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Abstract. Shape analyses aim at inferring semantic invariants related
to the data-structures that programs manipulate. To achieve that, they
typically abstract the set of reachable states. By contrast, abstractions
for transformation relations between input states and output states not
only provide a finer description of program executions but also enable the
composition of the effect of program fragments so as to make the analysis
modular. However, few logics can efficiently capture such transformation
relations. In this paper, we propose to use connectors inspired by separation
logic to describe memory state transformations and to represent procedure
summaries. Based on this abstraction, we design a top-down interprocedural
analysis using shape transformation relations as procedure summaries.
Finally, we report on implementation and evaluation.

1 Introduction

Static analyses based on abstractions of sets of states (or for short, state analyses)
compute an over-approximation of the states that a program may reach, so as to
answer questions related, e.g., to safety (absence of errors or structural invariant
violations). By contrast, one may also design static analyses that discover relations
between program initial states and output states. In this paper, we refer to such
static analyses as transformation analyses. A transformation relation between the
initial state and the output state of a given execution can provide an answer to
questions related to the functional correctness of a program (i.e., does it compute a
correct result when it does not crash and terminates). Another application of such a
transformation relation is to let the analysis reuse multiple times the result obtained
for a given code fragment (e.g., a procedure), provided the analysis can compose
transformation relations. The great advantage of this approach is to reduce the
analysis cost, by avoiding to recalculate the effect, e.g., of a procedure in multiple
calling contexts. This is known as the relational approach to interprocedural
analysis [35].

However, a major difficulty is to find an accurate and lightweight representation
of the input-output transformation relation of each procedure. A first solution is to
resort to tables of abstract pre- and post-conditions that are all expressed in a given
state abstract domain [10,2,15,22]. However, this generally makes composition
imprecise unless very large tables can be computed. A second solution is to build
upon a relational abstract domain, namely, an abstract domain that can capture
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relations across distinct program variables. The transformation between states
is then expressed using “primed” and “non-primed” variables where the former
describe the input state and the latter the output state [24,26,27]. As an example,
we consider a procedure that computes the absolute value of input x and stores it
into y (for the sake of simplicity we assume mathematical integers):
– Using the intervals abstract domain [9], we can provide the table [((x ∈

[−5,−1], y ∈]−∞,+∞[) 7→ (x ∈ [−5,−1], y ∈ [1, 5])); ((x ∈ [−1, 10], y ∈
]−∞,+∞[) 7→ (x ∈ [−1, 10], y ∈ [0, 10]))] (this table is obviously not unique);

– Using the relational abstract domain of polyhedra [11], we can construct the
transformation relation (x′ = x ∧ y′ ≥ x ∧ y′ ≥ −x).

We note that, while the expressiveness of the two is not comparable, the latter option
is more adapted to compositional reasoning. For instance, given pre-condition
−10 ≤ x ≤ −5, the analysis based on a table either returns a very imprecise answer
or requires enriching the table whereas the analysis with a relational domain can
immediately derive x′ = x ∈ [−10,−5] (x has not changed) and y′ ≥ 5.

Such reasoning becomes more complex when considering non-numerical facts,
such as memory shape properties. Many works rely on the tabulation approach,
using a conventional shape state abstraction [2,15,22]. In general, the tabulation
approach restricts the ability to precisely relate procedure input and output states
and may require large tables of pairs of formulas for a good level of precision. The
approach based on a relational domain with primed and non-primed variables has
been implemented by [19,18] in the TVLA shape analysis framework [33]. However,
it is more difficult to extend shape analyses that are based on separation logic [28]
since a separation logic formula describes a region of a given heap; thus, it does
not naturally constrain fragments of two different states. To solve this issue, a
first approach is to modify the semantics of separation logic connectors to pairs of
states [34]. A more radical solution is to construct novel logical connectors over
state transformation relations that are inspired by separation logic [17]. These
transformations can describe the effect of a program and express facts such as
“memory region A is left untouched whereas a single element is inserted into the list
stored inside memory regionB and the rest of that list is not modified”. The analysis
of [17] is designed as a forward abstract interpretation which produces abstract
transformation relations. Therefore, it can describe tranfsormations precisely using
separation logic predicates and without accumulating tables of input and output
abstract states.

