
Binsec/Codex, an abstract interpreter to verify
safety and security properties of systems code

Olivier Nicole Matthieu Lemerre Xavier Rival

April, 2021

Abstract

This document describes the internals of Binsec/Codex, an analyzer
able to verify safety and security properties on machine code, notably used
to verify absence of runtime errors and privilege escalation in embedded
kernels. After stating our assumptions on the hardware, we give a detailed
overview of the abstract domains used in the analysis, and give examples
of why each domain is needed.

Contents
1 Introduction 2

2 Concrete semantics of machine code 4

3 Abstract domains used in the analysis 6
3.1 Control flow domain . 7
3.2 Numeric domain . 9
3.3 Weak shape domain . 10

3.3.1 Notations . 10
3.3.2 Types and their meaning 10
3.3.3 The single type abstract domain 14
3.3.4 The weak shape abstract domain 15

4 Conclusion 18

1

1 Introduction
This document describes the internals of Binsec/Codex, an analyzer for
machine code based on abstract interpretation. Binsec/Codex is a module
of Binsec [2]. Binsec/Codex was used to analyze and verify absence of
runtime errors and privilege escalation on embedded kernels [10].

Abstract interpretation is a practical framework to build program ana-
lyzers, as well as a theoretical framework justifying the correctness of such
analyzers [1]. An abstract interpreter infers properties of a pogram in a
sound way, i.e. the inferred properties will hold on all possible behaviours
of the program. By Rice’s theorem [11], such a sound inference cannot be
complete, i.e. it may include behaviours that will never appear in the actual
program execution.

In the context of Binsec/Codex, we will concentrate on state prop-
erties. A state property is a predicate on a program state. What exactly
constitutes a program state is defined in Section 2, but it can be seen as the
state of all variable and memory locations of the program, as well as the
program counter (the current code location). The absence of runtime error,
for instance, is a state property. The absence of use-after-free bugs in C is
not.

Inferring state properties using abstract interpretation consists in prop-
agating an abstract state that represents a superset of all possible states,
until a fixpoint is reached. It can be seen as a generalization of data flow
analysis [6] with more general domains and widening operators to handle
loops.

We will use the code in Figure 1 as a running example. It is an ex-
ample of memory protection initialization in a simple x86 32-bit embed-
ded OS. Each task is allocated a fixed region of memory describe by the
fields mem_base and mem_size of a structure context. A global variable
params contains the array of all contexts, as well as the number of tasks
(assumed constant throughout kernel execution).

Memory protection in 32-bit x86 depends on a global descriptor table
(desc_table) containing segment descriptors. Each segment descriptor
encodes a range of memory addresses, along with the permissions asso-
ciated with these addresses. Among other things, a segment descriptor
contains a base address and a length. What the code in Figure 1 does is
creating a descriptor for each task and writing it to the descriptor table.
The code of the create_descriptor function is omitted for now.

The goal is to verify that all segment descriptor written to the descrip-
tor table describe a memory region that is disjoint from the kernel space.

2

typedef struct context {
uint32_t mem_base;
uint32_t mem_size;
// ...

} context;

struct params {
unsigned int nb_tasks;
context *contexts;
uint64_t *desc_table;
// ...

};

struct params *params;
unsigned int i;
context *ctx;

for(i = 0; i < params->nb_tasks; i++)
{

ctx = ¶ms->contexts[i];
params->desc_table[i] = create_descriptor(ctx->mem_base,

ctx->mem_size);
}

Figure 1: Running example

3

If that is achieved, and that you also verify that there is no run-time error,
then it entails that there cannot be a privilege escalation exploit on this ker-
nel —except via means not considered in our hardware model, such as side
channels. This verification must be performed on the binary code result-
ing of the compilation of the C code (see Figure 1 below), firstly because
it removes the compiler from the trusted components, and secondly be-
cause such system code necessarily comprises hand-written, architecture-
specific assembly (e.g. to modify memory protection). In what follows, we
will see which challenges such a verification poses.

After expliciting our hardware model (Section 2), we will detail the set
of abstract domains we use for the analysis (Section 3), including a novel
memory domain.

2 Concrete semantics of machine code
By concrete semantics, we mean the way we model the architecture, and
the semantics of analyzed programs on this architecture. A semantics con-
sists in two things: defining what is a program state, and specifying how
to transition from one state to the next.

We assume a 32-bit architecture. Values are elements of V32 = [0, 232 −
1] or V8 = [0, 28 − 1]. The set of memory addresses A is a subset of V32.
Memories are maps from addresses to 8-bit values: M = A → V8. We
denote by R the set of register names. In 32-bit x86, it would contain for
example eax and ebx, but also CPL (current privilege level), which is a
system register only accessible through some system instructions.

