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Abstract—Fuzzing is an effective software testing method that
discovers bugs by feeding target applications with (usually a
massive amount of) automatically generated inputs. Many state-
of-art fuzzers use branch coverage as a feedback metric to guide
the fuzzing process. The fuzzer retains inputs for further mutation
only if branch coverage is increased. However, branch coverage
only provides a shallow sampling of program behaviours and
hence may discard inputs that might be interesting to mutate.
This work aims at taking advantage of the large body of research
over defining finer-grained code coverage metrics (such as mu-
tation coverage) and use these metrics as better proxies to select
interesting inputs for mutation. We propose to make coverage-
based fuzzers support most fine-grained coverage metrics out of
the box (i.e., without changing fuzzer internals). We achieve this
by making the test objectives defined by these metrics (such as
mutants to kill) explicit as new branches in the target program.
Fuzzing such a modified target is then equivalent to fuzzing the
original target, but the fuzzer will also retain inputs covering
the additional metrics objectives for mutation. We propose a
preliminary evaluation of this novel idea using two state-of-art
fuzzers, namely AFL++(3.14c) and QSYM with AFL(2.52b), on
the four standard LAVA-M benchmarks. Significantly positive
results are obtained on one benchmark and marginally negative
ones on the three others. We discuss directions towards a strong
and complete evaluation of the proposed approach and call for
early feedback from the fuzzing community.

I. INTRODUCTION

Context. Fuzzing [1] refers to a process of repeatedly running
a Program Under Test (PUT) with automatically generated
inputs to trigger faults [2]. The motive is to detect bugs as
early as possible, before they cause failures or get exploited
as vulnerabilities in production [3]. Fuzzing has gained much
attention in recent years; researchers and practitioners have
notably proposed various methods to improve the input genera-
tion process. Many state-of-the-art fuzzers use a mutation- and
coverage-based approach to generate new inputs from the ones
generated before (Section III). As inputs are being generated,
those that cover yet uncovered parts of the PUT are saved and
randomly mutated (i.e. slighlty modified) to generate novel
inputs, possibly covering even more new parts of the PUT.
American Fuzzy Lop (AFL/AFL++) [4], [5] is one the most
used and forked tools relying on such an approach, while many

other tools have tried to improve this approach, notably by
combining it with program analyses like symbolic execution
(e.g. Qsym [6], Driller [7]) or taint analysis (e.g. Vuzzer [8]).

Problem. In order to select which of the generated inputs will
be saved for subsequent mutation, current fuzzers run the PUT
with these inputs and measure some form of branch coverage.
Inputs that cover branches of the PUT that have not been
previously covered during the fuzzer run are then typically
selected. Yet, branch coverage is a shallow metric to evaluate
how well the possible behaviours of a program are exercised,
so that a cornerstone of software testing research has been the
definition and evaluation of finer-grained coverage metrics [9]
(Section III), such as multiple condition coverage or mutation
testing. To the best of our knowledge (Section VIII), there
has been no effort so far to support fine-grained coverage
metrics within state-of-the-art fuzzers, and the ability of such
an integration to improve fuzzers remains unknown. Yet, by
making fuzzers more sensitive in retaining and mutating inputs
that triggers new behaviours of the program, one may hope
that it could make PUT exploration and bug detection more
efficient.

Goal and challenge. In this work, we aim at (1) providing
support for fine-grained coverage metrics as a means to se-
lect inputs for mutation in a wide range of state-of-the-art
coverage-based fuzzers and (2) evaluating the impact of using
such metrics in addition to branch coverage over the efficiency
of fuzzers to exercise the PUT and find bugs in it. A significant
challenge to overcome to reach these goals is harnessing the
variety of fuzzers to augment and of fine-grained metrics to
support, in order to obtain significant results. In particular, we
do not want to dig into the internals of every fuzzer and find a
way to extend them with support for every additional criterion.

Proposal. We propose to make state-of-the-art coverage-based
fuzzers support most fine-grained coverage metrics out of the
box (i.e. without changing their internals), by relying on a
dedicated transformation of the code of the PUT (Sections
II and IV). We take advantage of the fact that the coverage
objectives defined by most fine-grained coverage metrics (like
conditions to activate or mutants to kill) can be made explicit in
the code of the PUT in a generic way and without modifying
its semantics [10]. More precisely, given a PUT and a fine-
grained coverage metric, we instrument the code of the PUT
with new branches corresponding to the objectives from the
metric. Covering one of these branches is then equivalent to
covering the corresponding objective from the metric. Fuzzing
such a transformed PUT with a coverage-based fuzzer (relying

International Fuzzing Workshop (FUZZING) 2022
24 April 2022, San Diego, CA, USA
ISBN 1-891562-77-0
https://dx.doi.org/10.14722/fuzzing.2022.23xxx
www.ndss-symposium.org



on branch coverage) is then equivalent to fuzzing the original
PUT, but with the fuzzer also saving for mutation the inputs
that cover additional objectives from the metric.