However, this analysis still lacks several important components to actually make
interprocedural analysis modular. In particular, it lacks a composition algorithm
over abstract transformation relations. Modular interprocedural analysis also needs
to synchronize two distinct processes that respectively aim at computing procedure
summaries and at instantiating them at a call-site. In this paper, we propose a
top-down analysis based on shape summaries and make the following contributions:
– in Section 2, we demonstrate the use of abstract shape transformations;
– in Section 3 and Section 4, we formalize transformation summaries based on

separation logic (intraprocedural analysis is presented in Section 5);
– in Section 6, we build a composition algorithm over transformation summaries;
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1 typedef struct list { struct list ∗ n ; /* ... */ } list ;
2 void append ( list ∗l0 , list ∗l1 ){
3 assume ( l0 != NULL ) ; list ∗c = l0 ;
4 while ( c−>n != NULL ){ c = c−>n ; }
5 c−>n = l1 ;
6 }
7 void double_append ( list ∗k0 , list ∗k1 ; list ∗k2 ){
8 assume ( k0 != NULL ) ; append ( k0 , k1 ) ; append ( k0 , k2 ) ;
9 }

Fig. 1. Simple and double list append procedures.

– in Section 7, we formalize a modular interprocedural analysis;
– in Section 8, we report on implementation and evaluation.

2 Overview

In this section, we study a restricted example to highlight some issues in interpro-
cedural analysis. We consider a recursive implementation of C linked lists, with
a couple of procedures shown in Figure 1. The function append takes two lists
as arguments and assumes the first one non-empty, it traverses the first list, and
mutates the pointer field of the last element. The function double_append takes
three lists as arguments (the first one is assumed non-empty) and concatenates
all three by calling append. The topic of our discussion is only the invariants
underlying this code and their discovery, not the efficiency of the code itself.

State abstraction and analysis. We consider an abstraction based on separation
logic [28], as shown, e.g., in [13,6]. To describe sets of states, we assume a predicate
lseg(α0, α1) that represents heap regions that consist of a list segment starting
at some address represented by the symbolic variable α0 and such that the last
element points to some address represented by α1. Such a segment may be empty.
For short, we note list(α) for the instance lseg(α,0x0), which denotes a complete
singly-linked list (as the last element contains a null next link). A single list element
writes down α0 · n 7→ α1 where n denotes the next field offset (we elide other
fields). More generally, α0 7→ α1 denotes a single memory cell of address α0 and
content α1. Thus &x 7→ α expresses that variable x stores a value α (which may be
either a base value or the address of a memory cell). Predicates lseg and list are
summary predicates as they describe unbounded memory regions; their denotation
is naturally defined by induction. As usual, separating conjunction ∗ conjoins
predicates over disjoint heap regions.

Assuming the abstract precondition &l0 7→ α0 ∗ lseg(α0, α1) ∗ α1 · n 7→
0x0 ∗ &l1 7→ α2 ∗ list(α2), existing state shape analyses [13,6] can derive the
post-condition &l0 7→ α0 ∗ lseg(α0, α1) ∗ α1 · n 7→ α2 ∗ &l1 7→ α2 ∗ list(α2) by
a standard forward abstract interpretation [9] of the body of append. The analysis
proceeds by abstract interpretation of basic statements, unfolds summaries when
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(c) Transformation relation composition

Fig. 2. A shape transformation procedure summary and composition.

analyzing reads or writes into the regions that they represent, and folds basic
predicates into summaries at loop heads. The convergence of the loop analysis takes
a few iterations and involves widening which is often a rather costly operation.

The analysis of double_append by inlining follows similar steps. One important
note though is that it analyses the body of append twice, namely once per calling
context, and thus also the loop inside append. In turn, if double_append is called
in several contexts in a larger program, or inside a loop, its body will also be
analyzed multiple times, which increases even more the overall analysis cost.