The set of states is 𝒮 = M × (R → V32). A state includes the current
code location, via the eip register. For 𝑠 ∈ 𝒮, we denote by 𝑠 [𝑟 ← 𝑥] the
state identical to 𝑠, except that register 𝑟 holds the value 𝑥; and 𝑠 [[α]𝑛 ← 𝑥],
the state identical to 𝑠, except that the address range α, α + 1,… , α + 𝑛 − 1
holds the value x (in the present case, in little-endian convention).

Figure 2 shows the binary and the assembly produced by gcc -O3 on
the running example. All control flow and type information is stripped
away. The for loop is replaced by a simple conditional backward jump at
address 0x90.

dba Binsec translates machine code into an intermediate representa-
tion called dba (for Dynamic Bitvector Automata), a simple imperative lan-
guage with variables, memory accesses and arbitrary jumps. The syntax
of dba is given in Figure 3. The semantics of dba is completely standard,

4

40: a1 1c c0 04 08 mov eax,ds:0x804c01c
45: 8b 10 mov edx,DWORD PTR [eax]
47: 85 d2 test edx,edx
49: 74 54 je 9f <main+0x5f>
4b: 8d 4c 24 04 lea ecx,[esp+0x4]
4f: 83 e4 f0 and esp,0xfffffff0
52: ff 71 fc push DWORD PTR [ecx-0x4]
55: 55 push ebp
56: 89 e5 mov ebp,esp
58: 56 push esi
59: 53 push ebx
5a: 31 db xor ebx,ebx
5c: 51 push ecx
5d: 83 ec 0c sub esp,0xc
60: 8b 50 04 mov edx,DWORD PTR [eax+0x4]
63: 8d 0c dd 00 00 00 00 lea ecx,[ebx*8+0x0]
6a: 8b 70 08 mov esi,DWORD PTR [eax+0x8]
6d: 83 ec 08 sub esp,0x8
70: 83 c3 01 add ebx,0x1
73: 01 ca add edx,ecx
75: 01 ce add esi,ecx
77: ff 72 04 push DWORD PTR [edx+0x4]
7a: ff 32 push DWORD PTR [edx]
7c: e8 3f 01 00 00 call 80491c0 <create_descriptor>
81: 83 c4 10 add esp,0x10
84: 89 06 mov DWORD PTR [esi],eax
86: a1 1c c0 04 08 mov eax,ds:0x804c01c
8b: 89 56 04 mov DWORD PTR [esi+0x4],edx
8e: 39 18 cmp DWORD PTR [eax],ebx
90: 77 ce ja 60 <main+0x20>
92: 8d 65 f4 lea esp,[ebp-0xc]
95: 31 c0 xor eax,eax
97: 59 pop ecx
98: 5b pop ebx
99: 5e pop esi
9a: 5d pop ebp
9b: 8d 61 fc lea esp,[ecx-0x4]
9e: c3 ret
9f: 31 c0 xor eax,eax
a1: c3 ret

Figure 2: Running example compiled by GCC with -O3.

5

Expressions

ℰ ∋ 𝑒, 𝑒loc ∶∶= 𝑐 constant (𝑐 ∈ ℕ)
| 𝑟 register (𝑟 ∈ R)
| [𝑒loc] memory read
| ⊖𝑒 unary operation (⊖ ∈ {−, ¬})
| 𝑒 ⊕ 𝑒 binary operation (⊕ ∈ {+, −, ÷, ==, ≤,⋯})

Instructions

ℐ ∋ 𝑖 ∶∶= 𝑟 ∶= 𝑒 register assignment (𝑟 ∈ R)
| [𝑒loc] ∶= 𝑒 memory write
| jump 𝑒loc jump to address
| if 𝑒 then 𝑖 else 𝑖 end conditional

Figure 3: Syntax of dba.

so we will not detail it.

Multicore systems In a multicore system, the state is an element of
M×(R → V32)

𝑛, where 𝑛 is the number of cores. Each core has a distinct set
of registers —except for system registers which are common, but for sim-
plicity’s sake we will not consider them here. The memory is shared. Each
CPU performs an independent execution governed by the same semantics.

3 Abstract domains used in the analysis
Abstract interpretation revolves around the concept of abstract domains.
An abstract domain is a set, the elements of which abstract elements. Each
abstract element represents a set of concrete elements (e.g. a set of program
states) through a concretization function, generally denoted γ. Following
tradition, we will write abstract domains with a superscript sharp sym-
bol (♯). For instance, if the abstract domain 𝔻♯ represents sets of program
states, its concretization has type:

γD ∶ 𝔻♯ → 𝒫(𝒮)

To be usable in static analysis, an abstract domain must be equipped with
a partial order, representing precision. An abstract element is smaller than

6

40 ∶ eax ∶= [ds + 0x804c01c]
jump 0x45

45 ∶ edx ∶= [ds + eax]
jump 0x47

47 ∶ res32 ∶= edx − edx
ZF ∶= (res32 == 0)
CF ∶= 0
OF ∶= 0
jump 0x49

49 ∶ if ZF then jump 0x9f else jump 0x4b end

Figure 4: First few instructions from Figure 2 translated to dba.

