that PRECA terminates and that learned precon-
ditions are sound when PRECA is fed with an expressive
enough bias B. Then we show that if runOracle never an-
swers ukn, PRECA returns the weakest precondition.

Proposition 1 (Consistency). Given a function F , a postcon-
dition Q and a bias B. If PRECA returns a network L, then
L agrees with all positive and negative queries.

Proof. (sketch.) PRECA discards all constraints of κ(e)
when e is a positive and learns at least one constraint from
κ(e) when e is a negative. It follows that the returned net-
work L agrees with all examples given so far.

Proposition 2 (Termination). Given a function F , a postcon-
dition Q and a bias B, PRECA terminates.

Proof. (sketch.) Termination of PRECA immediately fol-
lows the reduction of Ω to a monomial with an atom for each
constraint c ∈ B. As (i) Ω involves a finite number of atoms
(B being a finite set of constraints), (ii) QueryGeneration
terminates returning an informative example if it exists, nil
otherwise (Lemma 2 in [Bessiere et al., 2017]), and (iii)
runOracle always responds, we have termination.

Proposition 3 (Soundness). Given a function F , a postcon-
dition Q and a bias B s.t. WP(F,Q) is representable by B.
If PRECA returns a network L then L is a precondition of F
w.r.t. the postcondition Q.

Proof. (sketch.) We aim to prove that L ⇒ WP(F,Q). As
WP(F,Q) ⊆ B and we returned L, there exists no example
e s.t. e |= L and e ̸|=WP(F,Q).

Theorem 1 (Correctness). Given a function F , a postcondi-
tion Q and a bias B s.t. WP(F,Q) is representable by B.
If runOracle never returns ukn then PRECA converges to a
network L equivalent to the weakest precondition.

Proof. If WP(F,Q) ⊆ B and runOracle returns yes/no
answers, PRECA is equivalent to CONACQ. CONACQ is cor-
rect, terminates and always converges when B is expressive
enough [Bessiere et al., 2017], it follows that PRECA al-
ways converges on to a constraint network L equivalent to
WP(F,Q) under the assumptions on B and runOracle.

Discussion. These guarantees, while not perfect, are still
very pleasant for a black-box approach. Prior black-box
learners are much more limited: Daikon [Ernst et al., 2001]
does not guarantee consistency (Proposition 1), while [Padhi
et al., 2016; Gehr et al., 2015] guarantee consistency but not
correctness (Theorem 1). Also, previous black-box methods
consider that functions always terminate i.e., no ukn answers.

5 PRECA for Memory-oriented Preconditions
We now setup PRECA to the case of memory-related precon-
ditions, which are of paramount importance for the safety and
security of low-level languages like C or binary code.

5.1 Constraint Acquisition Settings
Vocabulary (X, D). Given a function F , our variables set
X = {p1, . . . , pk, i1, . . . , ik′} represents the initial memory
state of F . It is composed of all F arguments and global
variables in scope. Here, pj are pointers and ij are inte-
gers (signed or not). DX defines possible F inputs. It com-
pactly represents all cases induced by Γ. We note r1, ..., rm
the address of each global variables in X and a1, ..., ak,
k pairwise distinct new valid addresses. Then, D(pi) is
{NULL, r1, ..., rm, a1, ..., aj} and D(ij) is [ 0 , NU ] if ij is
unsigned and [−NI , NI ] otherwise – NI and NU are the
number of signed and unsigned integers in X .

Language Γ. PRECA considers the constraint language
Γ described in Section 5.1 including well-typed constraints
only. Observe that: (i) it does not include conjunctions of
constraints as acquisition will infer them; (ii) Γ holds Horn
clauses of arbitrary size which is crucial to handle conditional
preconditions, e.g., find_first_ofweakest precondition in
Listing 1 contains the constraint m > 0⇒ valid(a).

Grammar
P := C ⇒ A | A | ¬A
C := C ∧ C | A | ¬A
A := valid(pj) | alias(pj , pl) | deref(pj , g)

| ij = 0 | ij < 0 | ij ≤ 0 | ij = il | ij < il | ij ≤ il
Semantics of constraint over pointers

valid(pj) ≡ pj ̸= NULL
alias(pj , pl) ≡ pj = pl
deref(pj , g) ≡ pj = &g where &g is the address of g

pj (resp. ij) are pointers (resp. integers) and g is a global variable.