Transformation analysis. Unlike state analyses, transformation analyses compute
abstractions of the input-output relation of a program fragment. As an example,
given the above abstract pre-condition, the analysis of [17] infers relations as shown
in Figure 2(a). This graphical view states that the procedure append keeps both
summary predicates unchanged and only modifies the middle list element so as to
append the two lists. This transformation is formally represented using three basic
kinds of relational predicates that respectively state that one region is preserved,
that one region is “transformed” into another one, and that two transformations
are conjoined at the transformation level. To stress the difference, we write ∗T
for the latter, instead of just ∗. Although it uses transformation predicates, the
analysis follows similar abstract interpretation steps as [13,6].

Towards modular analysis: composition of transformation abstractions. The first
advantage of transformation predicates such as Figure 2(a) is that they can be
applied to state predicates in the abstract, as a function would be in the concrete.
Indeed, if we apply this abstract transformation to the abstract pre-condition given
above, we can match each component of the abstract transformation of Figure 2(a),
and derive its post-condition. In this example, the body of each summary is left
unchanged, whereas the last element of the first list is updated. The result is shown
in Figure 2(b) and it can be derived without reanalyzing the body of append.



Interprocedural Shape Analysis Using SL-based Transformer Summaries 5

While these steps produce a state analysis of the body of double_append,
we may want to summarize the effect of this function too, as it may be called
somewhere else in a larger program. To achieve this, we need not only to apply
an abstract transformation to an abstract state, but to compose two abstract
transformations together. Intuitively, this composition should proceed in a similar
way as the application that we sketched above. In the case of double_append, the
analysis requires case splits depending on whether k1 is empty or not. For brevity,
we show only the case where this list is non-empty in Figure 2(c). In general, the
composition of two transformations requires to match the post-condition of the
first and the pre-condition of the second, and to refine them, using some kind
of intersection as shown in Section 6. Another important issue is the summary
computation process. Bottom-up analyses strive for general summaries whatever
the calling context. However, a procedure may behave differently when applied
to other structures (e.g., a binary tree or a doubly linked list), thus the top-down
approach which provides information about the calling contexts before they are
analyzed seems more natural. However, this means that the analysis should infer
summaries and apply them simultaneously, and that the discovery of new calling
contexts may require for more general summaries. We describe this in Section 7.

3 Abstraction of sets of states and state transformations

In the following sections, we restrict ourselves to a small imperative language
that is sufficient to study procedure transformation summaries, although our
implementation described in Section 8 supports a larger fragment of C.We also only
consider basic singly linked lists in the formalization although the implementation
supports a large range of list or tree-like inductive data-structures.

Concrete states, programs, and semantics. We write X for the set of program
variables and V for the set of values, which include memory addresses. The address
of a variable x is assumed fixed and noted &x. Structure fields are viewed both as
names and as offsets; they include the null offset (basic pointer) and n, the “next”
field of a list element. We let a memory state σ ∈ M be a partial function from
variable addresses and heap addresses to values. We write dom(σ) for the domain
of σ, that is the set of elements for which it is defined. Additionally, if σ0, σ1 are
such that dom(σ0) ∩ dom(σ1) = ∅, we let σ0 � σ1 be the memory state obtained
by appending σ1 to σ0 (its domain is dom(σ0) ∪ dom(σ1)). If a is an address
and v a value, we write [a 7→ v] for the memory state σ such that dom(σ) = {a}
and σ(a) = v. A command C is either an assignment, a local variable declaration
or a loop (we omit tests and memory allocation out as our procedure summary
analysis handles them in a very standard way). A procedure P is defined by a list of
arguments and a body (we let function returns be encoded via parameter passing
by reference). A program is made of a series of procedures including a main. All
variables are local. The syntax of programs is defined by the grammar below:

C ::= x = y | x = v | x -> n = y | x = y -> n | C; C | while(x 6= 0x0){C}
| decl x; | f(x0, . . . , xk)

P ::= proc f(p0, . . . , pk){C} R ::= P0 . . . Pl proc main(){C}
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n(∈ N) ::= α (α ∈ A) | &x (x ∈ X) c] ::= n� 0x0 (� ∈ {=, 6=}) | n = n′

h](∈ H) ::= emp | n · f 7→ n′ | lseg(α, α′) | list(α) | h] ∗S h] | h] ∧ c]

(a) Abstract states syntax

γH(n · f 7→ n′) = {([ν(n) + f 7→ ν(n′)], ν)} γH(emp) = {([], ν)}
γH(h

]
0 ∗S h]1) = {(σ0 � σ1, ν) | (σ0, ν) ∈ γH(h

]
0) ∧ (σ1, ν) ∈ γH(h

]
1)}

γH(h
] ∧ c]) = {(σ, ν) | (σ, ν) ∈ γH(h

]) ∧ ν ∈ γC(c
])}

(b) Concretization of abstract states

Fig. 3. Syntax and concretization of the abstract states.