numeric domain ℕ♯ = any conjunction of numeric γN ∶ ℕ♯ → 𝒫(R ⊎ AF → V32)
constraints over the values
bound to 𝔸F andℛ

weak shape domain 𝕎♯ = ℕ♯ × (R ⊎ AF → 𝕋♯) γW ∶ 𝕎♯ → 𝒫(𝒮)
control flow domain ℂ♯ = 𝒫 (𝒢) × (𝕃 → 𝕎♯) γC ∶ ℂ♯ → 𝒫(𝒮)

𝒢 = 𝒫 (𝕃 × 𝕃) is the set of control flow graphs,
𝕋♯ is the single type abstract domain,
AF the set of fixed addresses in the kernel,
R the set of register names, 𝕃 the set of program locations.

Figure 5: Implementation of the abstract domains.

another (𝑎 ≤♯ 𝑏) only if the concrete set that 𝑎 represents is a subset of the
one 𝑏 represents:

∀𝑎, 𝑏 ∈ 𝔻♯, 𝑎 ≤♯ 𝑏 ⟹ γD(𝑎) ⊆ γD(𝑏)

In this section, the abstract domains that we use will be detailed. They
are summarized in Figure 5.

3.1 Control flow domain
Central to our abstractions is the notion of program locations. What is a
program location is an implementation choice of the analyzer: a natural
choice is to consider that a program locations is a valid code address in the
program’s executable. For our needs, we chose a more precise abstraction:
a program location consists in a kernel address and a call stack. Denoting

7

the set of valid code addresses byAC ⊆ A and E⋆ the set of finites sequences
of elements of a set E, we get:

𝕃 = AC × A⋆
C

We denote byℒ(𝑠) the program location of a state 𝑠.
Then, our control flow abstraction is a graph between program loca-

tions (we denote 𝒢 = 𝒫 (𝕃 × 𝕃) the set of such graphs) and a mapping
from every location to an abstract state 𝕄♯ (described further):

ℂ♯ = 𝒫 (𝒢) × (𝕃 → 𝕄♯)

The graph is an over-approximated control flow graph (cfg), meaning that
(1) the only reachable program locations are the nodes in the graph, and (2)
all possible control flow transfer are represented by an edge in the graph.
Formally:

γ ∶ ℂ♯ → 𝒫(𝒮)
γ (𝒢 , states) = {𝑠 ∈ 𝒮 | ∃ℓ ∈ 𝕃, states(ℓ) = 𝑠 ∧ ℓ is a node of 𝒢}

The analysis works by performing multiple rounds of the following steps
in sequence:

1. Perform a standard data-flow analysis using the current abstract CFG,
to compute a new state for every location of the graph.

2. Iterate over all locations ℓ to compute all possible outgoing edges,
given the possible states at ℓ (this uses the same resolve function
than [7]). Newly-discovered edges are added to the over-approximated
cfg.

The iteration sequence starts with an abstraction (𝒢0, 𝑚0) where 𝒢0 is a
single node (the start instruction address), and 𝑚0 maps this address to the
initial abstract state. The analysis terminates when the fixpoint is reached,
i.e., no new edge is discovered in the CFG. In practice, several small optimi-
sations are used to reuse results between rounds (e.g., caching the results),
and to have fewer rounds (by early exploration of the newly-discovered
CFG nodes).

Theorem 1. If the transfer functions for𝕄♯ are sound, the result 𝑠♯𝑓 𝑖𝑛𝑎𝑙 of the
analysis is a sound abstraction of all the reachable states in the system (and
thus a state invariant).

In the running example, the analysis proceeds as follows:

8

1. While instruction 0x90 is not reached, every instruction has the next
instruction as its only successor, so the graph is linear.

2. After analyzing instruction 0x90 for the first time, the conditional is
false (unless params->nb_tasks is equal to 1, but during the analy-
sis we do not have this information), so there is only one successor,
0x60. This constitutes a back edge in the cfg (i.e. an edge to an an-
cestor in a spanning tree of the cfg). This characterizes a control flow
loop, and therefore the control flow domain chooses a loop head and
inserts a widening point.

3. After a fixpoint is reached for every location in the loop, there should
be a new successor to 0x90 (since the loop is not an infinite one),
namely 0x92, from which new paths can be discovered.

It should be noted that the choice of including the call stack in the abstract
locations has the consequence that all function calls are inlined. On the
one hand, it allows for a precise interprocedural analysis, since a function
is always analyzed in the most precise possible calling context. On the
other hand, it prevents the analyzer to handle some recursive functions
(except when all recursive calls are tail calls and are optimized into jumps),
because the analyzer may compute abstract states with ever-growing call
stacks, without reaching a stable invariant. Since low-level code rarely
contains recursive code, this is usually not a problem.

