A Tight Integration of
Symbolic Execution and Fuzzing
(short paper)

Yaélle Vincont!?, Sébastien Bardin?, and Michaél Marcozzi?

! Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria,
Laboratoire Méthodes Formelles, Gif-sur-Yvette, France
yaelle.vincont@universite-paris-saclay.fr
2 Université Paris-Saclay, CEA, List, Saclay, France
first.last@cea.fr

Abstract. Most bug finding tools rely on either fuzzing or symbolic ex-
ecution. While they both work well in some situations, fuzzing struggles
with complex conditions and symbolic execution suffers from path explo-
sion and high constraint solving costs. In order to enjoy the advantages
from both techniques, we propose a new approach called Lightweight
Symbolic Ezecution (LSE) that integrates well with fuzzing. Especially,
LSE does not require any call to a constraint solver and allows for quickly
enumerating inputs. In this short paper, we present the basic concepts
of LSE together with promising preliminary experiments.

Keywords: Software Testing - Symbolic Execution - Fuzzing

1 Introduction

Context. Automatic test generation is a major topic in software engineering
and security. Currently, most test generation techniques and tools studied by
researchers and applied in industry rely on some form of either symbolic exe-
cution [2,9,11] or fuzzing [12,13]. Symbolic execution generates so-called seeds
(test inputs) covering as many execution paths as possible, by analyzing each
of them symbolically, in order to infer a corresponding path constraints that is
then solved by an off-the-shelf solver. Fuzzing relies on massive and cheap seeds
generation. While the first fuzzers were akin to blackbox random testing, grey-
box (mutation-based) fuzzing [14,16, 18] takes the technique one step further by
adding a feedback loop, where new seeds are produced by randomly mutating
previous seeds deemed as interesting (e.g. covering new parts of code).

Problem. Symbolic execution can explore arbitrarily deep parts of the program,
thanks to its powerful constraint derivation and solving machinery. Yet, it scales
badly as soon as the number of paths in the program is large and the constraints
are difficult to solve. On the contrary, the randomness of fuzzing enables quick
and easy seed generation, independent of program size or complexity. Yet, fuzzing
will usually fail to explore (in acceptable time) parts of the code protected by

complex conditions (e.g. deeply nested conditions or hard-coded ”magic bytes”
checks). Symbolic execution and fuzzing exhibit rather complementary strengths
and weaknesses, calling for a proper integration between the two techniques.

Goal and challenges. Our objective is precisely to develop a mized test gen-
eration technique reaching a sweet spot between the power of symbolic execution
and the lightness of greybox fuzzing. More precisely, we want to build an efficient
approach able to reason about complex code, while generating seeds much more
quickly and easily than symbolic execution would.

Related work. Several recent works [3,4,10,15,17] follow roughly the same
goal. Many of these approaches [15,17] combine an off-the-shelf fuzzer together
with an off-the-shelf symbolic executor, i.e. they do not integrate the two tech-
niques at the conceptual level. We aim at introducing a correct seed generation
technique which genuinely integrates the concepts from symbolic execution with
those of fuzzing.

Proposal. We introduce two novel ideas to tackle this problem: Lightweight
Symbolic Execution and Constrained Fuzzing. Lightweight Symbolic Execution
(LSE) is a variant of Symbolic Execution where the target constraint language is
restricted to an easily-enumerable fragment. As a consequence, deriving (correct)
path constraints in this language is more complicated but seeds exercising a given
path are then easy to enumerate, and do not require any SMT solver. Second, a
Constrained Fuzzer operates over a seed and an easy-to-enumerate constraint in
order to massively generate seeds exercising the intended path. Overall, LSE will
lead the exploration past specific conditions and towards interesting parts of the
code, while the constrained fuzzer will efficiently create seeds, including solutions
to the constraints. This allows us to explore the program without systematically
relying on symbolic analysis, and removes the need for an SMT solver to create
seeds satisfying the constraints.

Contribution. As a summary, our contribution is three-fold:

— We introduce Lightweight Symbolic Ezecution (LSE), a flavor of symbolic
execution tailored for tight integration with fuzzing. LSE relies on the novel
notion of easily-enumerable path predicates, and avoids the need for any
external constraint solver;

— We show how Lightweight Symbolic Execution can be smoothly integrated
with fuzzing, through the novel idea of Constrained Fuzzing, communicating
through easily-enumerable path predicates, yielding fast (solver-less) seed
enumeration together with targeted symbolic reasoning;

— Finally, we have implemented these ideas in an early prototype named CON-
Fuzz, built on top of BINSEC [5,6] and AFL [18], and provide promising
preliminary experiments against standard tools.