Table 2: Grammar of constraint language Γ

Bias B. The bias B is a finite set of constraints extracted
from Γ. A balance must be found here, as a large bias is more
expressive but can slow down inference. Given the function
F , PRECA considers the following heuristic: “Let i be the
number of F integer inputs and k = max(i, 1). Then PRECA
bias includes all Horn clauses of size ≤ k + 1 from Γ”. In-
deed, from our experience, validity of a pointer is usually con-
ditioned by constraints over integer variables.

5.2 Speeding up PRECA
First, we describe PRECA background knowledge. Secondly,
we present a domain-based preprocessing heuristic.



Background knowledge. A background knowledge K to
speed up convergence of CA contains known relations over
the bias constraints to filter incoherent networks. Table 3
shows a subset of K. It contains usual boolean properties,
transitivity relations over integers and relations on memory –
e.g., if p1 is valid and p1 aliases with p2 then p2 is valid.

a(c) −→ ¬a(c̄), ∀c ∈ B
a(c1) −→ a(c1 ∨ c2) , ∀c1, c2 ∈ B
a(i1 = 0) ∧ a(i1 = i2) −→ a(i2 = 0)
a(i1 = i2) ∧ a(i2 = i3) −→ a(i1 = i3)
a(¬valid(p1)) ∧ a(¬alias(p1, p2)) −→ a(valid(p2))
a(valid(p1)) ∧ a(alias(p1, p2)) −→ a(valid(p2))
a(alias(p1, p2)) ∧ a(alias(p2, p3)) −→ a(alias(p1, p3))

Where pj (resp. ij) are pointer (resp. integer) variables.

Table 3: Background knowledge K (a subset)

Preprocess. Functions rarely raise runtime errors or contra-
dict postconditions over valid and non aliasing pointers (i.e.,
the easy case that programmers usually handle well). Thus,
given a function F , we call likely-positive queries assign-
ments of F inputs s.t. at most one pj is invalid or at most
one pair (pj , pl) aliases. Over likely-positive queries, the or-
acle will probably answer yes which would be really helpful
as it would discard all constraints from κ(e) (unlike negative
ones which introduce non-unit clause in Ω, see Algorithm 1).
Thus, PRECA starts by likely-positive queries in the hope to
prune the search space before launching the active phase.

6 Experimental Evaluation
We implemented PRECA1 in JAVA, and rely on the CHOCO
constraint solver and MINISAT SAT solver. We evaluate
PRECA on the following Research Questions:
RQ1 Can PRECA handle realistic functions? We launch

PRECA against our benchmark and check if it indeed
infers weakest preconditions;

RQ2 How PRECA components influence results? We com-
pare PRECA with and without background knowledge,
preprocess and active learning;

RQ3 Is PRECA competitive with black-box methods? We
compare to black-box state-of-the-art methods in terms
of correctness and speed.

RQ4 Is PRECA competitive with white-box methods? We
compare to the white-box method P-Gen on clean C
code, and consider also 3 ”hard” scenarios: no source
code, obfuscated code, presence of inline assembly.

6.1 Experimental Design
Benchmark. Our benchmark considers 50 real C functions.
It contains all functions from string.h, all functions from
[Seghir and Kroening, 2013; Sankaranarayanan et al., 2008]
(except 2 functions from an old Xen version), functions from
the DSA benchmark (https://tinyurl.com/tvzzpvmm), Frama-
C WP test suite (https://tinyurl.com/ycxdbjf3), Siemens suite
[Hutchins et al., 1994] and the book Science of Programming
[Gries, 2012]. Functions range from 3 LoC to 250 (mean 59),

1https://github.com/binsec/preca

have up to 9 loops (mean 2.8, 47/50 functions with loops) and
2/50 with recursive calls.

Postconditions. For each function, we study two scenar-
ios: with the implicit true postcondition (dubbed ”no post-
condition”) and with explicit postcondition. In the latter case,
we manually choose relevant ones, e.g. Q = valid(ret) for
pointers, and Q = ret ̸= 0 or Q = ret > 0 for integers.
Finally, six functions returns no output and are discarded. In
total, our benchmark contains 94 inference tasks, 50 with the
implicit postconditions and 44 with explicit postconditions.

Setup. We run PRECA with different time budgets per
function (from 1s to 1h) and an oracle timeout of 1min (lead-
ing to the ukn answers). Experiments are done on a machine
with 6 Intel Xeon E-2176M CPUs and 32 GB of RAM.