Preliminary evaluation. We chose to evaluate our approach
using the Multiple Condition Coverage and Weak Mutation
Coverage metrics. These metrics are notoriously stronger
than Branch Coverage. Multiple Condition Coverage can help
fuzzing performance by systematically retaining inputs that
trigger subtle variations within the program’s control-flow
logic, not captured by branch coverage. Weak Mutation Cover-
age can help fuzzing performance by systematically retaining
inputs that would make any common programming mistake
possibly present in the program corrupt the program state.

We developed a tool (based on Clang) to automatically
instrument C code with the Multiple Condition Coverage and
Mutation Coverage metrics objectives (Section V). We use
this tool to transform the four programs from Lava-M [11], a
standard and basic fuzzer benchmark. We run the AFL++ and
Qsym fuzzers five times for 24 hours over the original Lava-M
programs and their transformed versions (Section VI).

With one of the four Lava-M programs (who), we observe
significantly better fuzzing results after transforming the pro-
gram, with, on average, 100 more bugs being discovered in to-
tal and bugs being uncovered faster during the fuzzing process.
With the three other Lava-M programs, the results indicate
marginally worse results after transforming the program.

Discussion and future work. While the positive results
obtained with the who program encourage us to explore even
more the potential of our approach, we discuss in the paper the
main directions to achieve a strong and complete evaluation
of it in the future (Section VII). These directions involve fast
pruning of infeasible test objectives before fuzzing, extensive
evaluation with more diverse benchmarks, discriminating the
impact of specific coverage criteria, using more standard fuzzer
evaluation metrics, as well as measuring impact over fuzzer
throughput.

II. MOTIVATING EXAMPLE

We illustrate now with a simple example how our approach
can make a state-of-the-art fuzzer support a fine-grained cov-
erage metric out-of-the-box, by transforming the code of the
program under test. We also exemplify how this approach
could end up making coverage-based fuzzers more efficient
at finding bugs, by making them more sensitive in retaining
and mutating inputs that trigger different PUT behaviours.

Our example PUT is the C program presented in Listing 1.
It is basically a C function checking if an appliance is running
outside its allowed temperature range and taking corrective
actions if so. We suppose that the implementation of these
corrective actions is buggy, but that the bug only triggers a
program crash (enabling a fuzzer to detect it) when the tem-
perature is negative and other rare conditions are met (requiring
the fuzzer to generate many inputs with current_temp less
than -50 to actually trigger it).

The Condition Coverage criterion is a fine-grained code
coverage metric requiring both truth values of any atomic
condition appearing at the decision points of the program to

1 void check_temperature_ok(int current_temp,char *data[] ){
2 if(current_temp>50 || current_temp<-50)
3 {
4 // Deal with appliance running outside
5 // the allowed temperature range
6

7 ... // Buggy code, but the crash only
8 // triggers scarcely and
9 // when current_temp is negative

10

11 }
12 }

Listing 1: A buggy program checking if an appliance is running
outside its allowed temperature range and taking corrective
actions if so.

1 void check_temperature_ok(int current_temp,char *data[]){
2 if(current_temp>50) {}
3 if(current_temp<=50) {}
4 if(current_temp<-50) {/* Mutating seed entering here
5 helps triggering crash */ }
6 if(current_temp>=-50) {}
7 if(current_temp>50 || current_temp<-50)
8 {
9 // Deal with appliance running outside

10 // the allowed temperature range
11

12 ... // Buggy code, but the crash only
13 // triggers scarcely and
14 // when current_temp is negative
15

16 }
17 }

Listing 2: Same program as Listing 1, but with instrumentation
for fine-grained fuzzing with the CC criterion.

be activated. In our example program, this means requiring
to generate inputs where the value of current_temp is
respectively greater than 50, not greater than 50, less than
-50 and not less than -50. Our approach makes these four
coverage objectives explicit in the code of the PUT, by adding
four conditional statements corresponding respectively to each
of them, as illustrated in Listing 2. The transformed program
can then be fuzzed using an off-the-shelf coverage-based
fuzzer relying on branch coverage. Every time this coverage-
based fuzzer will produce an input entering one of these
new conditionals (and thus satisfying an additional Condition
Coverage objective), it will save it for mutation.