We believe that these preliminary results show the potential of LSE and
Constrained Fuzzing. Still, the experimental evaluation needs to be consolidated
on larger benchmarks and compared to the latest advances in fuzzing. This is
left as future work.

2 Symbolic execution

Symbolic execution [2,9,11] runs the program over symbolic input instead of
concrete values. Along the execution, symbolic execution maintains two pieces
of information about the state of the program: a symbolic state X — a map bind-
ing variables to their symbolic value — and a path constraint ¢ — a predicate
over the input symbols, describing the condition for a seed to reach the current
instruction. On branching instructions, symbolic execution forks in order to ex-
plore all possible paths (up to a given bound). When one of the forked analyses
reaches the program end, the resulting path constraint is a predicate over the
input, so that executing any of its solutions follows the path of all the branching
choices made in this analysis. That constraint can be tackled by an off-the-shelf
solver. If the constraint has a solution, the solver will return a seed which covers
the path. If there is no solution, it means that the path is unfeasible.

The execution tree on the right of Figure 1 shows the symbolic state and
path predicate for each of the (numbered) instructions in the program on the
left. In this tree, z(is the symbol corresponding to the program input returned
by the read_int function, and forking happens due to the condition if (x >=5).

([], T, [o]

l

([I—)l‘o}, T)’ (1]

~ N

0] ([x = =o], 5> z0), [2] ([x = zo], 5 < z0), [5]
int x := read-int(); [1] J J
(520 then T2 ([z = 5], 5 > x0), [3] ([z = 420], 5 < 20), [6]
else ’ (5] J J
. :X::;f:x? Eﬁ Gy (=10, 5> x0), 14] ([& = 820, 5 < @0), [7]

(a) Program (b) Symbolic Execution Tree

{CC() — 10}, {1:0 — 4}

(c) Possible seeds returned by a constraint solver

Fig. 1. Symbolic execution of a sample program

3 Coverage-based fuzzing

Fuzzing [12,13] is a brute-force software testing technique aimed at triggering
faults and vulnerabilities by running the program on a very large number of

quickly-generated random seeds. In coverage-based greybox fuzzing [16, 18], the
seed generation process (detailed in Figure 2) is lightly directed in order to
maximize the code coverage of the produced seeds. The fuzzing tool — or fuzzer
— maintains a seed database, which can be initialized by the user. The fuzzing
procedure is then basically a loop, executed for as long as possible, where every
new iteration selects a seed within the test database, applies a slight syntactical
modification to it (a.k.a. mutation) and runs the program on the mutated seed. If
the program run fails, the fuzzer successfully found a bug-triggering seed. If not,
code coverage data is collected and analyzed. If the mutated seed covered parts
of the code that had not been explored by previous iterations, it is considered to
be “interesting” and added to the seed database. Otherwise, it is discarded. The
coverage data is also used during the seed selection phase, in order to bias the
picking towards seeds that recently increased coverage. The rationale behind this
heuristic is that by mutating such seeds, there is a higher chance of exploring
the newly uncovered parts of the program.

x
Y seed Lyl seed | | _ program

selection mutation under test)

T v
| N
| coverage :
| coverage B .

increased coverage data

Fuzzer

Fig. 2. Coverage-based fuzzing process

4 Lightweight symbolic execution and constrained fuzzing

We first present an example showing the potential issues faced by fuzzing and
symbolic execution (Section 4.1). Then we provide an overview of our approach
(Section 4.2) and finally we describe promising preliminary experimental results
(Section 4.3).

4.1 Motivating example

We describe the issues behind fuzzing and symbolic execution and the ben-
efits of our approach by discussing how the KLEE symbolic execution engine
[1] and the AFL fuzzer [18], two popular and representative tools, struggle at
generating seeds for the sample program in Figure 3, while our implementation
of lightweight symbolic execution and constrained fuzzing (CONFUzz) performs
well. In a nutshell, the sample program contains (lines 9-12) a loop which dra-
matically increases the number of paths considered by KLEE, as well as (lines

OO~ Uk WN -

16-18) a set of nested equality conditions over the inputs, which might take AFL
a long time to cover.