6.2 Experimental Results
Results are summarized in Section 6.2.

RQ1. With a time budget of 5min per example and with-
out postcondition, PRECA infers 46/50 weakest precondi-
tions (29/50 for 1s, 38/50 for 5s). Two examples timeout, and
two others return a constraint network not equivalent to the
weakest precondition – a manual inspection shows our bias is
not expressive enough in these cases, still it returns a (correct)
precondition for one of them. With postconditions, PRECA
infers 18/44 weakest preconditions with < 5 min time bud-
get each (11/44 for 1s, 16/44 for 5s) and never timeouts (in 7
other cases it still infers a correct precondition). These results
are far better than other state-of-the-art tools (RQ3, RQ4).

PRECA is able to handle real functions precisely (weak-
est precondition) in a small amount of time. Especially, it is
extremely accurate for implicit postconditions.

RQ2. First, we consider PRECA in passive mode, with 100
random queries, in order to see the impact of active learn-
ing (denoted

↰

Random in Section 6.2). Results are aver-
aged over 10 runs per function. We see a significant drop
in performance for time budgets ≥ 5min (for 5min: 30/50
vs 46/50, 18/44 vs 12/44). Second, we study how the back-
ground knowledge and the preprocess impact PRECA results.
We see a clear impact only for small time budgets (e.g., 1s
and no postcondition: 29 vs 15/19/13). Interestingly, both the
background knowledge and the preprocess are necessary to
get speedup.

PRECA benefits strongly from its active mode. Background
knowledge and preprocess over complex preconditions are
useful for small time budgets.

RQ3. We compare now against state-of-the art black-box
precondition learners, namely Daikon [Ernst et al., 2001],
PIE [Padhi et al., 2016] and Gehr et al. approach [Gehr et
al., 2015] – code being unavailable, we reimplemented it.
Daikon and PIE performing passive learning, we run them
over 100 random queries. As Daikon, PIE and Gehr et al.
methods are randomized, we run them 10× and report their
average results. We first observe that PRECA performs sig-
nificantly better than these three competitors for all setups –
for 1s and no postcondition: 29 vs 8.0 - 16.0 - 1.4; for 1h
and no postcondition: 46 vs 26.1 - 17.7 - 1.6. We tried feed-
ing Daikon, PIE and Gehr et al. with PRECA queries (lines

https://tinyurl.com/tvzzpvmm
https://tinyurl.com/ycxdbjf3
https://github.com/binsec/preca


↰

PRECA and

↰

Both). All methods except Daikon benefit
from it, highlighting the quality of PRECA sample genera-
tion mechanism.

PRECA significantly outperforms prior black-box meth-
ods. Especially, it infers in 5s more weakest preconditions
than Daikon, PIE and Gehr et al. in 1h. Moreover, it gener-
ates high quality queries that can benefit other methods.

RQ4. We compared to the white-box method P-Gen [Seghir
and Kroening, 2013]. We also considered [Kafle et al., 2018]
and [Gulwani et al., 2008], but the former requires to manu-
ally translate C code to Prolog (no front-end provided) and the
latter is not available. First, we consider a favourable setup
where the source code of our 94 examples is available (Sec-
tion 6.2). Surprisingly, PRECA infers slightly more WP with
a 5s time budget than P-Gen with 1h (both with and with-
out postcondition). The gap increases for a time budget of 1h
and implicit postconditions (46 vs 37). Second, we consider
“hard” application scenarios: (i) no source code; (ii) obfus-
cated code; (iii) inline assembly – our 94 samples are trans-
formed accordingly. As expected for a white-box method,
P-Gen infers no precondition for these scenarios (0/94) while
PRECA results remain the same.

As expected, PRECA significantly outperforms P-Gen on
hard application scenarios. Less expected, it performs also
better in the case where the source code is fully available.

1s 5s 5 mins 1h

#WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ

Daikon 1.4/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44↰

PRECA 2/50 1/44 2/50 1/44 2/50 1/44 2/50 1/44↰

Both 3.3/50 0/44 5.7/50 0/44 5.7/50 0/44 5.7/50 0/44
PIE 16.4/50 4.7/44 16.4/50 4.7/44 17.7/50 4.7/44 17.7/50 5.3/44↰

PRECA 5/50 3/44 5/50 3/44 5/50 3/44 5/50 3/44↰

Both 25.3/50 11.3/44 25.4/50 11.3/44 26.4/50 11.3/44 28.4/50 11.3/44
Gehr et al. 8.0/50 5.0/44 16.8/50 8.1/44 26.1/50 10.1/44 26.1/50 10.3/44↰

