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Abstract
We introduce a new property called robust reachability which refines the standard notion 
of reachability in order to take replicability into account. A bug is robustly reachable if 
a controlled input can make it so the bug is reached whatever the value of uncontrolled 
input. Robust reachability is better suited than standard reachability in many realistic sit-
uations related to security (e.g., criticality assessment or bug prioritization) or software 
engineering (e.g., replicable test suites and flakiness). We propose a formal treatment of 
the concept, and we revisit existing symbolic bug finding methods through this new lens. 
Remarkably, robust reachability allows differentiating bounded model checking from sym-
bolic execution while they have the same deductive power in the standard case. Finally, we 
propose the first symbolic verifier dedicated to robust reachability: we use it for criticality 
assessment of 5 existing vulnerabilities, and compare it with standard symbolic execution.

Keywords Symbolic execution · Reachability · Vulnerability assessment · SMT · Software 
verification · Program analysis

1 Introduction

Context Many problems in software verification are encoded as reachability queries of 
some undesired condition—a bug, the exploitation of a vulnerability, etc.@ When a verifi-
cation engine establishes that a certain buggy location in the program is reachable, an input 
triggering the bug is reported to the developer so that it can be fixed. In the case of tech-
niques based on an under-approximation of program behaviors, like Symbolic Execution 
(SE) [10] or Bounded Model Checking (BMC) [14], we even have in principle the guaran-
tee that the reported issue is real (correctness): there are no false positives.
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Problem Yet, things are more subtle in practice, as some bugs can be triggered reli-
ably whereas others only happen in very specific and highly improbable initial condi-
tions. While standard reachability cannot tell the difference, this distinction is crucial 
in many real-life scenarios related to security (bug triage, bug prioritization, criticality 
assessment) or software engineering (test suite replicability and the problem of flaky 
tests [47]). For example, fuzzers are able to detect so many bugs [40] that they can 
lead to “bug triage issues” [32]. If each replicable (reliably-triggered) bug is hidden by 
dozens of more fragile ones in the reports of a verification engine, it is hard to focus 
development effort efficiently. Also, if one is only interested in vulnerability reports, 
bugs which cannot be reliably triggered may even be dismissed as “not exploitable” 
altogether.

Goal & challenges Our goal is to develop a formal framework able to distinguish repli-
cable bugs from fragile bugs, and amenable to automatic software verification — precisely, 
we want to be able in practice to find such replicable bugs. This is challenging as we need 
to avoid any quantitative [39] or probabilistic reasoning [3, 36], insofar as they would hin-
der automation on real examples — these techniques are often either restricted to finite-
state systems [3, 36] or rely on highly expensive model counting solvers [12, 41].

Proposal Our approach consists in partitioning inputs of the program into controlled 
inputs and uncontrolled inputs. This lets us refine the concept of reachability into robust 
reachability: a (buggy) location of a program is robustly reachable if there exist controlled 
inputs, such that for all uncontrolled inputs, this location is reached. In other words, with 
adequate input we do not need luck.

We typically focus on security scenarios where an attacker provides controlled input in 
one go, without knowledge of uncontrolled input — typically sending a malicious crafted 
file to obtain remote code execution or privilege escalation. We deliberately exclude inter-
active attack scenarios and weaker interpretations like “bugs replicable most of the time” in 
order to keep proof methods tractable.

Proving robust reachability is harder than standard reachability. While we show that 
robust reachability is expressible in formalisms like branching temporal logics [15], hyper-
properties  [17] or hyper temporal logic [16], there exist no efficient automated analysis 
methods for these formalisms at the software level (for Turing-complete languages). There-
fore, we investigate dedicated verification techniques, revisiting standard methods (SE, 
BMC) for standard reachability as well as some of their standard companion optimizations.

Our prototype of Robust Symbolic Execution (RSE) relies on the ability of state of the 
art SatisfiabilityModulo Theory (SMT) solvers [5] to generate models for universally quan-
tified formulas [26, 28, 49], which comes with a performance and completeness cost — yet 
we report promising results.

Contributions We claim the following contributions.

– We formally introduce the concept of robust reachability (Sect. 4) along with the more 
general robust safety and guarantee property, and motivate its use (Sect. 2), giving prac-
tical examples where standard reachability leads to false positives in practice (what-
ever the underlying verification technology). We also characterize robust reachability 
in terms of temporal logic and hyperproperties, and compare it with non-interference 
(Sect. 4);

– We revisit Symbolic Execution (SE) [10] and Bounded Model Checking (BMC) [14] 
and show how they can be lifted to the robust case (Sect.  5). While they both have 
the same deductive power in the standard case, they do not anymore in the robust set-
ting — yet, path merging allows Robust SE to pace up with Robust BMC. Finally, we 
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show how to adapt standard optimizations for Symbolic Execution and Bounded Model 
Checking;

– We implement and evaluate1 (Sect. 6) the first symbolic execution engine dedicated to 
robust reachability, namely Binsec/Rse. We show how to use it for criticality assess-
ment of 5 existing vulnerabilities (CVEs), and compare it with standard symbolic exe-
cution. RSE appears to be tractable with reasonable overhead, yielding false-positive-
free symbolic reasoning.

We believe robust reachability is an important sweet spot in terms of expressiveness and 
tractability, allowing to highlight serious bugs in practical situations. We hope this first 
step will pave the way to more refinements and applications of robust reachability.

Extension This work is a journal extension of a prior article published at CAV 2021 
[29]. We have refined the text and added a total of 8 pages of new content, among which 
a new generalisation of the formal treatment from robust reachability of a location to a 
more general notion of robust reachability of any event (Sect. 4.1), a discussion on the link 
between robust reachability and the ATL temporal logic (Sect. 4.4), a discussion on lift-
ing other properties and hyperproperties to their robust equivalent (Sect. 6.4.1), as well as 
some more detail on how we preprocess the universally quantified SMT formulas submit-
ted to Z3 (Sect. 6.1). Finally, we also have added a new case study showing what robust 
reachability brings to the analysis of flaky tests (Sect. 6.2.2).

2  Motivation

In this section we show why standard reachability is not always a good fit for bug finding, 
as it cannot distinguish between replicable bugs and fragile bugs.

Stack canaries Consider the program presented in Fig. 1. It suffers from a stack buffer 
overflow: if variable n is greater than 8 (the size of buffer), then 0x61 will be written 
to stack memory above buffer. For high enough n, this will overwrite the return address 

void fill(unsigned n, char* ptr) {
for (unsigned i = 0; i < n; i++) {

ptr[i] = 0x61;
}

}
void victim () {
unsigned n = controlled_input;
char buffer [8];
fill(n, buffer );

}
void main() {
victim ();

}

(a) C-like code, for simplicity

1 void victim () {
2 /* stack variables , top to bottom */
3 // return address goes here
4 int canary = global_random_value;
5 char buffer [8];
6 /* end stack variables */
7
8 register unsigned n = controlled_input;
9 fill(n, buffer );

10 if (canary != global_random_value)
11 fail_and_dont_return_at_all();
12 /* everything is ok */
13 }

(b) Explanation of compiler instrumenta-
tion with Stack Smashing Protection (SSP)

Fig. 1  Simple stack buffer overflow

1 The tool, benchmark and data are available at https:// github. com/ binsec/ cav20 21- artif acts and https:// 
zenodo. org/ record/ 47217 53.

https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753
https://zenodo.org/record/4721753
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(Fig. 1b, line 3) of function victim and make the program jump to an unexpected pro-
gram location when victim returns.

Mitigations for such programming errors exist, like like Stack Smashing Protection 
(SSP)  [19]. This technique consists in pushing a randomly-chosen constant value called 
a canary at the top of the stack in the prologue of each function, and checking that this 
value is intact before returning. If the canary has been tampered with, the program exits to 
prevent exploitation (Fig. 1b, line 11). Here, SSP prevents the attacker from overwriting 
the return address of victim, as doing so also overwrites the canary with 0x61616161. 
This will be detected at line 10 of Fig. 1b with probability 1 − 2−32 on a 32-bit architecture: 
the only way to pass through it is to have the canary value equal to 0x61616161. Hence, 
the buffer overflow in this program is not exploitable anymore. 

The problem with standard reachability Can the attacker hijack the control flow without 
triggering SSP? We can model this security question as a standard reachability query over 
inputs controlled_input and global_random_value. The attacker succeeds if 
line 12 is reachable with the additional condition that the return address of victim is 
overwritten with an unexpected address.

Unfortunately, this standard reachability query is satisfiable with the canary global_
random_value equal to 0x61616161 and controlled_input equal to e.@g.@, 
42. And indeed, binary-level SE tools Angr [51] or Binsec [24] do report the bug as reach-
able (cf. Table 1). Yet, this answer is unsatisfying as this only happens with a very low 
probability: it may not be considered a plausible attack.

Hence, it turns out that SE can yield false positives in practice — especially in a secu-
rity context.