AFL. The two main issues that will
prevent AFL from quickly finding
seeds penetrating the three nested con-
ditionals are the following. First, the
fuzzer does not know how to mutate
the seeds in order to enter the condi-
tionals, meaning that it will typically

int main(int argc, charxx argv) {

char buf[64];
int x, y;

read (0, buf, 64);

int cpt; have to try a large number of muta-
forif(ziif:[cégj cpt C<pt3(§)?281;’t+*) { .tions before succeeding. Second, S.ince
y 4= 1; it does not understand why a given
seed increases coverage, the fuzzer may
printf("%i\n”, y); apply mutations that will destroy this
i (buf[0] — ‘a’) ability.. For example,. it may mutate
if (buf[4] = 'F) “a42” into “042”, which does not sat-
‘fx(ﬁui [7] == 767) isfy the first condition anymore. Mean-
else while, the loop does not cause any
olse 2% problem to AFL, as it focuses on

x = 3; branch rather than path coverage.

1

R 4; KLEE. For KLEE, solving the specific

conditions from lines 16 to 18 is not

printf ("%i\n”, x);
an issue, as it will simply infer the cor-

return 0; responding path predicates — such as

' i[0] = ’a’, and then create a seed us-
ing a constraint solver. On the other

Fig. 3. Sample program hand, KLEE will actively try to ex-

plore every possible path of the loop, yielding path explosion.

4.2 Qur approach: ConFuzz

CoNFuzz relies on two key components: Lightweight Symbolic Execution (LSE)
and Constrained Fuzzing (CF). These two components communicate through the
key notion of easily-enumerable path predicate. CF identifies interesting runs (like
a classical fuzzer) and derives targets to be sent to LSE from these runs. LSE is
in charge of deriving easily-enumerable constraints for these targets in the code.
CF is then back in charge, to quickly enumerate solutions of such constraints.

Easily-enumerable path predicates. We want LSE to create path predicates
in order to produce seeds reaching targets in the code. For CF to solve such
predicates, we need them to be easily-enumerable, i.e. creating n solutions is
linear w.r.t. the number of inputs and n. For that, we restrict our constraint
language for path predicates to conjunctions of interval constraints (k < z < k')
and equality constraints between variables (x = y). Then, we rely on back-
ward domain propagation to translate actual path constraints to our language,
together with concretization (forcing a symbolic variable to take an observed

concrete runtime value) for some hard-to-handle constraints, such as disequal-
ity. Figure 4 shows an example of the path predicate created by LSE (p2), i.e.
translated from the actual predicate ¢; to our constraint language. While not
complete, o is correct: all its satisfying seeds follow the path from ¢;.

t={z:0;y:1; z2:2;
t:4; v:5}
a:=x 4+ 3;
if (a < 4) then declare %, y, z, t, v; <1 <1
b:=y; define a = x + 3; ANy=z ANy=z
c =t assert (a < 4); ANt#v ANt=4
else define b = y; ANv=25
b :=2; define c = t;
if (b !=z) then assert (b == z);
d:=4; assert (c # v);
else if (c !1=v) define d = 3;
d:=3

(d) easily-enumerable
path predicate (¢2)

(c) path predi-
cate (p1)

(a) program P (b) trace (o)

Fig. 4. Example of an easily-enumerable path predicate

Integrating Lightweight Symbolic Execution and Constrained Fuzzing.
Figure 5 illustrates how the two techniques communicate. In practice, communi-
cation is asynchronous, as both techniques run in parallel. When the fuzzer finds
an interesting seed, it sends the trace as well as the target (a branch condition
to be inverted) to LSE. LSE will analyze such information and infer constraints,
which will be sent back to the fuzzer, to be associated to the seed in the database.

Constrained constraints nghtwelght
il Fuzzor € - - ------- - Symbolic
E .

: o e xecution
| no_~Y%._ gace, target

seed | new
I coverage..
l
\ 4

Program
Under Test

Fig. 5. Overview of CoNFuzz

4.3 Preliminary experiments

Sample program from Figure 3. We consider two settings, depending on
whether the loop can be unrolled at most 20 iterations, or at most 0 iterations.
We run KLEE, AFL and AFL++[8] (a popular fork of AFL) 10 times each

over the sample program with a timeout of 20 minutes, and compare the time
necessary for each tool to reach 100% branch coverage (if a tool reaches less, we
count 20 minutes). We also carry the experiment with our CONFuzz prototype.
Results are presented in Table 1 and fulfill our expectations: fuzzers are
not impacted by the loop but struggle on nested constraints (showing here poor
performance and significant variability), while KLEE has a hard time going from
0 iteration to 20. On the other hand, we can observe that CONFUzz performs
very well here (quick time for full coverage, low variability) and is not impacted
by the loop. Interestingly, CONFUZZ generates here roughly 6x more seed than
KLEE, but only 4 of them come from a symbolic reasoning, highlighting the
capacity of CONFUZZ to trigger symbolic reasoning only when needed.