PRECA 37/50 15/44 43/50 17/44 46/50 18/44 46/50 18/44
PRECA 29/50 11/44 38/50 16/44 46/50 18/44 46/50 18/44↰

BK 15/50 8/44 38/50 16/44 45/50 18/44 46/50 18/44↰

Preproc. 19/50 9/44 36/50 16/44 45/50 18/44 46/50 18/44↰

∅ 13/50 7/44 35/50 15/44 45/50 18/44 46/50 18/44↰

Random 29.9/50 12.1/44 29.9/50 12.1/44 30.0/50 12.1/44 30.0/50 12.1/44
P-Gen 34/50 13/44 37/50 15/44 37/50 15/44 37/50 15/44
#WP⊤ (resp. #WPQ) is the number of inferred weakest precondition without (resp. with) a post-

condition. We study 3 variations of Daikon and PIE: (i) original one (highlighted) on 100 random
examples; (ii) on PRECA examples; (iii) on both random and PRECA examples. We study the origi-
nal active Gehr et al. method (highlighted) and we feed it with PRECA examples. Finally, we study
PRECA with its background knowledge and preprocess (highlited), with background knowledge only
(BK), with preprocessing only (Preproc.), without any of them (∅) and in passive mode with 100 ran-
dom queries (Random). P-Gen being a static method, we consider only its original form.

Table 4: Results depending on the time budget

6.3 Discussion

While PRECA shows overall good properties, it also comes
with a few limitations. First, handling constant values is prob-
lematic. Indeed, we should add comparisons to them in the
bias. However, in a black-box context, there is no reason to
choose one constant value from another and we cannot add all
of them as bias would explode. Second, PRECA uses Horn
clauses to handle disjunctive specifications. We consider a
simple heuristic for size selection (Section 5.1), yet a more
principled approach is desirable. Finally, we require the func-
tion under analysis to be deterministic (a common assumption
in the field). Going further remains open.

7 Related Work
Black-box contracts inference. Daikon [Ernst et al., 2001]
dynamically infers preconditions through predefined patterns
over the evolution of variable values. The technique is pas-
sive and lacks clear foundations. PIE [Padhi et al., 2016]
relies on program synthesis for black-box precondition infer-
ence. Garg et al. [Garg et al., 2016] and Sankaranarayanan et
al. [Sankaranarayanan et al., 2008] infer invariants and pre-
conditions through tree learning algorithms. As invariant in-
ference distinguishes from precondition inference, we did not
consider [Garg et al., 2016] in our evaluation. However, even
if [Sankaranarayanan et al., 2008] method was not available,
we integrated their use-cases and show that we handle them
all (except one) while enjoying better theoretical properties.
These methods perform passive learning and heavily depend
on test cases quality. Gehr et al.’s method [Gehr et al., 2015]
relies on black-box active learning. Yet, it relies on program
synthesis and performs (type-aware) random sampling, pre-
venting it to enjoy PRECA correctness properties.

White-box dynamic contracts inference. While purely
static white-box approaches [Cousot et al., 2013; Calcagno
et al., 2009; Gulwani et al., 2008; Kafle et al., 2018] are
considered imprecise (too conservative) and hard to get right
(loops, memory, etc.), some approaches combine dynamic
reasoning together with white-box information. Seghir et
al. [Seghir and Kroening, 2013] method must translate
the analyzed function into transition constraints being thus
highly impacted by code complexity (Section 6.2 RQ4).
On the other hand, Astorga et al. [Astorga et al., 2018;
Astorga et al., 2019] relies on symbolic execution to retrieve
a set of useful inputs and language features, yet the technique
is incomplete in the presence of loops and cannot ensure that
all interesting test cases were tested.

Constraint acquisition. CA has been applied to different
contexts from scheduling [Beldiceanu and Simonis, 2012]
to robotics [Paulin et al., 2008]. However, this is the first
time CA is applied to program analysis and precondition in-
ference. While we rely on CONACQ, other techniques ex-
ist [Beldiceanu and Simonis, 2012; Lallouet et al., 2010;
Tsouros et al., 2020] and could be explored.

Program synthesis. Program synthesis [Gulwani et al.,
2017] aims at creating a function meeting a given specifica-
tion, given either formally, in natural language or as input-
output relations. This last case shows some similarities with
precondition inference and is used in some prior work on
black-box inference [Gehr et al., 2015; Padhi et al., 2016].

8 Conclusion
We propose the first application of Constraint Acquisition to
the Precondition Inference problem, a major issue in Program
Analysis and Formal Methods. We show how to instantiate
the standard framework to the program analysis case, yielding
the first black-box active precondition inference method with
clear guarantees. Moreover, our experiments for memory-
oriented preconditions show that PRECA significantly out-
performs prior works, demonstrating the interest of Con-
straint Acquisition here.
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