It should be remarked that the third added conditional
explicitly forces the fuzzer to maintain and mutate an input
where current_temp is less than -50 as soon as it generates
one. This will increase the chance for the fuzzer to trigger a
crash revealing the bug, making bug detection faster in average.

III. BACKGROUND

A. Coverage-based fuzzing

Coverage-based fuzzing uses a feedback mechanism to
improve the efficiency and effectiveness of the input generation
process. Figure 1 shows the general working principle of a
coverage-based fuzzer. It starts with an initial set of user-
provided input seeds; if unavailable, the fuzzer will construct
one [12][13] by itself. Then, the fuzzer mutates these initial
seeds and executes the program under test with the resulting
inputs. If the execution exercises new control-flow edges
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(a.k.a. code branches), the input is considered as interesting
and kept as a seed for further mutation; otherwise, it is
discarded. Usually, the coverage information is monitored

Mutation

SeedsInitial 
Seeds

inputs
Program 

Under Test

Monitor

Coverage 
increased?

Crashes?

Discarded

Report 
Crashes

Fig. 1: General coverage-based fuzzing process

using lightweight program instrumentation and hence does not
hinder the program’s execution speed. This simple technique
has proved to be very effective in finding bugs in real-world
applications. The popular implementation of coverage-based
fuzzer are AFL [4] and AFL++ [5]; its variants are notably
Steelix [2], Driller [7], libFuzzer [14], AFLFast [15] and
QSYM [6].

B. Code coverage criteria

Code coverage metrics, commonly referred to as code cov-
erage criteria, are a cornerstone of software testing research.
They have been studied for decades in the literature [16] [17]
[18], and are notably used to evaluate the effectiveness of
test suites to exercise a piece of software. This can involve
properly testing for functional correctness, security, reliability,
or performance. We list hereafter a few standard classes of
coverage criteria and their most common criteria.

Control-flow and call graph criteria.

• Statement Coverage (SC): requires a test suite to reach
each statement of the program under test

• Decision Coverage (DC): requires a test suite to
activate both the true and false path of each decision
point in the program under test. This is equivalent to
covering all the edges in the control-flow graph of the
program. The test objectives defined by DC (control-
flow edges) are thus at the heart of the input generation
heuristics used by coverage-based fuzzers.

• Function Coverage (FC): requires a test suite to reach
all function entry-points.

Logic expressions criteria.

• Condition Coverage (CC): requires a test suite to
activate both true and false values for each of the
atomic conditions in any program decision point.
Here, atomic conditions refers to logical expressions
that cannot be divided into other simpler expressions.

• Decision Condition Coverage (DCC): requires a test
suite to satisfy both DC and CC.

• Multiple Condition Coverage (MCC): requires a test
suite to activate all the combinations of truth values

of all atomic conditions at each decision point in the
program.

Mutation criteria. Mutation criteria are derived from the
research efforts in mutation testing [19]. Test objectives consist
here of mutants, i.e. slight variants of the program under test.
The goal of mutation testing is to help improve the quality of
test suites by checking whether or not they are able to elicit
the common programming mistakes that could be present in
the code, i.e. differentiate the PUT from its mutants. We say
that an input from a test suite kills a mutant if it triggers an
observable difference between the PUT and the mutant. If this
this difference is observable from outside of the code, as the
PUT and the mutant generate different outputs, we say that
the input strongly kills the mutant. If the difference is only
observable in the internal states of the PUT and mutant around
the mutation points, but do not propagate to their outputs, we
say we say that the input weakly kills the mutant. From this,
we can define the strong and weak mutation coverage criteria:

• Strong Mutation coverage (SM): requires a test suite
to kill strongly all the created mutants of the program.

• Weak Mutation coverage (WM): requires a test suite
to kill weakly all the created mutants of the program.

In order to create a significant set of mutants for a given
PUT, one should use standard mutant creation operators, like
Absolute Value Insertion (ABS), Arithmetic Operator Replace-
ment (AOR), Conditional Operator Replacement (COR) and
Relational Operator Replacement (ROR) for programs written
in simple imperative style.

About criteria diversity. In addition to the criteria presented
hereabove, the scientific literature describes an even wider
range of diverse code coverage criteria, enabling to focus
over different aspects of program behaviour. This variety of
criteria also offers a variety of different balances between test
thoroughness and speed. Lightweight criteria (like statement
or decision coverage) favor small but shallow test suites,
while heavyweight criteria (like multiple condition or mutation
coverage) favor thorough but large (and thus slower) test suites.