Proposal: robust reachability We label controlled_input as a controlled input 
and global_random_value as an uncontrolled input. There exists no value of con-
trolled_input such that victim returns to an address tampered with independently 
of the value of global_random_value. We thus say that our exploitation condition 
(line 12) is not robustly reachable. We can automatically verify this intuition. We adapted 
the SE engine of Binsec to robust reachability: our tool finds the vulnerability when we 
disable the protection (by labelling the canary as controlled input) and does not find it any-
more when the protection is present. This shows that robust reachability can model the 
protection provided by SSP, while standard reachability cannot.

This phenomenon is not restricted to stack protectors. We identify in Table 2 several 
situations where standard reachability may lead to false positives, unlike robust reachabil-
ity. Note that some cases (randomization based protections, uninitialized reads) concern 
binary-level issues, and cannot be observed from a source-level analysis.

Discussion Consider the slightly different problem of reaching line 11 in Fig.  1b. 
It is reachable for all values of the canary except 0x61616161, hence it is not consid-
ered robustly reachable — all values of uncontrolled input should lead to line 11. This 

Table 1  Standard reachability is not a good criterion to measure the protection of SSP on the program of 
Fig. 1

Prog. Ground Standard   Binsec [24] Angr [51] Robust    Binsec/Rse
Fig. 1 truth reachability reachability

No SSP vulnerable vulnerable ✓ vulnerable ✓ vulnerable ✓ vulnerable ✓ vulnerable ✓
SSP protected vulnerable × vulnerable × vulnerable × protected ✓ protected ✓
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restriction is deliberate. A more quantitative approach would hinder automation. For sim-
ilar reasons, we limit ourselves to non-interactive scenarios, where the attacker input is 
chosen before uncontrolled input are known. We will further motivate these choices in Sec-
tions 4.1 and 6.4.

Despite these deliberate restrictions, our case studies (Sect.  6.2) show the versatil-
ity of robust reachability. In the example above, we distinguish inputs controlled by an 
attacker (a bad guy) from inputs which he cannot influence (see also e.@g.@ libvncserver 
in Sect. 6.2). But with doas (Sectione 6.2), we distinguish inputs controlled by the system 
administrator (the good guy) from those which vary on each execution. Other situations are 
possible, for instance deterministic inputs versus non-deterministic ones like in the case of 
flaky tests [47] — where there are neither good nor bad guys. Robust reachability can help 
in all these situations either assessing the “quality” of a given trigger or test suite (critical-
ity, replicability), generating “good” triggers or test suites, or proving their absence.

3  Background

Consider a program P and S the set of its possible states. Each state s ∈ S is labeled by a 
program location �(s) ∈ L . Execution of the program is represented by a (one-step) suc-
cessor relation →∈ S × S ; its transitive closure is denoted by →+ . The set of finite traces is 
denoted by S+ and the set of infinite traces as S� . The set of all traces, finite or infinite, is 
S∞ ≜ S+

∪ S� . For k an integer and t a trace, we denote by t[k] its k-th state. The length of a 
trace t is |t|. We use trace for successions of states and path for successions of locations. By 
abuse of notation, the path corresponding to a trace t ∈ S+ is �(t) ∈ L+ . The initial state t[1] 
is determined by a program input y chosen in some set Y , yielding a mapping s1 : y ↦ t[1] . 
A program P is represented as the set of the traces that it can generate: T(P) ⊆ S∞ . T(P) 
contains both maximal traces and their prefixes. We denote t ≼ t′ the fact that trace t is a 
prefix of trace t′.

Table 2  Program constructs for which standard reachability yields fragile input

Randomization based
protections

Standard reachability models randomized or arbitrary values like canaries 
or ASLR as attacker-chosen values. This voids such protections. See also 
Fig. 1 and libvncserver in Sect. 6.2

Uninitialized reads With standard reachability, the attacker can choose the initial content of 
uninitialized memory. For example, he can choose it to contain a password 
or a secret. See also doas in Sect. 6.2

Underspecified initial state A bug which is unreachable in normal operating conditions can become 
reachable if, e.@g.@, one leaves the stack location completely free. Then 
the bug only happens with pathological initial state

Undefined
behavior

A bug in a branch depending on undefined behavior is still technically reach-
able, but not robustly reachable. Note that even machine code has some 
undefined behaviors

Interactions with the
environment

Contrary to robust reachability, standard reachability lets the attacker use 
system calls and interactions by e.@g.@ letting him choose the date to 
nanosecond precision, as if the environment helped him

Opaque
functions

One can abstract complex functions (crypto functions, malloc) as black 
boxes returning a fresh, symbolic value. Standard reachability allows the 
attacker to choose these values, yielding fragile triggers
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Reachability is usually understood as control flow going through a location � in the pro-
gram. But we sometimes need to consider more complex properties like reaching a loca-
tion of the program under some additional condition on the execution history. For exam-
ple, in our motivating example of Sect. 2, we want to reach the return instruction together 
with an additional condition expressing that the return address was rewritten. Similarly, to 
prove the robust reachability of “use after free” bugs, we need to express a condition on 
the whole trace leading to the target. Specifically, we look for a trace in the set O of finite 
traces comprising three events in the right order: p = ������(_) , ����(p) , and finally ∗ p 
for some value of p, such that p is not reallocated after being freed. For this reason we take 
a more general definition.

Definition 1 (Reachability) A set of finite traces O ⊆ S+ is reachable in program P if 
T(P) ∩ O ≠ ∅ . We write P ⊢ R(O).

As a special case we get the usual property of reachability of a location:

Definition 2 (Reachability of a location) A location is reachable, denoted by P ⊢ R(�) , if 
P ⊢ R(O) with O = {t ∈ S+

∣ �(t[|t|]) = �}.

Finally, for a program P ⊆ S∞ , the restriction of this program to input y is 
defined by T

(
P|y

)
≜ {t ∈ T(P) ∣ t[1] = s1(y)} , the restriction of P to path � by 

T
(
P|𝜋

)
≜ {t ∈ T(P) ∣ ∃t� ∈ S+t� ≼ t ∧ 𝜆(t) = 𝜋} , and the restriction of P to bound k ∈ ℕ 

by T
(
P|≤k

)
≜ {t ∈ T(P) ∣ |t| ≤ k}.

Definition 3 (correctness, completeness) Let V ∶ (P,�) ↦ {1, 0} be a verifier taking as 
input a program P and a property �.

– V is correct with respect to � when for all P,� , if V(P,�) = 1 then P ⊢ 𝛱;
– V is complete with respect to � when for all P,� , if P ⊢ 𝛱 then V(P,�) = 1;
– If V is correct (resp. complete) for all P|≤k , then we say that it is k-correct (resp k-com-

plete).

In general, verifying reachability is undecidable, so verifiers cannot be both correct and 
complete. Correct verifiers can still be k-complete as k-completeness can be thought of as 
completeness for finite-path systems.

Symbolic Execution (SE) and Bounded Model checking (BMC) Consider the problem of 
proving or disproving reachability of O ⊆ S+ . The methods we are about to describe con-
sist in encoding the possible witness traces in O ∩ T(P) as SMT formulas.

SE [10] incrementally explores all paths in the program (up to, say, a bound k). Each 
path � is converted into a SMT formula pc � , called a path constraint, which expresses 
whether the program follows the path � for some input y (represented as a free variable). 
A solution y to pc � is such that the trace t starting from y (i.@e.@, t[1] = s1(y) ) follows � : 
�(t) = �.

Traditionnally, to prove reachability of a location � , SE checks for each path � whether 
it contains � and its path constraint pc � is satisfiable. If there is such a path, then � is 
reachable.

To handle the reachability of a general target O ⊆ S+ , we consider generalized path 
predicates of the form pc O

�
≜ pc � ∧ mon O

�
 where mon O

�
 is a monitor expressing that the 
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trace t corresponding to input y additionally reaches the target (there is a t′ ≼ t such that 
t� ∈ O).2 In the end, SE iteratively checks satisfiability of pc O

�
 for all enumerated paths �.

Conversely, BMC [14] considers the program as a whole (unrolled up to a bound k) and 
builds a SMT formula expressing that it contains a trace prefix in O. This formula is actu-
ally equivalent to the disjunction of the generalized path constraints of these paths.

These algorithms are given in Fig.  2, where ������������(�,O) turns a path into 
its generalized path constraint pc O

�
 and ��������(k) yields all paths below size bound k. 

Note that by abuse of notation, we will sometimes not precise that path constraints are 
generalized.

Proposition 1 SE and BMC have the same expressive power: both are correct and k-com-
plete with respect to reachability properties.