3.2 Numeric domain
What we call numeric domain, in this context, is an abstraction of both
numeric values and memory. We call this domainℕ♯ and it represents the
contents of all memory cells which we want to fully enumerate, and regis-
ters. The designation “all memory cells which we want to fully enumerate”
matters because part of memory will be represented only by type informa-
tion in the weak shape domain, and not explicitly represented at the byte
level.

The concretization of the numeric domain thus has type:

γN ∶ ℕ♯ → 𝒫(R ⊎ AF → V32)

where AF ⊆ A. (The F stands for “flat memory model”.)
In principle, any domain that has such a concretization could be used.

In practice, of course, it must be sufficiently precise to prove the properties
we want. We use a combination of standard abstractions, the full descrip-
tion of whicĥ is not the intent of this report.

9

• For values, we mainly use efficient non-relational abstract domains:
intervals, based on the reduced product between the signed and un-
signed meaning of bitvectors [3], with congruence information [5].
They are complemented with symbolic relational information [3, 9,
4] for local simplifications of sequences of machine code.

• Regarding the memory abstraction: our memory model is ultimately
byte-level in order to deal with very low-level coding aspects of ker-
nels. Yet, as representing each memory byte separately is inefficient
and imprecise, we use a stratified representation of memory caching
multi-byte loads and stores, like Miné [8]. Moreover, we do not track
memory addresses whose contents is unknown.

3.3 Weak shape domain
3.3.1 Notations

We define a bitvector concatenation operation. It corresponds to the idea
of joining two binary representations next to each other and interpreting
them as a single integer. It depends the bit length of each operand.

∀𝑣1, 𝑣2, 𝑠1, 𝑠2 ∈ ℕ, 𝑣1 𝑠1∶∶𝑠2𝑣2 = 𝑣1 + 2𝑠1𝑣2

Intuitively, 𝑠1 and 𝑠2 are the lengths of the two bit vectors 𝑣1 and 𝑣2. We
may omit the lengths when they are clear from the context. We note ℍ =
A → V8 the set of heaps. For ℎ ∈ ℍ, we will write indifferently ℎ(𝑎) or ℎ[𝑎].
We will write ℎ[𝑎, 𝑎 + 𝑛] to mean ℎ[𝑎]∶∶ℎ[𝑎 + 1]∶∶ ⋯∶∶ℎ[𝑎 + 𝑛].

3.3.2 Types and their meaning

We want to abstract properties of memory structures using types. To that
end, we are going to define a type system encompassing the low-level types
of the C language: scalars, pointers, and structures (which, following the
conventions of type system research, we will call product types). We do
not have so-called sum types, and thus cannot express C unions; however,
nothing in principle prevents sum types to be added. One of the nice fea-
tures of this system is that it is easy to extend it by enriching the grammar
of types, and make the necessary adjustments to the definitions and proofs.
By enriching the type system, one directly enriches the abstract domain
that derives from it.

Speaking of enriching the types, we also define a form of refinement
types, i.e. types augmented with predicates. Such types do not exist in

10

C, but by using them we can specify —and verify— useful properties on
values. The predicates can by any unary predicates from a given logic.
In our analyzer, predicates are from a simple, first-order logic containing
equality and inequality operators, as well as usual operators from integer
arithmetic (addition, multiplication, …) and bitwise operators (and, xor, …).

The grammar of types is:

𝕋 ∋ t ∶∶= byte | word base types
| 𝑡𝑎∗ pointer
| 𝑡 × 𝑡 product type
| {𝑥 ∶ 𝑡 | 𝑝(𝑥)} refinement type with a predicate 𝑝
| 𝑡[𝑠] array type (𝑠 ∈ ℕ)

𝕋A ∋ 𝑡𝑎 ∶∶= t .𝑜 cell type (𝑜 ∈ ℤ)

Each type has a size (in bytes) given by the function:

size ∶ 𝕋 → ℕ
size (byte) = 1
size (word) = 4

size (𝑡∗) = 4
size (𝑡1 × 𝑡2) = size (𝑡1) + size (𝑡2)

size ({𝑥 ∶ 𝑡 | 𝑝(𝑥)}) = size (𝑡)
size (𝑡[𝑠]) = 𝑠 ⋅ size (𝑡)

The size of word being equal to 4 comes from the fact that the architec-
ture is 32-bit. We will give the meaning of types in terms of sets of values
shortly, but for that we need to introduce labellings.

Definition 2 (Labelling). A labelling ℒ is a function of A → 𝕋A such that
all instances of a type are whole and contiguous in memory, i.e. for all type
𝑡 ∈ 𝕋 and address 𝑎 ∈ A, if we define 𝑛 = size (𝑡):

(∃𝑘 ∈ [0, 𝑛 − 1] , ℒ(𝑎 + 𝑘) = 𝑡.𝑘) ⟹
⎧⎪
⎨⎪
⎩

ℒ(𝑎) = 𝑡.0
ℒ(𝑎 + 1) = 𝑡.1
⋮
ℒ(𝑎 + 𝑛 − 1) = 𝑡.(𝑛 − 1)

The set of labellings is denoted Lab.