C. Making test objectives explicit with labels

Bardin et al. [10] [20] [21] have proposed a generic mech-
anism for specifying the test objectives from many coverage
criteria explicitly within the PUT code. This mechanism relies
on labels, i.e., predicates attached to program locations. A
label is covered by an input if executing the program with this
input enables reaching the location and satisfying the predicate.
Figures 2 and 3 illustrate how the test objectives from the
condition, multiple condition and weak mutation coverage cri-
teria can be made explicit by a corresponding label. Covering
the label is then equivalent to covering its corresponding test
objective. While a significant set of coverage criteria can be
handled in this way, the expressive power of labels alone is not
sufficient to make the test objectives from all criteria explicit
(e.g. strong mutation). Marcozzi et al. [22] discuss this issue
and extend labels into hyperlabels to handle a wider set of
coverage criteria.
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statement_1;
if(x==y && a<b)

{...};
statement_3;

→

statement_1;
//l-1: x==y
//l-2: x!=y
//l-3: a<b
//l-4: a>=b
if(x==y && a<b)

{...};
statement_3;

statement_1;
//l-1: x==y && a<b
//l-2: x!=y && a<b
//l-3: x==y && a>=b
//l-4: x!=y && a>=b
if(x==y && a<b)

{...};
statement_3;

Condition
Coverage (CC)

Multiple Conditon
Coverage (MCC)

Fig. 2: Encoding CC and MCC test objectives with labels [10].

statement_1;
x=a+b;
statement_3;

statement_1;
x=a*b;
statement_3;

→

statement_1;
//l-1: (a+b)!=(a*b)
x=a+b;
statement_3;

Program Under
Test (PUT)

AOR Mutant Weak Mutation
Coverage (WM)

Fig. 3: Encoding WM test objectives with labels (considering
a single mutant created with the AOR operator).

IV. FINE-GRAINED COVERAGE-BASED FUZZING

A. General principle

Given a program P and a label-encodable code coverage
criterion C, our approach transforms the original program P
into a semantically equivalent program Plannot, so that fuzzing
Plannot with a coverage-based fuzzer is the same as fuzzing
P and keeping the inputs that increase coverage w.r.t. C as
additional seeds for subsequent mutations.

In practice, transforming P into Plannot works as follows.
For each label l corresponding to one of the test objectives
required by the coverage criterion C for P (e.g. truth values
to activate, mutants to kill), we add an empty conditional
statement if at the same location in P as l and whose
entry condition is l’s predicate. This transformation process
is illustrated on a simple code snippet at Figure 4. When
fuzzing Plannot, the fuzzer will save as a seed for mutation
any input that covers a previously uncovered code branch. If
this branch is the one satisfying the entry condition of if , the
fuzzer will basically save as a seed an input covering l and its
corresponding objective from C.

statement_1;
//l-1: x==y
//l-2: x!=y
//l-3: a<b
//l-4: a>=b
if(x==y && a<b)

{...};
statement_3;

→

statement_1;
if (x==y) {}
if (x!=y) {}
if (a<b) {}
if (a>=b) {}
if(x==y && a<b)

{...};
statement_3;

P with labels for CC Plannot for CC

Fig. 4: Transforming a program for fine-grained coverage-
based fuzzing with CC criterion [10].

B. Handling of expressions with side-effects

Applying our code transformation approach to programs
involving expressions with side-effects may alter the semantics
of these programs, in case such expressions end up being

part of the considered label predicates. This is illustrated in
Figure 5, where the transformed program would print ”aabbab”
instead of just ”ab”, like in the original program.

statement_1;
//l-1: print("a")
//l-2: !print("a")
//l-3: print("b")
//l-4: !print("b")
if(print("a") && print("b"))

{...};
statement_3;

→

statement_1;
if (print("a")) {}
if (!print("a")) {}
if (print("b")) {}
if (!print("b")) {}
if(print("a") && print("b"))

{...};
statement_3;

P with labels for CC Plannot for CC

Fig. 5: Naive transformation of a program containing expres-
sions with side-effects.

To preserve the semantics of P under transformation into
Plannot, we first transform P into a normalised program
Pnormalised. Pnormalised is obtained from P by extracting
the side-effects from all the expressions involved into a label
predicate, without modifying the semantics of P . This nor-
malization process is illustrated in Figure 6 for side-effects
appearing in the atomic conditions of decision points in the
program (such conditions are involved in label predicates for
many coverage criteria). Case (a) details the simple situation
where the atomic condition with side-effects can be extracted
into a new temporary variable defined just before the decision
point. Such an unconditional extraction is not possible in case
the evaluation of the atomic condition can be short-circuited
because of a lazy boolean operator. Case (b) and (c) detail the
conditional extraction performed in this situation, respectively
for a lazy AND and OR operator.