Interestingly, we show in Sect. 5 that this is not true anymore with robust reachability.
Solvers SE and BMC commonly discharge their satisfiability queries to SMT solvers 

[5] which take formulas as input, and output whether they are satisfiable (along with a 
model) or not. Typical queries are expressed in the quantifier-free fragments of well known 
theories (linear integer arithmetic, bitvectors, arrays, etc.@) where SMT solvers perform 
well in practice. In case of an undecidable theory, we can use incomplete solvers (possibly 
answering unknown), at the price of k-completeness.

4  Robust reachability

In this section we provide a formal definition of robust reachability, and argue why it 
deserves being singled out as a new problem rather than being viewed as a special case of a 
more generic framework like some of the more expressive temporal logics.

Data: bound k, target O
for path π in GetPaths (k) do

φ := GetPredicate(π,O)
if ∃y. φ is satisfiable then

return true
end
return false

(a) SE

Data: bound k, target O
φ := ⊥
for path π in GetPaths (k) do

φ := φ ∨ GetPredicate(π,O)
end
if ∃y. φ is satisfiable then

return true
else

return false
end

(b) BMC

Fig. 2  Bounded proof attempt of R(O) with SE and BMC

2 We need to handle the case where the considered trace t is not in O, but one of its prefix is – which indeed 
satisfies reachability. Yet, in the cases where O is upward-closed (i.@e.@, closed by extension of trace) or 
��������(k) returns all path prefixes (and not only maximal paths), mon

O

�
 simply needs to express that 

t ∈ O.
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4.1  Definition

We introduce the new notion of robust reachability. We partition the input y into the 
controlled input a and the uncontrolled input x — we denote y ≜ (a, x) . Let A and X  
be the sets of possible controlled and uncontrolled inputs respectively. A location is 
robustly reachable when the attacker can choose controlled input a ∈ A without having 
to rely on specific values of the uncontrolled input x ∈ X  to reach his target. Input a is 
then called a robust trigger — otherwise it is a fragile trigger.

Definition 4 (Robust reachability) A set of finite traces O ∈ S+ is robustly reachable in 
program P, denoted by P ⊢ ℜ(O) , if

Proposition 2 Robust reachability implies standard reachability. The converse implication 
does not hold.

Discussion As already mentioned at the end of Sect. 2, our definition of robust reach-
ability specifically targets a threat model where the attacker speaks first, unaware of 
uncontrolled inputs. It deliberately excludes interactive systems where the attacker can 
choose some input, then receive some program output possibly leaking uncontrolled 
input, and then choose some more input depending on what was received. Modeling 
such situations requires additional quantifier alternations, which deeply impact the per-
formance of proof methods and cripple automation, as shown in Sect. 6.4.3.

Likewise, a bug triggered for all uncontrolled inputs but one is not robustly reacha-
ble according to Definition 4. A quantitative definition of robust reachability could take 
into account the proportion of uncontrolled inputs triggering a bug. This hints at works 
about model counting  [12, 41], but the problem at hand is actually harder. Consider 
the following alternative definition: (i) find amax ∈ A such that a maximal proportion 
of uncontrolled inputs x lead to � : P|

(amax,x)
⊢ R(�) ; (ii) measure how robustly � can be 

reached by computing the proportion of uncontrolled inputs x such that P|
(amax,x)

⊢ R(�) . 
Current model counting algorithms can only tackle problem (ii) along one path, and we 
argue in Sect. 6.4.3 that even (ii) alone is considerably more expensive than our SMT-
based approach.

In other words, Definition 4 is a trade-off to keep robust reachability amenable to 
automated verification. This does not prevent it from meeting its main goal: drawing the 
attention on more serious bugs. Some may of course be missed, but, as our case studies 
will show (Section 6), a good number will be found. 

In the rest of this section, we review a few related properties and see how much they 
overlap with, but do not remove the need of, robust reachability.

4.2  Relation with non‑interference

We partition inputs and outputs of a system into either high (highly classified) or low 
(public, e.g. observable). A system satisfies non-interference [33] when low outputs do 
not depend on high inputs, implying that secrets cannot leak. Robust reachability can 
be reformulated in a very non-interference-sounding phrasing: uncontrolled inputs (call 

∃a ∈ A∀x ∈ XP|
(a,x) ⊢ R(O)
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them high) must not interfere with the attacker reaching his goal (the low output). Let us 
clarify this link.

Formally, let high input be uncontrolled input x, and low input be controlled input a. 
Let low output be whether control flow reached the target O ⊆ S+ . Non-interference of the 
resulting system means that

Proposition 3 If � is (standardly) reachable and the system satisfies non-interference with 
the high/low partition described above, then O is robustly reachable. The converse is false.

Robust reachability requires a single value of the controlled input a for which reachabil-
ity of O is guaranteed but says nothing for other values of a, whereas non-interference con-
strains the system to behave much more independently of uncontrolled input than robust 
reachability but says nothing of reachability.

Another way to put it is that robust reachability is looking for a value of controlled input 
a for which the system satisfies non-interference.

4.3  Interpretation in terms of hyperproperty

Robust reachability and its negation are not trace properties: the observation of a single 
trace is never enough to prove or disprove them. For example, observing a single trace 
reaching target � with input (a, x) is both compatible with � being robustly reachable (if all 
other inputs (a, x�), x� ∈ X  also reach � ), and with � not being robustly reachable (if some 
other x′ is such that (a, x�) does not reach � ). In such case one often resorts to the formalism 
of hyperproperties introduced by Clarkson and Emerson in [17].

A hyperproperty � is represented as the set of programs P that satisfy it in the form of 
their set of traces: {T(P) ∣ P ⊢ 𝛱} . Hyperproperties can relate several execution traces of a 
program. The price to pay is that observing a single trace is never enough to prove whether 
a hyperproperty is satisfied by the program. For hyperproperties, observations are defined 
as finite sets of finite, partial traces: we can observe the execution of the program on a 
finite set of inputs. This allows to define two important classes of hyperproperties: hyper-
safety for hyperproperties which can be disproved by an observation, and hyperliveness for 
hyperproperties where all possible (finite) observations are compatible with the hyperprop-
erty being true. Informally, hypersafety expresses that something bad cannot happen, and 
hyperliveness that something good will always eventually happen.

Clarkson and Emerson [17] show that any hyperproperty is the intersection of a hyper-
safety hyperproperty and a hyperliveness hyperproperty. Hypersafety is generally thought 
as easier to prove, notably with self-composition [7]. Unfortunately, robust reachability and 
its negation are pure hyperliveness in the general case: no finite set of finite traces can fal-
sify them. However, in some conditions, they degenerate partly into hypersafety:

Proposition 4 If the domain X  of uncontrolled inputs is finite, then the negation of robust 
reachability is not pure hyperliveness (i.@e.@, it has a non-trivial hypersafety component).

Proof Robust reachability of O ⊆ S+ (denoted by ℜ(O) ) can be proved by finding a con-
trolled input a ∈ A such that for all uncontrolled inputs x ∈ X  , the trace starting with input 

∀a, x, x�
(
P|

(a,x) ⊢ R(O) ⟺ P|
(a,x�) ⊢ R(O)

)
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(a, x) belongs to O. When X  is finite, this means that an observation (in the sense given 
above) can prove ℜ(O) . In other words, an observation can disprove ¬ℜ(O) , which is the 
definition of ¬ℜ(O) being hypersafety.

This idea—trying to observe a hopefully small set of traces which together prove robust 
reachability—is crucial for algorithms and leads to our use of path merging in Sect. 5.3.

4.4  Interpretation in terms of temporal logic

We now show how robust reachability can be expressed by some sufficiently expressive 
temporal logics. Our definition of reachability of a set of traces O is so general that very 
few temporal logics can express it (for example CTL cannot express reachability of a bug 
where malloc is called strictly less often than free [43]). To make the effect of shifting 
from reachability to robust reachability more visible, we focus on the reachability of events 
expressible in the considered logics.

Computational Tree Logic (CTL) CTL [15] is a temporal logic over the tree of possible 
traces. Let L be a labeling which maps states to the set of (atomic) predicates they satisfy. 
If � is a predicate, the CTL formula � is satisfied by all systems whose initial state s0 veri-
fies � ∈ L(s0) . If � is a CTL formula and s a state, then AF� expresses that all traces aris-
ing from s eventually reach a state from which � holds, EX� that � holds in at least one 
direct successor of s, and EF� that � holds in at least one transitive successor of s (this 
actually expresses reachability of � ). CTL introduces other operators, not needed here.

Proposition 5 If � is a CTL formula, then CTL can express robust reachability of �.

Proof Let S� ≜ S ∪A ∪ {si} where si is a new state, let →�≜→ ∪{(s
i
, a) ∣ a ∈ A}

∪{(a, s
1

(a, x)) ∣ a ∈ A, x ∈ X} , and let L�(s) be equal to L(s) if s ∈ S and ∅ otherwise. 
Then � is robustly reachable if, and only if EXAF� is true in the new extended system 
(S�,→�, L�) with si as initial state.