Two address types can express similar things, with one being more pre-
cise than the other. Consider a C structure like the following:

11

struct s {
uint8_t a;
uint32_t *b;

};

In the language of our types, this would be expressed: 𝑠 = byte × word.0∗.
Now consider the type of the first memory cell in such a structure: the type
𝑠.0. In some sense, an 𝑠.0 is also a byte.0. However, 𝑠.0 is more precise
than byte.0, in the sense that not all memory cells that contain a byte are
necessarily part of a structure 𝑠. We say that 𝑠.0 subsumes byte.0.

Definition 3 (Subsumption relation). A cell type (an element of 𝕋A) can
subsume another cell type in the following conditions:

(𝑡1 × 𝑡2).𝑘 subsumes 𝑡1.𝑘 if 0 ≤ 𝑘 < size (𝑡1)

(𝑡1 × 𝑡2).(size (𝑡1) + 𝑘) subsumes 𝑡2.𝑘 if 0 ≤ 𝑘 < size (𝑡2) .

{𝑥 ∶ 𝑡 | 𝑝(𝑥)} .𝑘 subsumes 𝑡 .𝑘

𝑡[𝑠].𝑘 subsumes 𝑡 .𝑜, if { 𝑘 = 𝑞 ⋅ size (𝑡) + 𝑜
0 ≤ 𝑜 < size (𝑡)

We define the relation ⪯ ∈ 𝕋A × 𝕋A as the transitive reflexive closure of the
relation “subsumes”.

Note that defining ⪯ as reflexive requires a notion of equality on 𝕋A.
We use for that the equality that can be defined inductively on the grammar
in a straightforward way.

Lemma 4. For all types 𝑢, 𝑎, 𝑏 ∈ 𝕋A, if 𝑢 subsumes 𝑎 and 𝑢 subsumes 𝑏, then
𝑎 = 𝑏.

Proof. By the definition of “subsumes”, necessarily 𝑢 is one of the following:

• 𝑢 = {𝑥 ∶ 𝑡 | 𝑝(𝑥)} .𝑘. Then necessarily 𝑎 = 𝑏 = 𝑡.𝑘.

• 𝑢 = 𝑡[𝑠].𝑘. Then it is easy to show that 𝑎 = 𝑏.

• 𝑢 = (𝑡1 × 𝑡2).𝑘. Also from the definition of subsumption, 𝑎 is either
the type 𝑡1.𝑘 or the type 𝑡2.(𝑘 − size (𝑡1)). Same for 𝑏. Let us proceed
ab absurdum and assume 𝑎 ≠ 𝑏. Then, there are two symmetrical
possibilities. Let us devise the case where 𝑎 = 𝑡1.𝑘 and 𝑏 = 𝑡2.(𝑘 −
size (𝑡1)).
Again from Definition 3, we deduce:

{ 0 ≤ 𝑘 < size (𝑡1)
0 ≤ 𝑘 − size (𝑡1) < size (𝑡2)

12

from which we derive two contradictory statements: 𝑘 < size (𝑡1)
and 𝑘 ≥ size (𝑡1). Therefore 𝑎 = 𝑏.

We now give the meaning of types in terms of an interpretation func-
tion.

Definition 5 (Interpretation of a type). The interpretation operator with
respect to a labelling ℒ, denoted L ⋅ Mℒ ∶ 𝕋 → ℕ, is defined by:

L byte Mℒ = [0, 28 − 1]
L word Mℒ = [0, 232 − 1]

L 𝑡1 × 𝑡2 Mℒ = {𝑣1 size(𝑡1)∶∶size(𝑡2)𝑣2 || 𝑣1 ∈ L 𝑡1 Mℒ, 𝑣2 ∈ L 𝑡2 Mℒ}

L {𝑥 ∶ 𝑡 | 𝑝(𝑥)} Mℒ = {𝑣 ∈ L 𝑡 Mℒ | 𝑝(𝑣)}
L 𝑡[𝑠] Mℒ = {𝑣1∶∶ ⋯∶∶𝑣𝑠 | 𝑣1, … , 𝑣𝑠 ∈ L 𝑡 Mℒ}
L 𝑡 .𝑘∗ Mℒ = {𝑎 ∈ A ; ℒ(𝑎) ⪯ 𝑡.𝑘} ∪ {0}

A labelling is a labelling for a heap ℎ when values are laid out in mem-
ory in a manner consistent with their types.

Definition 6. We say that a labellingℒ ∈ Lab is a labelling for ℎ ∈ ℍ if:

∀𝑎 ∈ A, ℒ(𝑎) = 𝑡.0 ⟹ ℎ[𝑎, 𝑎 + size (𝑡) − 1] ∈ L 𝑡 Mℒ
Note that by Definition 5, we have

𝑡 .𝑛 ⪯ 𝑢.𝑚 ⟹ L 𝑡 .𝑛∗ Mℒ ⊆ L 𝑢.𝑚∗ Mℒ

So ⪯ can be seen as a subtyping relation on pointers.