C. Complete workflow

Figure 7 summarises the complete workflow of our fine-
grained coverage-based fuzzing approach. After extracting
side-effects from expressions involved in label predicates and
adding conditionals corresponding to these labels making the
criterion explicit, the transformed PUT is fuzzed using a
classical (branch coverage-based) fuzzer. The transformation
guarantees that this is equivalent to fuzzing the original PUT,
but with the fuzzer also saving for mutation the inputs that
cover additional objectives from the criterion.

V. IMPLEMENTATION

We have implemented our program transformation ap-
proach for C programs as passes in the Clang open-source
compiler infrastructure [23]. Our implementation involves re-
cursively traversing the Abstract Syntax Tree (AST) of our
target program using recursive visitors provided by the Clang
API. Our program normalisation pass transforms boolean
conditions at program decision points if they contain side-
effects, like function calls. Our program annotation pass inserts
conditional statements for the MCC and WM criteria, using the
Rewriter class provided by the Clang API.

We have also carefully examined by hand the binary code
produced after transforming a sample program with our passes,
instrumenting the transformed code with the fuzzer harness
and compiling the result with gcc, in order to make sure that
our transformation was not tampered by the harnessing or
compilation processes.
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int foo();
….
if(foo()){ } 

int foo();
….
int temp = foo();  
if(temp){ } 

(a) Side-effect in an atomic condition at a decision point

int foo();
….
if(x>0 && foo()){ } 

if(x>0){
 int temp = foo();
 if(temp){}
 else 
   goto label_1;
} 
label_1:{
}

(b) Side-effect in the second atomic condition of a lazy
boolean operator (AND case)

int foo();
….
if(x>0 || foo()){ } 

if(x>0){
 goto label_1;
}
else{
 int temp = foo();
 if(temp)
 label_1:{}
 else{}
}

(c) Side-effect in the second atomic condition of a lazy
boolean operator (OR case)

Fig. 6: Extracting side-effects from atomic conditions at pro-
gram decision points.

Fig. 7: Fine-grained coverage-based fuzzing workflow

VI. PRELIMINARY EXPERIMENTAL EVALUATION

As a preliminary evaluation, we use our code transforma-
tion tool to add conditional statements for MCC and WM
objectives to the four programs of the standard LAVA-M
benchmark suite [11]. Then, we compare the performance of
the afl++3.14c and QSYM coverage-based fuzzers on these
programs with and without our conditional statements added

(in terms of bug discovery, code coverage and time to bug).
We consider the following research questions:

• Research Question 1 (RQ1) Is our code transformation
tool effective and useful? (a) Is it easy to use and does
out-of-the-box integration with existing fuzzers work
well? (b) Can it scale to real-world applications?

• Research Question 2 (RQ2) Does our fine-grained
approach allow to improve over the baseline state-of-
art fuzzers?

A. Experimental setup

We set up two different settings of experiments for each
fuzzer. One fuzzing the original programs (baseline) and other
fuzzing these programs with the label-derived conditional
statements added (our approach). Each of the four settings had
the same time budget of 24 hours. We used an Intel Skylake
CPU, with 192GB memory RAM and 72 logical cores running
at 2.6GHz. To mitigate the impact of randomness, we run five
trials for AFL++ and QSYM in both settings. To evaluate
performance, we measure the number of unique bugs found
along time (using the built-in LAVA-M capabilities) and the
MCC and WM objectives covered along time (we monitor the
inputs generated by the fuzzers and re-run the program on these
inputs with label instrumentation to obtain the label coverage
measurement).

B. RQ1: effectiveness and scalability

We consider the four programs from the LAVA-M bench-
mark suite [11] (built on top of coreutil-8.14). LAVA-M is
designed to evaluate the effectiveness of fuzzers by injecting
synthetic bugs in different execution paths. Our automated tool
successfully generated five test objective (i.e. labels) types, i.e.,
MCC and WM with ABS, AOR, COR, and ROR operators.
Table I shows the number of labels generated for the LAVA-M
benchmark suite. The time taken to instrument each program
is roughly five seconds. Once we have the transformed source
code, we can now run any off-the-shelf fuzzer for fuzzing it.
Our approach was thus tested as practical, effective, easy to
used for the small size programs of the LAVA-M benchmark.
Table I, column two shows the Line of Code (LOC) for each
applications of the LAVA-M ranging from 255 to 663 LOC.