Table 1. Comparison of KLEE, AFL and CONFUZZ on our sample program

AFL AFL++ KLEE CoNFuzz

Nb success/Nb tries 9/10 10/10 10/10 10/10
Avg 247 14 0.3 1.0
0 iterations - 20min Min 15 0.5 0.2 0.7

Time (s) to cover all branches

Max TO 92 0.5 1.4
Dev (o) 348 26 0.1 0.2
Nb success/Nb tries 9/10 10/10 10/10 10/10

Avg 246 96 133 1.4

20 iterations - 20min . Min 2.2 14 121 1.2

Time (s) to cover all branches Max TO 627 155 19

Dev (o) 355 177 9.5 0.2
AFL - average number of executions 10,433,816
AFL++ - average number of executions 14,239,200
KLEE - average number of generated seeds 1,101,764
CoNFuzz - average number of executions 6,131,172
CoNFUzz - average number of traces sent to LSE 4

LAVA-M. We report the performance of CONFUZZ on 3/4 programs from the
standard LAVA-M fuzzing benchmark [7] (5 runs of 1h) — our prototype crashes
on the last example. On base64 (3kloc, 44 injected faults), CONFUZzZ reports
on average 38.8 fault per run (min: 38, max: 39), while KLEE finds 10 (min:8,
max: 11), AFL++ finds 0.2 (min:0, max:1) and AFL reports 0 fault. On md5sum
(3kloc, 57 injected faults), CONFUZZ reports on average 9 bugs (min: 8, max:
11), where KLEE, AFL++ and AFL do not find any bug. On uniq (3kloc, 28
inbjected faults), CONFUzZz reports 26.9 faults on average (min:15, max:29),
better than KLEE (avg: 5, min: 5, max: 5), AFL++ (avg: 0.4, min: 0 min, max:
1) and AFL (avg: 0, min: 0, max: 0).

5 Conclusion

We have introduced and discussed Lightweight Symbolic Execution (LSE), a
variant of Symbolic Execution tailored to tight integration with fuzzing thanks
to its focus on fast solution enumeration — yielding Constrained Fuzzing. We

report promising early experiments against standard tools, demonstrating the
potential of these novel ideas. Future work includes consolidating the experi-
mental evaluation with larger benchmarks and the latest advanced fuzzers as
competitors, as well as providing a full formalization of the approach.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.

18

C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In OSDI, 2008.

C. Cadar and K. Sen. Symbolic execution for software testing: three decades later.
Communications of the ACM, 56(2):82-90, 2013.

P. Chen and H. Chen. Angora: Efficient fuzzing by principled search. In 2018
IEEE Symposium on Security and Privacy (SP), pages 711-725. IEEE, 2018.

P. Chen, J. Liu, and H. Chen. Matryoshka: fuzzing deeply nested branches. In
Conference on Computer and Communications Security, 2019.

R. David, S. Bardin, T. D. Ta, J. Feist, L. Mounier, M.-L. Potet, and J.-Y. Marion.
A dynamic symbolic execution toolkit for binary-level analysis. In Proceedings
of the 23rd IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2016. IEEE, 2016.

A. Djoudi and S. Bardin. Binsec: Binary code analysis with low-level regions. In
TACAS. Springer, 2015.

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ul-
rich, and R. Whelan. Lava: Large-scale automated vulnerability addition. In IEEE
Symposium on Security and Privacy (SP), 2016.

A. Fioraldi, D. Maier, H. Eif}feldt, and M. Heuse. Afl4++: Combining incremental
steps of fuzzing research. In WOOT, 2020.

P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE: whitebox fuzzing for security
testing. Commun. ACM, 55(3):40-44, 2012.

H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang. Pangolin: Incremental hybrid
fuzzing with polyhedral path abstraction. In Security & Privacy, 2020.

J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385-394, 1976.

V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo.
The art, science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering, 2019.

B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of
UNIX utilities. Commun. ACM, 33(12):32-44, 1990.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. Vuzzer:
Application-aware evolutionary fuzzing. In 24th Annual Network and Distributed
System Security Symposium, NDSS, 2017.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kriigel, and G. Vigna. Driller: Augmenting fuzzing through selective
symbolic execution. In NDSS, 2016.

Website. Libfuzzer. https://llvm.org/docs/LibFuzzer.html, 2021.

I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association, 2018.

M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/, 2021.