Definition 7 (Set of addresses of a given type).

addr ∶ Lab × 𝕋 → 𝒫 (A)

addrℒ (𝑡) =
size(𝑡)−1

⋃
𝑖=0

{𝑎 ∈ A;ℒ(𝑎) ⪯ 𝑡.𝑖}

In any reasonable program of any language, values of different types
should reside in different zones of memory. More precisely, incompatible
types should reside in different zones of memory. What makes one type
“compatible” with another is a subsumption relation between them. If some
struct contains an uint32 at offset 4, then it is expected that, wherever
that struct exists in memory, the object existing at bytes 4 to 8 of the struct
should be interpretable as an uint32. Therefore, we define a labelling as
separated when only the types that are in a subsumption relation can be
attributed to the same cells.

13

Definition 8 (Separated labellings). A labelling ℒ ∈ A → 𝒫 (𝕋A) is sepa-
rated if incomparable cell types cannot be labels of the same cell:

addrℒ (𝑡) ∩ addrℒ (𝑢) ≠ ∅ ⟹ ∃𝑛, 𝑚, 𝑡.𝑛 ⪯ 𝑢.𝑚 ∨ 𝑢.𝑚 ⪯ 𝑡.𝑛

Wewill prove that this desirable property holds in fact for all labellings.
But first, a few properties of ⪯ need to be shown.

Proposition 9. (𝕋A, ⪯) is a partial order.

Proof. ⪯ is reflexive and transitive by definition; it is also antisymmetric,
because the elements of𝕋A, by their definition, cannot contain themselves.

Lemma 10. For any cell types τ, υ, ϕ ∈ 𝕋A:

ϕ ⪯ τ ∧ ϕ ⪯ υ ⟹ τ ⪯ υ ∨ υ ⪯ τ

Proof. Let us assume that ϕ ⪯ τ and ϕ ⪯ υ. Then, if we write 𝑥
𝑠
→ 𝑦 for “𝑥

subsumes 𝑦”, there exists two finite chains ϕ
𝑠
→ τ1

𝑠
→ τ2

𝑠
→ ⋯

𝑠
→ τ𝑛

𝑠
→ τ,

and ϕ
𝑠
→ υ1

𝑠
→ υ2

𝑠
→ ⋯

𝑠
→ υ𝑚

𝑠
→ υ. Either one chain is included in the

other, or not. If yes, then either τ ⪯ υ or υ ⪯ τ, which ends the proof. If not,
then let 𝑝 be the minimal index such that τ𝑝 ≠ υ𝑝. But τ𝑝−1 subsumes both
τ𝑝 and υ𝑝, so using Lemma 4, τ𝑝−1 = υ𝑝−1, which contradicts theminimality
of 𝑝.

In other words, the graph of the order relation (𝕋A, ⪯) is a forest.

Theorem 11. All labellings are separated.

Proof. Let us assume that the intersection of addrℒ (𝑡) and addrℒ (𝑢) con-
tains some address 𝑎. Then there exists 𝑖 and 𝑗 such that ℒ(𝑎) ⪯ 𝑡.𝑖 and
ℒ(𝑎) ⪯ 𝑢.𝑗. Thus by Lemma 10, either 𝑡 .𝑖 ⪯ 𝑢.𝑗, or 𝑢.𝑗 ⪯ 𝑡.𝑖.

3.3.3 The single type abstract domain

Here we show how 𝕋, supplemented with “top” and “bottom” elements,
can be seen as an abstraction for a set of values. Its concretization is only
defined relatively to a labelling ℒ.

Definition 12. Given a labelling ℒ ∈ Lab, the single type abstract domain
is:

𝕋♯ = 𝕋 ⊎ {⊥, ⊤}

14

Its concretization is:
γℒ,𝕋 ∶ 𝕋♯ → 𝒫(ℕ)
γℒ,𝕋 (⊥) = ∅
γℒ,𝕋(𝑡) = L 𝑡 Mℒ
γℒ,𝕋 (⊤) = ℕ

Its abstract inclusion ⊑ℒ,𝕋 is defined by:

• ⊥ ⊑ℒ,𝕋 𝑡

• 𝑡 ⊑ℒ,𝕋 ⊤

• 𝑡 .𝑛 ⪯ 𝑢.𝑛 ⟹ 𝑡.𝑛∗ ⊑ℒ,𝕋 𝑢.𝑚∗

Its lub ⊔ℒ,𝕋 is the one induced by ⊑ℒ,𝕋.

Proposition 13. ⊑ℒ,𝕋 and ⊔ℒ,𝕋 are sound with respect to γ𝕋.

3.3.4 The weak shape abstract domain

The weak shape abstract domain𝕎♯ is a memory domain which abstracts
part of the memory using types. The weak shape domain is essentially an
augmentation upon another domain𝕄♯, which concretizes to𝒫 (R ⊎ AF → V32),
where AF ⊆ A. (In the context of our analyzer, we instantiate 𝕄♯ to the
domain ℕ♯ described above.)