TABLE I: Number of labels on LAVA-M benchmark suite.
LOC: Line of Code, MCC: Multiple condition coverage,
ABS: Absolute value insertion, AOR: Arithmetic operator
replacement, COR: Conditional Operator Replacement, ROR:
Relational Operator Replacement

Application LOC MCC ABS AOR COR ROR Total
uniq 494 204 61 7 18 45 335

base64 255 26 56 7 6 51 146
md5sum 663 125 113 20 24 79 361

who 622 170 180 15 30 19 414

C. RQ2: comparison with state-of-the-art fuzzers

We evaluate our technique using two state-of-the-art
fuzzers, i.e., afl++3.14c and QSYM. For each program, we
ran five trials for 24hrs which accounted for 1920 CPU hours.
We compare our approach as follows:
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1) Bugs discovery: Table II shows the number of bugs
found by the two fuzzers in both settings. Columns 1, 2, and
3 show the program’s name, arguments, and the listed bugs by
LAVA-M Authors, respectively.

Regarding the AFL results, columns 4 and 5 are the
number of bugs found by alf++3.14c and afl++3.14c+lannot
respectively. Our evaluation shows a single difference:
afl++3.14c+lannot finds two bugs in base64, whereas
afl++3.14c found no bugs.

Regarding the QSYM results, columns 6 and 7 show the
number of bugs found by QSYM and QSYM+lannot, respec-
tively. Our evaluation demonstrate a significant improvement
with our approach in the who program, as 101 additional bugs
were triggered on average. However, the baseline is still better
in the maximum number of bugs taken from all trials. For
the three other programs, the baseline is similar or marginally
better than our approach (0-3 more bugs found on average).

2) Coverage: Our evaluation is on the number of labels
(i.e. MCC or WM objectives made explicit) covered by the two
fuzzers in both settings. Figure 1 to 4 shows the cumulative la-
bel coverage (in %) on the LAVA-M benchmark. Our approach
shows degrading in coverage in base64 and md5sum, however
our approach shows improvement uniq and who by 0.3% and
1.23% respectively. Table III shows the absolute number of
recovered labels by fuzzers. For each application, we show
the minimum, average and maximum number of labels covered
by each fuzzers. We observed in three applications i.e., uniq,
base64, and md5sum the number of labels are closely the same
except in md5sum where the minimum number of labels are
6 less as compared to the baseline in AFL++. Our approach
shows effectiveness in who application with +4, +5 and +4 in
minimum, average and maximum of labels triggered by QSYM
respectively.

3) Time to bugs: Figure 9 shows the average number of
new unique bugs found by QSYM and QSYM+lannot along
fuzzing time. Here again, we observe a similar pattern: encour-
aging results for the who program and similar or marginally
worse results for the three other programs.

VII. DISCUSSION AND FUTURE WORK

While the positive results obtained with the who program
encourage us to explore even more the potential of our
fine-grained coverage-based fuzzing approach, a lot of work
remains to be done to provide a strong and complete evaluation
of it. We discuss the main directions to achieve such a better
evaluation in the next paragraphs.

First, Figure 8 reveals that, even after 24 hours of fuzzing,
more than 70% of the MCC and WM test objectives remain
uncovered, whatever the PUT or fuzzer used (as label coverage
tops at 27.5% for AFL++ with md5sum). As discussed in [24],
a significant proportion of labels (test objectives) can be infea-
sible (i.e. no input can cover them). Infeasible labels may be
the possible reason of such a low level of coverage. In addition,
many infeasible labels means that our program transformation
will add a lot of conditional statements with an unsatisfiable
entry condition. This may penalize the performance of fuzzers
on our transformed PUT, as it adds a lot of useless dead code,
and in the case of QSYM, saturate the symbolic execution

module with a lot of infeasible constraints. It looks thus essen-
tial to prune out such infeasible labels. Bardin et al. [10] [24]
[25] proposed a sound and fast approach to prove that many
labels are infeasible using static analysis, while Papadakis et
al. [26] proposed Trivial Compiler Equivalence (TCE) to detect
equivalent mutants (in our case, infeasible labels) by exploiting
off-the-shelf compiler optimisations. We plan to leverage one
of these two approaches to prune out infeasible labels and
report on the impact over fuzzing performance.