We let the semantics of a command C be a function JCKT : P(M)→ P(M) that maps
a set of input states into a set of output states. We do not detail the definition of
this semantics as it is standard. In the following, we formalize two abstractions,
that respectively describe sets of states and relations over states.

Abstract states and transformations. The syntax of abstract heaps h] ∈ H is shown
in Figure 3(a). We let A = {α, α′, . . .} denote a set of symbolic variables that
abstract heap addresses and values. A symbolic name n ∈ N is either a variable
address&x or a symbolic value α. Numerical constraints c] describe predicates over
symbolic names. An abstract heap (or state) h] ∈ H is the (possibly) separating
conjunction of region predicates that abstract separate regions [28], which consist
either of an empty region emp, or of a basic memory block (described by a points-to
predicate n · f 7→ n′), or inductive summaries, and may include some numerical
constraints (that do not represent any memory region and only constrain symbolic
names). We note ∗S for separating conjunction over states. The abstract states
defined in Figure 3(a) are of a comparable level of expressiveness as the abstractions
used in common shape analysis tools such as [13,6,2,14] to verify properties such
as the absence of memory errors or the preservation of structural invariants.

The concretization of abstract states is shown in Figure 3(b). It uses valuations
to tie the abstract names and the value they denote. A valuation consists of a
function ν : N→ V. We assume the concretization γC(c

]) of a numeric constraint
c] returns the set of valuations that meet this constraint. Abstract heaps are
concretized into sets of pairs made of a heap and of the valuation that realizes this
heap. The concretization of summary predicates list and lseg is defined recursively,
by unfolding. Indeed, we let γH(h

]
0) =

⋃
{γH(h

]
1) | h

]
0 →U h]1}, where→U is defined

by (cases for list are similar):

lseg(α0, α1)→U emp ∧ α0 = α1

lseg(α0, α1)→U α0 · n 7→ α2 ∗S lseg(α2, α1) ∧ α0 6= α1

Example 1 (Abstract state). The abstract state in Figure 2(b) writes down as:

&l0 7→ α0 ∗S &l1 7→ α2 ∗S lseg(α0, α1) ∗S α1 · n 7→ α2 ∗S list(α2)

Assuming both lseg(α0, α1) and list(α2) unfold to structures of length one, it
concretizes in the same way as:

&l0 7→ α0 ∗S &l1 7→ α2 ∗S α0 · n 7→ α1 ∗S α1 · n 7→ α2 ∗S α2 · n 7→ α3 ∧ α3 = 0
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t](∈ T) ::= Id(h]) | [h] 99K h]] | t] ∗T t] | t] ∧ c]

(a) Abstract transformations syntax

γT(Id(h
])) = {(σ, σ, ν) | (σ, ν) ∈ γH(h

])}
γT([h

]
i 99K h

]
o]) = {(σi, σo, ν) | (σi, ν) ∈ γH(h

]
i ) ∧ (σo, ν) ∈ γH(h

]
o)}

γT(t
]
0 ∗T t]1) = {(σ0,i � σ1,i, σ0,o � σ1,o, ν) |

(σ0,i, σ0,o, ν) ∈ γT(t
]
0) ∧ dom(σ0,i) ∩ dom(σ1,o) = ∅

∧ (σ1,i, σ1,o, ν) ∈ γT(t
]
1) ∧ dom(σ1,i) ∩ dom(σ0,o) = ∅}

γT(t
] ∧ c]) = {(σi, σo, ν) ∈ γT(t

]) | ν ∈ γC(c
])}

(b) Concretization of abstract transformations

Fig. 4. Syntax and concretization of abstract transformations.