𝕎♯ = 𝕄♯ × (R ⊎ AF → 𝕋♯)

Its concretization has type:

γW ∶ 𝕎♯ → 𝒫(R ⊎ AF ⊎ AT → V32)

where AF and AT are disjoint. If one assumes that AF ⊎ AT = A, then
the weak shape domain is, in fact, an abstraction of a set of states: the
concretization has type 𝕎♯ → 𝒫(𝒮).

We see here that𝕎♯ augments𝕄♯ with the abstraction of a new mem-
ory zone AT, disjoint from AF. This disjoint heap is represented only by
types. A type is associated to every register, and memory cell indexed by
AF. But for this representation to havemeaning, it is necessary that the val-
ues the fixed memory be consistent with their types, relatively to a certain
labelling: we say that ℎF ∈ R⊎AF → V8 and ℓ♯ ∈ AF → 𝕋♯ areℒ-consistent
if ∀𝑎 ∈ AF, ℎ(𝑎) ∈ γℒ,𝕋 (ℓ♯(𝑎)).

Let (ℎ♯, ℓ♯) ∈ 𝕎♯. We define

γW(ℎ♯, ℓ♯) = ∅

15

if γM(ℎ♯) and ℓ♯ are notℒ-consistent for any labelling ℒ. Otherwise:

γW (ℎ♯, ℓ♯) = {ℎF ⊎ ℎT || ℎF ∈ γM(ℎ♯)
∧ dom(ℎF) ∩ dom(ℎT) = ∅
∧ ∃ℒ ∈ Lab, ℒ is a labelling for ℎT
∧ ℎF and ℓ are ℒ-consistent
∧ ∀𝑎 ∈ AF, ℒ(𝑎) ⊑ℒ,𝕋 ℓ♯(𝑎)}

Transfer functions The store and load transfer functions need to
preserve 1. the separation between the flat heap and the typed heap and 2.
the types of the typed heap. The load function is easier. Its type is:

load ∶ 𝕎♯ × (ℕ♯ × 𝕋♯) × ℕ → (ℕ♯ × 𝕋♯)

where the parameters are the weak shape abstract heap, a typed address
with a numeric and a type component, and the size of the region to read,
respectively. It returns a typed value, i.e. with a numeric and a type com-
ponent. load((ℎ♯, ℓ♯), (𝑛♯, 𝑡♯), 𝑠) proceeds as follows:

• If 𝑡♯ is a pointer type, or a subtype of a pointer type, i.e. if there exists
𝑢 ∈ 𝕋 such that 𝑡♯ ⊑ℒ,𝕋 𝑢.0∗, then the abstract address concretizes to
a subset of AT. The numeric component 𝑛♯ is ignored, and the load
returns (L 𝑢 Mℒ, 𝑢).

• Otherwise, if γN(𝑛♯) ⊆ AF, then the type component of the address is
ignored and the load is forwarded to ℎ♯. We return (loadM(ℎ♯, 𝑛♯, 𝑠), ⊤).

• Otherwise, ⊤ is returned (or an alarm is emitted).

store has type:

store ∶ 𝕎♯ × (ℕ♯ × 𝕋♯) × ℕ × (ℕ♯ × 𝕋♯) → 𝕎♯

where the arguments are the weak shape abstract heap, a typed address
with a numeric and type component, the size of the region to read, and
a typed value to store, respectively. store((ℎ♯, ℓ♯), (𝑛♯𝑎 , 𝑡♯𝑎), 𝑠, (𝑛♯𝑣 , 𝑡♯𝑣)) pro-
ceeds as follows:

• If 𝑡♯𝑎 is a pointer type, or a subtype of a pointer type, i.e. if there exists
𝑢 ∈ 𝕋 such that 𝑡♯𝑎 ⊑ℒ,𝕋 𝑢.0∗, then the abstract address points into
the typed heap. We check that the types match between value and
address, i.e. that 𝑡𝑣♯ ⊑ℒ,𝕋 𝑢, and the abstract heap (ℎ♯, ℓ♯) is returned
unchanged. Otherwise, if the types don’t match, ⊤ is returned (or an
alarm is emitted).

16

• Otherwise, if γN(𝑛♯𝑎) ⊆ AF, then the store is performed in the memory
subdomain: we return (storeM(ℎ♯, 𝑛♯𝑎 , 𝑠, 𝑛♯𝑣), ℓ♯new) where ℓ♯new is the
result of updating ℓ♯: ∀𝑎 ∈ γN(𝑛♯𝑎), ℓ♯new(𝑎) = 𝑡♯𝑣 .

• Otherwise, we return ⊤ (or an alarm is emitted).