Second, it remains unclear why the results are positive on
the who program, but marginally negative on the three other
ones. As a way towards solving this issue, we plan to gather
additional results over a more diverse set of programs, to see
if a more consistent trend emerges. More precisely and also in
order to demonstrate the scalability of our approach, we plan
to test it on real-world applications praised by the fuzzing
community as ground-truth benchmarks, such as Magma [27].

Third, our current experiments use as a coverage metric
the combined coverage of all types of labels (MCC and WM
objectives for all operators), taken as a whole. It would be
interesting to investigate considering each type of labels sepa-
rately in the future. This will give us an idea and quantitative
suggestion as to which coverage criteria really help the fuzzing.

Fourth, our evaluation considers label coverage, i.e. our
own internal metric, to measure the performance of the two
fuzzer in both settings. It seems important to also evaluate
our approach using more standard metrics, like AFL++’s edge
coverage, as suggested by the fuzzing community [28].

Fifth, our method introduces additional branches, which
makes the fuzzer retain more inputs as seeds, impacting the
fuzzing throughput (generated inputs per seconds). We plan to
study the impact of labels on throughput in the future.

VIII. RELATED WORK

A. Improving input selection with additional fuzzing objectives

Aschermann et al. [29] propose IJON: a human-in-the-
loop technique that gives feedback to the fuzzer. The user
first identifies hard-to-cover code and then annotates it with
special primitives to capture the associated program states. The
annotation process requires domain knowledge of the target
program and much manual work. Additionally, modifying the
fuzzer itself is needed for it to capture the program states. In
contrast, our work aims at using various code coverage criteria
from the software testing literature to guide the fuzzer; in
addition, our code annotation is done automatically and there
is no need for any modification of existing fuzzers.

Wang et al. [30] study the performance impact of im-
plementing different variants of the branch-coverage metric
within the fuzzer. They also provide a theoretical concept
of metric sensitivity that can be used to compare different
coverage metrics. The study shows that no branch coverage
variant surpasses the others. For instance, a more sensitive
variant may choose more inputs as seeds, which results in
the fuzzer not having enough time to schedule or adequately
mutate all of the seeds; thus, reducing fuzzer throughput. On
the other hand, less sensitive variants may choose fewer inputs
as seeds; hence, potentially missing some intriguing ones. To
address this problem, Wang et al [31] proposed AFL-HIER: a
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TABLE II: Bugs found on the LAVA-M benchmark by fuzzers. Here, min, avg, and max are the minimum, average and maximum
number of bugs found by fuzzers, respectively. Note that fuzzers sometimes find more bugs than those listed by LAVA authors.

Program Argument Listed bugs Number of bugs
AFL++ AFL++ +lannot QSYM QSYM+lannot

max max min avg max min avg max
uniq 28 1 1 15 19 29 11 (-4) 19 27 (-2)

base64 -d 44 0 2 43 45 47 41 (-2) 44 (-1) 47
md5sum -c 57 0 0 40 44 60 40 42 (-2) 50 (-10)

who 2136 1 1 1599 1786 2110 1734 (-135) 1887 (+101) 2020 (-90)

Fig. 8: Cumulative Label coverage (in %) on LAVA-M by AFL++, AFL++ + lannotate, QSYM, and QSYM + lannotate in 24
hours

Fig. 9: Average number of bugs found by QSYM and QSYM+lannot

fuzzer embedded with a multi-level coverage metric enabling
seed clustering. The key idea is to use finer-grained metrics
such as edge coverage for seed selection and coarser-grained
metrics such as block coverage for clustering. Furthermore,
the technique uses a reinforcement learning-based hierarchical

scheduler for seed selection. Contrary to these two works, our
method does not alter the fuzzer to handle additional metrics,
but it adds branches encoding the new objectives directly to
the tested program, enabling off-the-shelf reuse of any fuzzer
based on branch coverage. In addition, these two works focus
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TABLE III: The absolute number of labels triggered by fuzzers
on the LAVA-M benchmark suite. The min, avg, and max is the
minimum, average and maximum number of labels covered.
The number in the bracket shows the difference in comparison
to the baseline.

App AFL++ AFL++ +lannotate QSYM QSYM+lannotate

uniq
min 60 60 63 63
avg 60 60 62 63 (+1)
max 60 60 63 63

base64
min 25 25 27 26 (-1)
avg 25 25 27 27
max 25 25 27 28 (+1)

md5sum
min 95 89(-6) 94 95 (+1)
avg 99 97(-2) 97 96 (-1)
max 101 101 102 101 (-1)

who
min 82 82 78 82 (+4)
avg 84 83 (-1) 80 85 (+5)
max 88 88 84 88 (+4)

either on shallow standard metrics, like block and branch
coverage, or on their own ad-hoc metrics, while our work
proposes to leverage the many fine-grained metrics widely
studied in the software testing literature. However, our method
will also increase the number of inputs taken as seeds and may
thus hamper the performance of the fuzzer for this reason as
well. An analysis of the precise impact of our technique on
fuzzer throughput is left for future work.