Alternating-Time Temporal Logic (ATL) ATL [1] is a temporal logic designed to model 
systems with multiple actors with distinct objectives. As usual the system is modeled by its 
set of states and its transition function, but each transition is decided by a set � of players: 
each player simultaneously makes a decision, and the actual transition is selected depend-
ing on these decisions. ATL formulas are the same as CTL, but operators A and E are gen-
eralized by a new operator ⟨⟨⋅⟩⟩ . For a set of player 𝛬 ⊆ 𝛴 , ⟨⟨�⟩⟩� means that there exists a 
strategy for players in � to make the system satisfy � . At the limit, ⟨⟨∅⟩⟩� is A� and ⟨⟨�⟩⟩ 
means E�.

ATL contains CTL so Proposition 5 applies. However ATL makes it much more natural 
to express robust reachability since players can oppose each other. Consider � = {�, �} 
where � is the environment, and � the attacker. Reachability of a formula � is EF� , or writ-
ten otherwise: ⟨⟨�⟩⟩F� , which means that both the environment and attacker can cooper-
ate to reach a state that satisfies � . Robust reachability on the other hand is expressed by 
⟨⟨{�}⟩⟩F� , meaning that the attacker alone can make it so � is satisfied. We can express the 
negation of robust reachability as well: ⟨⟨{�}⟩⟩G¬� , which is a particular case of “collabo-
rative invariance” [1].

HyperLTL It is also possible to express robust reachability in the temporal logic 
HyperLTL[16]. HyperLTL adds quantification over trace variables: ∃�� means that there 
exists a trace starting in the initial state which satisfies � and ∀�� means that all traces 
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starting from the initial state satisfy � . When using an atomic predicate � we must specify 
over which trace variable we evaluate it: ��.

We consider a quantifier-free formula template � where � is a free trace variable. 
Reachability of � is ∃��F�[� ∶= ��

] . For example, for reachability of � , we take � ≜ �� . 
We assume we have an atomic predicate ≡v stating that the first states of two traces 
have the same value for variable v. Robust reachability of � can then be expressed as 
∃�1∀�2F�[� ∶= �1] ∧ (�1 ≡a �2 → F�[� ∶= �2]) . In other words, there exists a trace � 
reaching � such that all traces sharing the same controlled input also reach �.

4.5  Robust reachability and automatic verification

The previous classification does not help us find an efficient software verification method 
for robust reachability. Indeed, while efficient CTL model checkers exists for the finite case 
[13] or very specific formalisms such as push-down systems [52], most efforts in (general) 
software verification have been directed towards the verification of safety temporal for-
mulas or simple termination [18] (formulas of the form AF� ). HyperLTL [16] suffers the 
same limitations. As for ATL, it is so expressive (there can be arbitrarily many players, and 
arbitrarily many interactions between them and the system) that state of the art tools like 
STV [42] are limited to small models of a few dozens of states at best.

Moreover, checking for both reachability and non-interference as a correct, but incom-
plete proof method for robust reachability is probably too incomplete in practice. Finally, 
one can prove the absence of robust reachability by proving the absence of standard reach-
ability. It is thus possible to use existing algorithms for unreachability, based e.@g.@ on 
invariant computation, at the price of even larger over-approximation than when they are 
used for their original purpose. This kind of approach is not our focus. In this paper we 
look for correct verifiers able to prove robust reachability (and report robust triggers) rather 
than to disprove it.

5  Automatically proving robust reachability

We now discuss how to extend SE and BMC to the robust case.

5.1  Robust Bounded Model Checking

As mentioned in Sect. 3, BMC determines the reachability of O ⊆ S+ by building a family 
of SMT formulas �k(a, x) equivalent to P|≤k ⊢ R(O) . In the case of reachability of a loca-
tion � , �k expresses that � is reachable in less that k steps. Then R(O) holds if and only if 
∃k∃a∃x�k(a, x) . This extends to robust reachability:

Proposition 6 If the domain of uncontrolled input X  is finite or P has finitely many paths, 
then P ⊢ ℜ(O) if and only if ∃k∃a∀x�k(a, x).

Proof (⟸ ) comes directly from the definition of �k . ( ⟹ ) . If � is robustly reachable, let 
a0 be a robust trigger. The set of paths W arising from inputs in {a0} × X  is finite (bounded 
either by X  or the number of paths in the system), and ∀x

⋁
�∈W pc O

�
(a0, x) holds. Let 
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k = 1 +max�∈W |�| . All paths in P are unrolled in �k so 
⋁

�∈W pc O
�
(a0, x) ⟹ �k(a0, x) 

and thus ∀x�k(a0, x) .   ◻

As a result, it is enough to replace the condition “ ∃y� is satisfiable” by “ ∃a∀x� is satis-
fiable” in Fig. 2b. The resulting algorithm, called Robust BMC, is presented in Fig. 3b. As 
solving universally quantified formulas is harder than the unquantified satisfiability checks 
required for standard BMC, we expect this new algorithm to trade performance for the 
finer precision that robust reachability provides.

Corollary 1 Robust BMC is correct w.@r.@t.@ robust reachability. If the domain of 
uncontrolled input X  is finite or the system has finitely many paths, then robust BMC is 
also k-complete.

The finiteness hypothesis is required: if a program reaches a location after having exe-
cuted a loop an unbounded, uncontrolled number of times, then robust BMC has to unroll 
an unbounded number of paths to prove robust reachability.

5.2  Robust Symbolic Execution

Similarly to BMC, we check that a path � robustly reaches the target by checking the satis-
fiability of ∃a∀x pc O

�
(a, x) , instead of ∃a∃x pc O

�
(a, x) . This means replacing “ ∃y� is satisfi-

able” by “ ∃a∀x� is satisfiable” in Fig. 2a. Unfortunately the resulting algorithm, robust SE 
(Fig. 3a), is not exactly what we want, as it proves a stronger property.

Definition 5 (Single-path robust reachability) A set O is single-path robustly reachable if 
∃𝜋 ∈ L+

∃a∀x P|𝜋|
(a,x) ⊢ R(O) . In other words, the path used to reach O is the same regard-

less of the uncontrolled input.

Proposition 7 Single-path robust reachability implies robust reachability. The converse 
implication does not hold.

Data: bound k, target O
for path π in GetPaths (k) do

φ := GetPredicate(π,O)
if ∃a.∀x.φ is satisfiable
then

return true
end
return false

(a) RSE

Data: bound k, target O
φ := ⊥
for path π in GetPaths (k) do

φ := φ ∨ GetPredicate(π,O)
end
if ∃a.∀x. φ is satisfiable then

return true
else

return false
end

(b) RBMC

Fig. 3  Lifting SE and BMC to robust reachability
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Proposition 8 Robust SE is correct and k-complete w.@r.@t.@ single-path robust 
reachability.

Proof  By construction, pc O
�
(a, x) is equivalent to P|𝜋|

(a,x) ⊢ R(�) , therefore 
∃�∃a∀x pc O

�
(a, x) is equivalent to single-path robust reachability of the last location of �.

Corollary 2 Robust SE is correct but incomplete for robust reachability.

Interestingly, the expressive powers of SE and BMC, which are the same for standard 
reachability, diverge when extended to robust reachability.

5.3  Path merging

Path merging [35] (a.k.a. state joining) consists in identifying “close” paths leading to the 
same location and replacing them by a merged path (summary). With original path con-
straints pc O

�1
 and pc O

�2
 , the merged path constraint is pc O

�1
∨ pc O

�2
 . This is only an optimiza-

tion in the standard setting, with no impact on k-completeness. The situation is different in 
the robust setting.

Data: bound k, target O
1 φ := ⊥
2 for path π in GetPaths (k) do
3 φ := φ ∨ GetPredicate(π,O)
4 if ∃a.∀x.φ is satisfiable then
5 return true
6 end
7 return false

Algorithm 1: RSE+: Robust SE
with systematic path merging

Consider the program in Fig.  4: the bug is robustly reachable with controlled input 
a = 0 , but the control flow takes one of two paths �1 and �2 depending on the value x of 
uncontrolled input. This bug will not be found by robust SE as defined previously, as nei-
ther �1 nor �2 fulfills the satisfiability criterion ∃a∀x pc O

�i
(a, x) . However, if �1 and �2 are 

merged, then the bug is found because ∃a∀x pc O
�1
(a, x) ∨ pc O

�2
(a, x) is satisfiable. This leads 

Fig. 4  An example where path 
merging is required 1 void main(a, x) {

2 if (x) x++; // π1

3 else x--; // π2

4
5 if (!a) bug();
6 }
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us to robust SE with systematic path merging (RSE+, Figure   1), better fit to robust 
reachability.

Proposition 9 Robust SE with systematic path merging (RSE+) is correct for all robust 
reachability properties. If the domain of uncontrolled input X  is finite or the system has 
finitely many paths, then it is also k-complete.