Let us see how this domain enables us to verify our motivating exam-
ple (Figure 1): all parameters (number of tasks, allocated regions, address
of the task array) can be numerically unknown, we still can perform the
verification thanks to the weak shape domain. We use the following set of
type definitions:

type segment_base = {𝑥 ∶ uint32 | 𝑥 > kernel_last_addr}
type context = segment_base × uint32
type desc = {𝑥 ∶ uint64 | base(𝑥) > kernel_last_addr}
type params = uint32 × context[Ntasks].0 ∗ × desc[Ntasks].0∗

Here, kernel_last_addr and Ntasks are what we call symbolic con-
stants: they represent values which are not known precisely at the time of
the analysis. It is simple to extend the type syntax to use such symbolic
constants in type predicates and as lengths of arrays; we did not detail this
point in the formalization above for clarity reasons.

• kernel_last_addr represents the highest address of the kernelmem-
ory. By constraining all segment bases to be greater than this con-
stant, we make sure that the memory regions accessible to tasks
never intersect kernel memory.

• Ntasks represents the number of tasks that run on the system. Fol-
lowing a common trend in embedded systems design, that number
is a consant, i.e. to change the number of tasks running on the ker-
nel, one must compile a new application image and link it with the
kernel.

With this set of type definitions, the weak shape domain is able to analyze
the machine code resulting from the compilation of Figure 1 and verify:

1. The absence of out-of-bounds array accesses, and other run-time er-
rors.

2. That the two predicates constraining memory protection segments
hold.

Combined, these two properties suffice to prove the absence of privilege
escalation on this example kernel.

17

4 Conclusion
By combining standard abstract interpretation techniques with a novel
weak shape abstract domain, we were able to build an analyzer to verify
safety and security properties directly on machine code efficiently, with a
low annotation burden.

References
[1] Patrick Cousot and Radhia Cousot. “Abstract Interpretation:

A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints.” In: POPL. 1977.

[2] Robin David et al. “BINSEC/SE: A Dynamic Symbolic Execu-
tion Toolkit for Binary-Level Analysis.” In: SANER. 2016 IEEE
23rd International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). Suita: IEEE,Mar. 2016, pp. 653–
656.

[3] Adel Djoudi, Sébastien Bardin, and Éric Goubault. “Recov-
ering High-Level Conditions from Binary Programs.” In: FM
2016: Formal Methods. Ed. by John Fitzgerald et al. Lecture
Notes in Computer Science. Springer International Publish-
ing, 2016, pp. 235–253.

[4] Graeme Gange et al. “An Abstract Domain of Uninterpreted
Functions.” In: VMCAI. Verification, Model Checking, and Ab-
stract Interpretation. Ed. by Barbara Jobstmann and K. Rustan
M. Leino. Vol. 9583. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2016, pp. 85–103.

[5] Philippe Granger. “Static Analysis of Arithmetical Congru-
ences.” In: Int. J. Comput. Math. 30.3-4 (1989), pp. 165–190.

[6] Gary A. Kildall. “A Unified Approach to Global Program Op-
timization.” In: Proceedings of the 1st Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages
- POPL ’73. The 1st Annual ACM SIGACT-SIGPLAN Sympo-
sium. Boston, Massachusetts: ACM Press, 1973, pp. 194–206.

18

[7] Johannes Kinder, Florian Zuleger, and Helmut Veith. “An Ab-
stract Interpretation-Based Framework for Control Flow Re-
construction from Binaries.” In: VMCAI. Verification, Model
Checking, and Abstract Interpretation. Ed. by Neil D. Jones
and Markus Müller-Olm. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, pp. 214–228.

[8] Antoine Miné. “Field-Sensitive Value Analysis of Embedded
C Programs with Union Types and Pointer Arithmetics.” In:
LCTES. Proceedings of the 2006 ACM SIGPLAN/SIGBEDCon-
ference on Language, Compilers, and Tool Support for Em-
bedded Systems. LCTES ’06. New York, NY, USA: ACM, 2006,
pp. 54–63.

[9] AntoineMiné. “SymbolicMethods to Enhance the Precision of
Numerical Abstract Domains.” In: VMCAI. Verification, Model
Checking, and Abstract Interpretation. Ed. by E. Allen Emer-
son and Kedar S. Namjoshi. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2006, pp. 348–363.

[10] Olivier Nicole et al. “No Crash, No Exploit: Automated Veri-
fication of Embedded Kernels.” In: RTAS. IEEE Real-Time and
Embedded Technology and Applications Symposium. Online,
2021.

[11] H. G. Rice. “Classes of Recursively Enumerable Sets and Their
Decision Problems.” In: Trans. Amer. Math. Soc. 74.2 (1953),
pp. 358–366. issn: 0002-9947, 1088-6850.

19

	Introduction
	Concrete semantics of machine code
	Abstract domains used in the analysis
	Control flow domain
	Numeric domain
	Weak shape domain
	Notations
	Types and their meaning
	The single type abstract domain
	The weak shape abstract domain

	Conclusion