Ankou [32] proposes to modify the fuzzer to save as
seed any input that covers any uncovered combinations of
branches, instead of any uncovered branches alone. In practice,
this means that the fuzzer uses some variant of the path
coverage metric, instead of branch coverage. However, such
a heavyweight metric delivers far too much data, resulting
in seed explosion. Ankou reduces the amount of data with
Principal Component Analysis (PCA) and performs adaptive
seed pool updates to prevent seed explosion. In contrast,
our technique enables supporting a wide set of additional
metrics (and not just one) without modifying existing fuzzers.
In addition, the metrics that we currently support are finer-
grained than branch coverage but coarser-grained than path
coverage, possibly providing a better compromise between
fuzzing precision and seed explosion.

Fioraldi et al. [33] consider to save as seeds any input that
violates likely block-level invariants of the program, collected
through a prior dynamic analysis. The technique considers thus
a very different source of information than ours to guide the
fuzzer and, again, it requires the modification of the fuzzer to
capture the violations of invariants.

Finally, a blog post [34] proposes to help fuzzers penetrate
blocks guarded by a magic bytes comparison, through splitting
the guard into nested smaller comparisons. While this mecha-
nism also relies on additional branches in the code to guide the
fuzzer, its essence is splitting a hard-to-penetrate branch into
an equivalent sequence of easier-to-penetrate branches. Our
approach is different, in the sense that we consider adding
extra branches everywhere needed in the program to improve
the guidance. We use this general mechanism to guide the
fuzzer with state-of-the-art finer-grained coverage metrics and
not to help it circumvent magic bytes comparisons.

B. More efficient coverage-guided fuzzing

Since the seminal publication of AFL [4], researchers have
actively contributed to making fuzzing even more effective and
efficient. In addition to the works discussed in the previous
section, the most related to our proposal are the techniques that
improve the initial selection of seeds or use a form a program
transformation. Rebert et al. [35] mathematically formulate
seed selection to maximise bugs discoveries. Herrera et al.
[36] systematically investigate and evaluate the effects of initial
seed selection strategies on bug finding. T-Fuzz [39] proposes a
lightweight dynamic tracing-based technique to detect complex
checks and bypass those checks by program transformation.
The transformation is done by simply flipping the direction in
the condition of the jump instruction. This approach leads to
over-approximation and false positives. To address this, T-Fuzz
leverages a symbolic execution-based approach to filter out
false positives and reproduce true bugs in the original program.

IX. CONCLUSION

In this work, we have taken advantage of the large body
of research over fine-grained code coverage criteria (such as
multiple conditions and mutation coverage) and used these
criteria as better proxies to select interesting inputs for mu-
tation in coverage-based fuzzers. A noticeable aspect of our
approach is that we make coverage-based fuzzers support most
fine-grained coverage criteria out of the box (i.e., without
changing their internals). We have achieved this by making
the test objectives defined by these metrics (such as conditions
to activate and mutants to kill) explicit as new branches in
the target program. Fuzzing such a modified target is then
equivalent to fuzzing the original target, but the fuzzer will
also retain inputs covering the additional metrics objectives for
mutation. We have proposed a preliminary evaluation of this
novel idea using two state-of-art fuzzers, i.e., AFL++(3.14c)
and QSYM with AFL(2.52b) on the four standard LAVA-M
benchmarks. With one of the four Lava-M programs (who), we
observe significantly better fuzzing results after transforming
the program, with, on average, 100 more bugs being dis-
covered in total and bugs being uncovered faster during the
fuzzing process. With the three other Lava-M programs, the
results indicate marginally worse results after transforming the
program. While the positive results obtained with the who
program encourage us to explore even more the potential of
our approach, we have also discussed the main directions to
achieve a strong and complete evaluation of it in the future,
and we call for early feedback from the fuzzing community.
These directions involve fast pruning of infeasible test objec-
tives before fuzzing, extensive evaluation with more diverse
benchmarks, discriminating the impact of specific coverage
criteria, using more standard fuzzer evaluation metrics, as well
as measuring impact over fuzzer throughput.
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