Proof For k-completeness: If ℜ(O) holds, let a0 be a robust trigger. The set of paths P 
arising from inputs in {a0} × X  is finite (bounded either by X  or the number of paths in the 
system). Let k = 1 +max�∈P |�| . For bound k, when GetPaths has output all paths in P, ⋁

�∈P pc O
�

⟹ � so ∃a∀x� is satisfiable.
In conclusion, path merging improves the completeness of robust SE. This is surprising 

because path merging is merely optional in standard SE.

5.4  Revisiting standard optimizations and constructs

Some optimizations commonly used in SE are not correct nor complete anymore in a 
robust setting. We show here how to adapt them.

Data: program entry point 0, bound k
1 P := { 0}
2 while P = ∅ do
3 Take a path π out of P

/* If too long, discard π */
4 if |π| > k then continue

/* pcπ expresses that the path
is executable */

5 if ∃a, x. pcπ unsat then continue
6 yield π // return π to caller
7 P := P ∪ {children paths of π}
8 end

Algorithm 2: Implementation of
GetPaths with path pruning

Fig. 5  Failure case for universal 
path pruning uncontrolled int x;

if (x<10) { /* a */ }
else { /* b */ }
/* c */
if (x>20) {

/* d */
if (x>30) { /* e */ }
else { /* f */ }

}
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Data: entrypoint 0, bound k
P := { 0}
while P = ∅ do

Take a path π out of P
if |π| > k then continue
if ∃a.∀x. pcπ unsat then

/* Skip MaybeMerge to
disable path
merging */

P := MaybeMerge(π, P )
continue

end
yield π
P := P∪{children paths of π}

end

Algorithm 3: GetPaths with
universal path pruning

1 Function MaybeMerge(π, P)
2 Choose u a transitive child of the

last location of π (ideally, a
strict postdominator of the
second to last location of π)

3 Let π the longest strict prefix of
π.

4 Let U the set of paths from π to u
5 if ∃a.∀x. π ∈U π is SAT then
6 Merge paths in U and add the

result to P
7 end
8 return P

Algorithm 4: Incomplete path
merging for universal path pruning

Incremental path pruning [4, 55] The (non-generalized) path constraint pc � expresses 
that a path � is executable. We can use this to perform an optimization called incremen-
tal path pruning. When a (partial) path has an unsatisfiable path constraint pc � , all its 
descendant paths are also infeasible. For example, the path acd in Fig. 5 has path con-
straint x < 10 ∧ x > 20 , which is unsatisfiable. One can prune this path, i.@e.@stop 
exploring it and its children acde and acdf.

In Fig.  2a this would be an optimization of GetPaths: as shown in Algorithm   2, 
one checks that the path constraint of currently explored paths are satisfiable, and if not, 
the paths at fault are pruned, and their children paths are not explored. As a result, we 
now issue satisfiability queries in two occasions: during GetPaths to prune paths (Algo-
rithm 2, line 5), and when validating a candidate reaching path (Fig. 2a, line 4). Pruning 
queries and validation queries must be treated differently.

Robust SE is obtained from SE by adding a universal quantifier to validation queries but 
not pruning queries. The path constraint for path a in Fig. 5 is pc � = x < 10 but ∃a∀x pc � 
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is false. Same applies for b. If we added a universal quantifier to pruning queries—which 
we call universal path pruning, see Algorithm 3—we would prune a and b, and incorrectly 
conclude that c is not robustly reachable. In other words, Symbolic Execution with univer-
sal path pruning (denoted by RSE

∀
 ) is correct but not complete.

Universal path pruning, however, conveys an interesting intuition: the full if branch 
below acd in Fig. 5 is not robustly reachable, because ∀xx > 20 is false. With normal path 
pruning and RSE+, we would needlessly explore these paths. To take advantage of this, we 
keep RSE

∀
 but improve its completeness with path merging, as depicted in Algorithm  4.

The main idea is that when a set of paths are to be pruned, they may pass the universal 
pruning test ∃a∀x pc when merged together. One way to find such sets of paths is to use the 
Control Flow Graph (CFG) of the program. For example when trying to prune � = � in 
Fig. 5, we know by invariant of the set P of paths to be explored that the empty path ��

= � 
passes the universal test. We compute the strict postdominator u = � of �′ : when the paths 
from �′ to c join again, they pass the pruning test again. We then replace � by this merged 
path in the set P of paths to be explored.

Note that computing a postdominator is not required for correction. In our implementa-
tion, we cannot compute the exact CFG at the binary level so the chosen u may be wrong. 
In line 5 of Algorithm 4 we check that we picked correctly, and otherwise, merging failed 
and we prune � . Despite the heuristic approach, the technique proves useful, as we will see 
in Sect. 6.

We denote Robust SE with universal path pruning and path merging as RSE
∀
 +. It is 

correct and “less incomplete” than RSE
∀
.

Assumptions It is common to model complex parts of the system by introducing their 
result as a symbolic input z and then assume that z satisfies the required properties. For 
example, Address Space Layout Randomization (ASLR) for the stack pointer could be 
modeled by adding an assumption that esp ∈ [m,M] where m and M are in-lined constant 
values. In standard SE this would be translated to an assertion esp0 ∈ [m,M] conjoined to 
the path constraint pc , where esp0 is the initial value of esp. Actually, in standard SE and 
BMC, assertions and assumptions are dealt with identically.

In a robust setting, to the contrary, adding an assumption � to a path constraint yields 
� ⟹ pc , while adding an assertion � yields pc ∧ � . Additionally, assumptions which 
mix controlled and uncontrolled inputs can make the algorithms above unsound without 
adaptation: in Fig. 6, reachability of bug maps to the SMT query ∃a∀xx < a ⟹ ⊥ . It is 
satisfiable, with a = 0 , which makes the premise false. However, this does not correspond 
to an executable path. Actually, formalizing robust reachability assuming �(a, x) naively by 
∃a∀x(𝜓(a, x) ⟹ P|

(a,x) ⊢ R(�)) does not imply standard reachability anymore. A slight 
adaptation is needed:

Definition 6 (Robust reachability under assumption) O is robustly reachable under the 
assumption of � if

∃a((∃x𝜓(a, x)) ∧ (∀x(𝜓(a, x) ⟹ P|a,x ⊢ R(O))))

Fig. 6  Unsound assumption, in 
pseudo-C controlled unsigned int a;

uncontrolled unsigned int x;
assume(x < a);
if (false) bug();
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This definition preserves the implication from robust to standard reachability. The algo-
rithms we presented are easily adapted to take it into account.

Interestingly, in the robust case, SE and BMC cannot handle assertions and assump-
tions in the same way anymore.

Concretisation and other optimizations When path constraints along a path become too 
complex, some variables can be concretized: their symbolic value can be replaced by a con-
crete one [22, 31, 50]. Formally, concretizing a variable u to value 42 corresponds to add-
ing an assertion u = 42 . This sacrifices k-completeness for tractability. Actually, any addi-
tional constraint can be added, and several common optimizations (e.g., domain shrinking, 
path filtering) can be seen through this lens. These optimizations must be taken with care 
in the robust setting. First, considering them as assumptions instead of assertions would 
be incorrect. Second, if the value of the concretized variable ultimately depends semanti-
cally on uncontrolled input, the path does not pass universal validation anymore: for exam-
ple, when concretizing x to 42, ∃a∀x pc (a, x) ∧ x = 42 is unsatisfiable because ∀xx = 42 
is false. As a result, locations visited further on this path become robustly unreachable. In 
other words, concretisation only works on controlled or constant values.

5.5  About constraint solving

Adaptations to robust reachability require solvers to deal with one alternation of quanti-
fiers. Most theories become undecidable with quantifiers. Dedicated algorithms exist for 
a few decidable quantified theories, e.@g.@ the array property fragment [8] or Presburger 
arithmetic [9]. For other theories, generic methods like E-matching [45] and MBQI [28] 
have proven rather efficient, although not complete. Sound approximations [26] also have 
been proposed to reduce quantified formulas to quantifier-free ones. In our experiments, 
the newly introduced quantifier associates to an increase in the frequency of time-outs and 
memory-outs, as seen in Sect. 6.3 and specifically Table 4.

6  Proof‑of‑concept of a robust symbolic execution engine

6.1  Implementation

We propose Binsec/Rse, the first symbolic execution engine dedicated to robust reach-
ability. We base our proof-of-concept on Binsec  [24], a binary executable formal analy-
sis engine written in OCaml and already used in several significant case studies [20, 21, 
48]. For the sake of experimental evaluation (Sect. 6.3) we actually implement five vari-
ants of robust reachability: RSE (basic approach in Sect. 5.2 with existential path pruning 
Sect. 5.4), RSE+ (the same plus systematic path merging, Sect. 5.3), RSE

∀
 (RSE with uni-

versal path pruning, Algorithm 3), RSE
∀
+ (same, with path merging during path pruning, 

Algorithm 4), and RBMC (Sect. 5.1).
The source code of Binsec/Rse, the test suite and the case studies of this section are 

available for reproduction at https:// github. com/ binsec/ cav20 21- artif acts and https:// 
zenodo. org/ record/ 47217 53.

Solving universally quantified SMT formulas Binsec/Rse emits quantified formulas 
in the theory of bitvectors and arrays (arrays are used to model memory) which are then 
solved by the solver Z3 [23]. Z3 supports universally quantified formulas quite well, but 
falls short when arrays are quantified. This is a problem as initial memory is an array, and 

https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753
https://zenodo.org/record/4721753
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in most threat models, should be labeled as uncontrolled. As an example, Z3 is actually not 
able to prove the unsatisfiability of a formula as simple as

First we reuse the recent ROW simplification [27] to reduces the number of array indexa-
tions. In favorable cases, this simplification alone can even simplify all arrays out.

To deal with cases like (1) that remain after ROW simplification, we implemented one 
further simplification that moves the memory out of the universal quantifier. As the ROW 
simplification is quite powerful, it is only needed infrequently, and when it does, it is hard 
to reason about the root causes of the failure due to the complexity of the resulting formu-
las, but for the sake of illustration, let us modify one simpler test case to exhibit this behav-
ior. Consider our function inversion test relating to musl’s implementation of strtol. It 
looks for a controlled string s such that ������(s) = 42 . If we do not initialize the memory 
of an internal lookup table, then RSE

∀
 fails on a formula corresponding to

where table is the offset of the table in the executable. Z3 returns UNKNOWN on this 
formula.

Let us now explain the transformation informally. In the case of eq. 1, we would like 
to rewrite it into ∃a,mem∀v(store(mem, 42, v))[42] = a . This corresponds to initialising 
all memory locations that are later read with an uncontrolled, fresh value. As we are sure 
the original memory mem is never read, we can move it out of the universal quantifier. In 
our experience, Z3 deals easily with formulas where only bitvectors, as opposed to arrays, 
are universally quantified. The general case can be more involved, as the locations where 
memory is read can be symbolic, and even depend on memory. We therefore introduce one 
more layer of indirection:

would be transformed to

When dealing with n reads inside the original formula, we need to introduce n symbolic 
indices, and deal with all possible equalities between them, so the transformation actually 
yields a formula of size O(n2) . This can be problematic, but already said, this is mostly a 
fallback when ROW does not simplify arrays out already. We thus expect very few memory 
reads to remain.

6.2  Case studies

6.2.1  Exploitability assessment for vulnerabilities

We show here how Binsec/Rse (unless otherwise specified, the RSE+ variant) can help in 
vulnerability assessment. Especially, we demonstrate that robust reachability allows deeper 
insights into a bug than standard reachability, by replaying 5 existing vulnerabilities.

CVE-2019-15900 in doas doas is a utility granting higher privileges to users specified 
in a configuration file. User IDs are sometimes parsed incorrectly and left uninitialized. 

(1)∃a∀mem.mem[42] = a

∃s∀mem.mem[s[3] + table] ≥ 10

∃a∀mem.mem[mem[12] + 1] = a

∃a,mem∀v, i. letmem�
= store(mem, i, v)in i = mem�

[12] + 1 ⟹ mem�
[42] = a
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We look for a vulnerable configuration file denying root access to the attacker such that the 
(flawed) executable reliably grants root access to the attacker. For simplicity, we assume 
that the system has no named user and group, the configuration file has two lines and the 
attacker has uid 4 and gid 7.

Binsec/Rse with standard reachability reports that root access is granted mem-
ory address 0xffefffff contains the group ID of the attacker and the stack starts at 
0xfff0001f. This is a typical “false positive in practice”: these conditions may vary 
unpredictably across executions, so we cannot conclude regarding the exploitability of the 
flaw.

With robust reachability where the configuration file is controlled but the initial state of 
memory is not, Binsec/Rse reports in less than 10 s that root access is granted reliably to 
the attacker when the configuration file contains deny:4 and permit b%@)@@(. When 
parsing the first rule, parseuid correctly initialises the uid variable of Fig. 7 to the uid 
of the attacker, 4.

The next rules allows root access to any non-existing username, parseuid leaves this 
variable untouched and privileged escalation is possible.

This result is considerably more useful, but b%@)@@( is not a valid user name. We test 
therefore if any other given user name is also affected by running the analysis with this 
user name concretized in the initial state. By this method, we proved that the flaw is also 
robustly reachable for wwww, a possible typo of a usual user name, as well as all two-letter 
lowercase user names.

In other words, if the system administrator grants privileges to a non existing user by 
mistake, he may unknowingly grant them to the attacker instead. Here, robust reachability 
provides us with invaluable insight about the severity of a bug where standard reachability 
fails.

CVE-2019-20839 in libvncserver An attacker-chosen null-terminated string is copied by 
an unbounded strcpy into a 108-bytes buffer, leading to a stack buffer overflow. Exploit-
ability is not guaranteed: null bytes cannot be copied, the executable is protected by SSP, 
etc.@ Starting from the vulnerable function, we ask whether it is possible to return to the 
address 0xdeadbeef, chosen arbitrarily.

Binsec/Rse reports that for standard reachability, the bug can be reached when: (1) the 
stack starts at 0xfff00000; (2) the initial value of the return address of the function is 
0; (3) the gs segment starts at 0xf7f00000; (4) the stack canary is 0x01010180; (5) 
neither system call in the function fails; (6) file descriptor 0 is free; (7) the input path has a 
specific value.

static int parseuid( const char *s, uid_t *uid) {
const char *errstr;
sscanf(s, "%d", uid);
if (errstr) return -1;
return 0;

}
This code is used to parse user IDs allowed to execute commands. If this function
erroneously returns the attacker’s user ID in the parameter uid, then privileged es-
calation is possible. When s is not the text representation of an integer, uid remains
uninitialized memory. The branch if (errstr) was optimized out when we compiled.
The exact same flaw is present in the function parsing group IDs.

Fig. 7  Code responsible for CVE-2019-15900
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The attacker cannot prepare such a state, so this is another false positive in practice.
With robust reachability, when only the input buffer is controlled and not the stack 

canary, Binsec/Rse fails to prove or disprove exploitability in 24 h. However, if we mark 
the canary as controlled, Binsec/Rse finds an exploit in about 15 min. This suggests the 
canary brings a real protection against exploitation.

CVE-2019-14192 in U-boot U-boot is an open-source boot-loader, popular for embed-
ded boards. When booting over Network File System (NFS), U-boot does not validate the 
length field of some network packets. This length is subtracted 16 and used as a size to be 
copied. If a malicious packet declares a length of less than 16, computation underflows and 
leads to a buffer overflow.

We encode the situation as follows: the input network packet is controlled, the IP 
address of the victim is constant, the NFS state machine is initialized to expect the appro-
priate packet type and all other values are uncontrolled. Binsec/Rse with the RSE

∀
 + vari-

ant (RSE+ times out here) proves in about 2 min that a memory copy of more than 4GB 
is robustly reachable, which is a strong indication of the criticality of this denial-of-service 
vulnerability.

CVE-2019-19307 in Mongoose Mongoose is an embedded networking library. When 
receiving large MQTT packets, the length of the parsed packet can be computed as 0. The 
parsing loop does not advance and is thus infinite. We look for network packets whose 
length is parsed as 0 but are accepted as valid. Binsec/Rse proves in less than a second that 
such situations are robustly reachable when only the network packet is controlled, confirm-
ing exploitability.

CVE-2015-8370 in Grub (aka back to 28) Grub is a boot-loader used in most Linux sys-
tems. The original vulnerability is an integer underflow leading to buffer underflow when 
the user types 28 times on backspace on the password prompt of grub. We extracted the 
vulnerable function, ported it to Linux and simplified it so that it overwrites a local varia-
ble instead of the Interrupt Vector Table which is not easily modelled with Binsec. Binsec/
Rse proves in 17 s that the vulnerability is robustly reachable.

6.2.2  Flaky tests

Consider the test suite of a program. Ideally, it should fail when the program is incorrect, 
and succeed when no buggy code path has been exercised. A test is flaky when its outcome 
is non-deterministic. This is undesirable and recent work [47] looked into reasoning about 
such tests.

Robust reachability can be used not only to detect flaky tests, but also to choose the 
inputs to pass to the function to be tested to make the test non flaky.

Detection. Flakiness can be seen as a special case of non-robustness when labeling 
non-deterministic inputs as uncontrolled: a test is flaky when the “success” outcome is not 
robustly reachable.

Actually, the full expressivity of robust reachability is not necessary to character-
ize flaky tests, as a test normally has no explicit input, only implicit, uncontrolled inputs. 
Therefore the property of interest for a whole test is “for all implicit inputs, success is 
reached”.

Sturdy input generation. Consider Fig.  8 where we test the functionality of function 
foo. This test is flaky, as line 7 is not robustly reachable. We want to fix the flakiness 
of this test by finding a value for input x of function foo that makes the test determinis-
tic. We mark x as a controlled, symbolic input and leave nondet as uncontrolled input. 
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Success becomes robustly reachable, and Binsec/Rse even reports that x = 2 guarantees 
deterministic test execution. This allows us to fix our test, and this time, we really used the 
full power of robust reachability.

Additionally, consider the CFG of function foo: line 4 is robustly reachable but not its 
children lines 5 and 6. This is the sign that it is actually a source of flakiness. And indeed, 
we can modify the conditional at line 4 so that all lines in foo become robustly reachable.

6.3  Experimental evaluation

Research Questions We now seek to investigate in a more systematic way the following 
research questions: 

1. Precision: What is the best algorithm for robust reachability in terms of correctness and 
completeness?

2. Gain associated to robustness: Is standard SE subject to false positives and does robust 
reachability avoid them in practice?

3. Path pruning: Does universal path pruning (Sect. 5.4) help explore less paths than 
normal path pruning?

4. Performance: What is the overhead of robust reachability?

Protocol We base our analysis on a set of 46 reachability problems on binary executables 
from various architectures (i686-windows-pc, i686-linux-gnu and armv7-linux-gnu) pre-
sented in Table 3. The average trace length for reachable problem instances is 809 instruc-
tion-long, with a maximum of 18k instructions. The problems fall into two categories: real 
code and synthetic examples (e.@g.@ code designed to be analyzed). For each executable, 
Binsec/Rse determines if a certain location is robustly reachable from a certain initial 
state. If this is the case a model is output by Binsec/Rse, and compared to a ground truth 
obtained by manual analysis. Tests were run on Intel Xeon E-2176 M(12)@4.4GHz and we 
use Z3 4.8.7. Results are classified as follows: 

Correct  Binsec/Rse proves the expected result, i.e. it either reports a robust 
trigger or rightfully proves the absence of such a trigger;

False positive  a fragile trigger is reported;
Inconclusive  Binsec/Rse reports no trigger but search was incomplete or the 

solver returned unknown at some point;
Resource exhaustion  timeout is an hour and memory usage is capped to 7GB.

Precision (RQ1) As expected, robust variants do not report any false positives, and path 
merging increases completeness. RSE variants with universal path pruning (RSE

∀
 , RSE

∀
 +) 

are less complete than those with existential path pruning, but they are less prone to time-
outs, see for example CVE-2019-14192 in U-boot (Sect.  6.2). RBMC suffers from path 
explosion (time out) much more often than RSE variants. Overall, Robust SE with path 
merging and existential path pruning is the most promising method among those presented 
here, with 44/46 correct answers. RSE

∀
 + is less complete but terminates more often. 
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Note that two interesting test cases in the “real” category of Table 3 need path merging 
to prove robust reachability: one where a pointer with uncontrolled alignment is passed to 
memcpy, and one where a branch depends on the result of IO.

These situations are common programming idioms, demonstrating the importance of 
path merging.

Gain associated to robustness (RQ2) We compare standard SE with RSE+, the most 
precise algorithm of (RQ1). Standard reachability has about 30% false positives while 
robust reachability has none, at the cost of slightly more timeouts. 

There are no false positives in code in the “real” category, except in CVE replays. Our 
interpretation is that well-functioning programs are designed to behave the same regardless 
of the uncontrolled environment: concrete memory layout, stack canaries, etc.@ Robust 
reachability becomes decisive on buggy code, notably with undefined behavior. This is also 
illustrated by case studies (Sect. 6.2).

Path pruning (RQ3) We compare RSE
∀
 , which features universal path pruning, to RSE, 

which features usual path pruning. Comparison is limited to test runs of more than a sec-
ond which succeed with both methods. This is to prevent comparing a run where Binsec/

1 void foo (int x) {
2 if (x % 2 == 0) {
3 return;
4 } else if (! nondet) {
5 error();
6 }
7 return;
8 }
9 int main () {

10 int x = 3;
11 foo(x);
12 x += 2;
13 if (x!=4) { error(); }
14 return 0;
15 }

In function foo, robustly reachable nodes when x is symbolic are marked as and non
robustly reachable as .

Fig. 8  Example of flaky test adapted from [47]

Table 4  Comparison of standard and robust algorithms over our 46 test cases

RSE: Robust Symbolic Execution. RBMC: Robust Bounded Model Checking. + in acronyms denotes path 
merging, and ∀ universal path pruning

SE BMC RSE
∀

RSE
∀
+ RSE RSE+ RBMC

Correct 30 22 30 34 37 44 32
False positive 16 14
Inconclusive 16 11 7 1
Resource exhaustion 10 1 2 2 13
Total time (s) 2725 36911 3947 4374 13590 11534 47784
…w/o resource exhaustion 2725 911 3947 3589 6390 4334 984
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Rse proves that the target is reachable and stops, to a run where Binsec/Rse does not find 
the target and explores the whole program. RSE

∀
  explores 17% less paths and interprets 

21% less instructions than RSE. This comes at the price of more universally quantified 
SMT queries: the average time per SMT query goes up by 25%. Overall the run time of 
both methods is very close.

With path merging, the difference in paths explored disappears: RSE
∀
 + explores 1% 

less paths and instructions than RSE+. This is due to the fact that for some tests, path 
merging “unlocks” some new paths. Overall, RSE

∀
 + is 6% slower than RSE+ on success-

ful, terminating tests.
Performance (RQ4) In this question, we compare the run time of robust algorithms 

to SE. Comparison is done on the same basis as before, except that we count timeouts. 
RSE+ is 74% slower than standard SE on geometric average. This is mostly due to newly 
introduced time-outs (up to 260× slower) since median slowdown is only 15%. RSE

∀
 is 

more consistently slower with about 30% slowdown in both geomean and median. This is 
mainly explain by increased solver time (universal path pruning queries). RSE

∀
 + is close 

in median slowdown, but path merging introduces new timeouts and drives the average 
slowdown up to 62%. RSE+ has a low overhead compared to standard SE, except for a few 
time-outs (2/46). 

6.4  Additional considerations

6.4.1  Going beyond reachability

The formal framework we provide in Sect. 4.1 allows to lift any reachability property to its 
robust equivalent. Could we do the same for other classes or properties and hyperproper-
ties? Formally, yes, but we may need to give up part of the results of this paper, and in the 
case of hyperproperties, the lifted property might even be nonsensical, so some care must 
be taken.

Robust trace properties A trace property is a set of traces 𝛱 ⊆ S∞ . A program P satis-
fies � if P ⊆ 𝛱 . One can apply the same construction as in Definition 4 to obtain a lifted 
“robust” property ℜ(�) : P satisfies ℜ(�) if ∃a∀xP|

(a,x) ⊢ 𝛱.
For example, consider non-termination. Robust non-termination expresses that for some 

controlled input, the program is guaranteed not to terminate. In a security context, this 
encodes a form of “guaranteed denial-of-service”.

A well studied class of trace properties is the class of safety properties. They are the 
negations of the reachability properties as defined in Definition 1, or described more intui-
tively, they are trace properties that can be falsified by observing a bad finite trace prefix. 
As an example of safety property, consider the absence of null pointer dereference. Lifting 
it like before, “robust absence of null pointer dereference” expresses that for some con-
trolled input, the program is guaranteed to be free of null pointer dereference. This prop-
erty is weaker that the original one, and makes little sense with the threat model we used 
until now: why would we rely on the attacker to establish safety of our program? We actu-
ally need to reverse this threat model: consider the controlled input as controlled by the 
system administrator trying to harden the system. Then the property consists in looking for 
a system configuration which is impervious to attacks.



Formal Methods in System Design 

1 3

While the construction we introduced still works for trace properties, the proof methods 
of Sect. 5 do not. Developing algorithms to prove robust trace properties is left to future 
work.

Robust hyperproperties Informally, robustness lifts a trace property � by adding quanti-
fication over the inputs of the system, therefore a quantification over traces: there must be a 
controlled input, such that all traces starting with this input satisfy � . But since hyperprop-
erties (introduced in Sect. 4.3) are also allowed to quantify over traces, the quantifications 
might collide. Consider the hyperproperty � “the program terminates on average in less 
than 100 steps”. Lifting � to robustness would yield “there exists a controlled input, such 
that for all uncontrolled inputs, the only trace starting with those inputs terminates in aver-
age in less than 100 steps.” Obviously, “average” here lost its meaning.

We can solve this issue by generalizing the construction of Definition  4. We now 
split inputs to the program into three parts: controlled inputs a, uncontrolled input x, and 
remaining input y. The lifted hyperproperty only quantifies on y. In the example above, Q 
becomes “there exists a such that for all x, the system terminates in less than 100 step on 
average on y”.

Formally, we need to adapt the restriction of a program P to only partial inputs: 
P|

(a,x,⋅) = {t ∈ P ∣ ∃yt[1] = s1(a, x, y)} . Then, lifting the hyperproperty � yields:

Whether this construct has a useful meaning is very context-dependent. But let us give an 
example for non-interference, or rather its negation. Consider the case where the attacker 
is only one of many unprivileged users, and has the goal of breaking non-interference, 
i.e. observing low outputs that leak information on the inputs of privileged users. We 
label as controlled the inputs a of the attacker, and denote by x and y the inputs of other 
unprivileged and privileged users respectively. If (a, x, y) ∼ (a�, x�, y�) denote that traces 
starting with inputs (a, x, y) and (a�, x�, y�) are observationally equivalent (be it termination-
sensitive or not, for the sake of simplicity), then one would write non-interference as:

Robust violation of non-interference is then

which means that the attacker can choose wisely a controlled input a such that, whatever 
other unprivileged users do, a leak of information on high input y is possible. Here we only 
let non-interference quantify over y.

6.4.2  Negation of robust reachability

We focus in this paper on (positively) proving robust reachability and discussing the poten-
tial applications for security assessment. Let us briefly discuss now the case of proving the 
negation of robust reachability. This property, which falls in the category of collaborative 
invariance [1], expresses that for all controlled inputs a, there exists an uncontrolled input 
x that prevents some event O. In other words, it is always possible (for the system, for the 
defender, etc.@) to preserve the invariant ¬O . While this is weaker than ¬O , it is still rele-
vant for security as it characterizes those systems that may not be fully secure (the invariant 
does not hold) but which can still always be defended. From a broader perspective, this can 

{P ⊆ S∞
∣ ∃a.∀x.P|

(a,x,⋅) ⊢ 𝛱}

∀a, x, y,� y(a, x, y) ∼ (a, x, y�)

∃a.∀x.∃y, y�(a, x, y) ≁ (a, x, y�)
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be an interesting step toward a principled definition of soundiness [44]: instead of discard-
ing a system because it does not uphold the expected invariant, we can still show that it can 
be made to work, and thus see more finely the value we can attach to it.

6.4.3  Scope of the definition

We excluded interactive systems and quantitative approaches from our definition of robust-
ness (Definition 4, Sect. 4.1) to keep automated proof methods tractable. We motivate this 
choice by experimentally showing that these alternatives yield significant overhead.

We reuse the notations of the discussion in Sect. 4.1.
Quantitative reasoning and model counting We could imagine refining our definition of 

robust reachability, looking for some controlled input for which the number of uncontrolled 
inputs allowing to reach the intended target is maximal (or, above a certain threshold). 
Although we have already observed that model counters do not directly solve this problem 
(Sect. 4.1), we can lower bound its runtime cost by the cost of determining the number of 
uncontrolled x satisfying a path constraint for some given controlled input a0.

For simplicity, consider single-path robust reachability of � along a path with path con-
straint pc (a, x) . It is equivalent to ∃a∀x pc (a, x) . A more quantitative approach would be to 
consider amax such that the ratio r(amax) of x satisfying pc (amax, x) is maximal. The larger 
r(amax) , the more robustly reachable � . We try to experimentally get an idea of the cost 
of computing this. Determining amax is an open problem, but we can lower bound the full 
computation time by the time to compute r(amax) from amax . As the algorithms below are 
randomized, we can measure the time to compute r(a0) for any a0.

We collect the path constraint of the first path standardly reaching the target in our 5 case 
studies of Sect. 6.2. We arbitrarily choose a0 satisfying ∃x pc (a0, x) , and compare the time to 
(dis)prove ∀x pc (a0, x) with Z3 to the time to approximate r(a0) with two of the few model 
counters supporting SMTlib2 input in the QF_BV theory: SearchMC  [41] (with tolerance 
� = 0.8 and confidence 1 − � = 0.95 ) and SMTApproxMC  [12] (with tolerance � = 0.8 
and 1 iteration). We found no tool supporting arrays, so arrays were blasted. As shown in 
Table 5, the quantitative approach is at least an order of magnitude slower than our qualita-
tive method — SMTApproxMC mostly times out while SearchMC is 350× slower in geomet-
ric mean. Ironically, the overhead is highest in the one case (u-boot) where the quantitative 
approach is actually significantly more precise than our qualitative approach.

Quantifier alternations Assume we want to model a leak in ASLR in libvncserver 
(Sect. 6.2): the attacker knows about an address z and wants to use the bug to jump to z. 
The corresponding property is: for all values3 of z, there exists an attacker input a such that 

Table 5  All-or-nothing (Z3) vs quantitative (SearchMC, SMTApproxMC) approaches: runtime and lower 
bound on r(a

0

) . Timeout (TO) is 2, 400 seconds

doas libvncserver u-boot mongoose grub

Z3 0.02 s  0% 0.01 s  0% 0.07 s  0% 0.04 s  100% 0.07 s  100%
SearchMC 9.4 s  10−13 4.8 s  10−12 190.6 s  25% 35.1 s  59% 0.7 s  66%
SMTApproxMC TO – TO – TO – TO  – 186 s  7%

3 Without a null byte, but we ignore this detail for the sake of simplicity.
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for all other uncontrolled inputs x, control flow is diverted to z. This uses another univer-
sal quantifier, which we exclude in our definition of robust reachability (Sect. 4.1) to keep 
satisfiability queries tractable. Similarly, in our case study on doas, we would like to check 
that the exploit works for any typoed username and, and for any user ID and group ID.

We implemented this and in both cases, RSE+ does not terminate within 24  h. This 
is not a scaling issue but a more fundamental one with additional quantifier alterna-
tions: none of Z3[23], Boolector[46] and CVC4[6] are able to prove in less than 1 h that 
∀z∃aa XOR 1 = z holds, with 32-bit bitvectors (where the quantification of x is even 
omitted).

7  Related work

Broadly speaking, we are interested in defining a subclass of comparatively more interest-
ing bugs amenable to automation. We review related prior attempts.

Automatic exploit generation (AEG) These approaches seek to demonstrate the impact 
of a bug by automatically generating an exploit from it [2, 11, 38]. This is complementary 
to robustness, which focuses on replicability. Actually, both techniques could be advanta-
geously combined, as a replicable exploit is clearly more threatening than a fragile one. 
Current AEG methods being based on symbolic methods, adapting them for robustness 
looks feasible.

Quantitative reasoning & model counting Several approaches rely on probabilities 
or counting to distinguish important issues from minor ones — for example (quantita-
tive) probabilistic model checking [3, 36] or quantitative information flow analysis [39]. 
Robust reachability could be refined in such a way. Yet, current quantitative approaches do 
not scale on software, as they often rely either on the finite-state hypothesis, or on model 
counting solvers [34], which are only at their beginning (see Sections 4.1 and 6.4).

Fairness Fairness assumptions in model checking [37] aim at discarding traces consid-
ered as unrealistic and avoiding false alarms from the user point of view. While the goal is 
rather similar to ours, the two techniques are very different: fairness assumptions typically 
require certain sets of states to be visited infinitely often along a trace, while robust reach-
ability requires that a trace cannot be influenced by uncontrolled input w.@r.@t.@ a given 
reachability property.

Symbolic Execution and quantifiers Finally, while symbolic execution is commonly 
performed with quantifier-free constraints, a notable exception is higher-order test genera-
tion [30], where Godefroid proposes to rely on universally quantified uninterpreted func-
tions ( ∀∃ queries) in order to soundly approximate opaque code constructs. Higher-order 
test generation and robust reachability are complementary as they serve two different pur-
poses: robust reachability can only be used in a modest way for opaque code constructs 
(finding controlled inputs for which their value does not matter), while higher-order test 
generation is inadequate for robust reachability, as it would be as if the attacker could 
choose the controlled inputs knowing the uncontrolled ones.

Alternative proof methods Some recent methods based on abstract interpretation  [53, 
54] may be a good starting point to prove robust reachability. Notably, FuncTion [53] can 
infer preconditions over inputs for guarantee properties. If some inferred precondition is 
not empty and does not depend on x, then robust reachability holds. Interestingly this tech-
nique has been generalized to arbitrary CTL formulas  [54], in which robust reachability 
can be encoded. Yet, whether this method can be extended beyond integer-manipulating 
program while remaining precise enough is still unclear.
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8  Conclusion

We introduce the novel concept of robust reachability, that we argue is better suited than 
standard reachability in several important scenarios for both security (e.g., criticality 
assessment, bug prioritization) and software engineering (e.g., replicable test suites). We 
formally define and study robust reachability, discuss how standard symbolic methods to 
prove reachability can be revisited to deal with the robust case, design and implement the 
first robust symbolic execution engine and demonstrate its abilities in criticality assessment 
over 5 CVEs. We believe robust reachability is an important sweet spot in terms of expres-
siveness and tractability. We hope this first step will pave the way to more refinements and 
applications of robust reachability.
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