Abstract transformations. Abstract transformations are defined on top of abstract
states and rely on specific logical connectors. Their syntax is defined in Figure 4(a).
A heap transformation is either the identity Id(h]), which denotes physical equality
over pairs of states that are both described by h], a state transformation [h]i 99K h

]
o]

which captures input/output pairs of states respectively defined by h]i and by
h]o, or a separating conjunction of transformations t]0 ∗T t]1 (we write ∗T to stress
the distinction with the state separating conjunction ∗S). The concretization of
transformations is shown in Figure 4(b). It is built upon the previously defined γH

and also utilizes valuations. The most interesting case is that of ∗T: this connector
imposes disjointness not only of the sub-heaps in both the pre- and post-state, but
also across them. In this paper, we study only a basic form of the transformation
predicate ∗T although it may be strengthened with additional constraints [16],
e.g., to assert that the footprint has not changed or that only specific fields may
have been modified. We leave out such constraints as their goal is orthogonal to the
focus of this paper. Finally, the analysis uses finite disjunctions of transformations.

Example 2 (Abstract transformation). The transformation informally described in
Figure 2(a) is captured by the abstract transformation below:

t] = Id (&l0 7→ α0 ∗S &l1 7→ α2 ∗S lseg(α0, α1) ∗S list(α2))

∗T [(α1 · n 7→ 0x0) 99K (α1 · n 7→ α2)]

In the following, we write h]0 →U h]1 when h]0 may be rewritten into h]1 by applying
→U to any of its sub-terms.We use this notation for both heaps and transformations.
Last, we let→U[α] denote unfolding of a list(α) or lseg(α, . . .) predicate.

4 Procedure summarization.

The semantics of a procedure boils down to a relation between its input states
and its output states, thus our first attempt at summaries over-approximates the
input-output relation of the procedure. To express this, we introduce the following
notation. If f : P(A)→ P(B) is a function and R ⊆ A×B is a relation, we note
f b R if and only if ∀X ⊆ A, X × f(X) ⊆ R.
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Definition 1 (Global transformation summary). A sound global transfor-
mation summary (or, for short, global summary) of procedure proc f(. . .){C} is
an abstract transformation t] that over-approximates JCKT in the sense that:

JCKT b {(σi, σo) | ∃ν, (σi, σo, ν) ∈ γT(t
])}

For example, function append (Figure 1) can be described using a global procedure
summary (noted t] in Example 2). While this notion of summary may account
for the effect of a procedure, it is not adequate to describe intermediate analysis
results. As an example, a procedure f is likely to be called in multiple contexts. In
that case, when the analysis reaches a first context, it computes a summary t], that
accounts for the effect of the procedure in that context, for a given set of procedure
input states. When it reaches a second context, it should be able to decide whether
t] also covers the states that reach the procedure in that second context. Observe
that the pre-state of t] does not suffice since t] may have been computed for some
very specific context. Moreover, the left projection of t] may not account for some
call states encountered so far when these lead to non-termination or to an error
in the body of f. To overcome this issue, an over-approximation of the procedure
input states observed so far should be adjoined to the global summary:

Definition 2 (Context transformation summary). A sound context trans-
formation summary (or, for short, context summary) of procedure proc f(. . .){C}
is a pair (h]f, t

]
f) such that the following holds:

(λ(M ⊆ {σ | ∃ν, (σ, ν) ∈ γH(h
]
f)})·JCKT (M)) b {(σi, σo) | ∃ν, (σi, σo, ν) ∈ γT(t

]
f)}

Intuitively, Definition 2 asserts that (h]f, t
]
f) captures all the functions such that

their restriction to states in h]f can be over-approximated by relation t]f. Although
we do not follow this approach here, the h]f component may be used in order to
augment summaries with context sensitivity. We note that h]f accounts for all states
found to enter the body of f so far, even though they may lead to no output state
in t]f (e.g., if the evaluation of the body of f from them does not terminate or fails
due to an error, as shown in Example 4).

Example 3 (Context summary). We let h] = &l0 7→ α0 ∗S lseg(α0, α1) ∗S
α1 · n 7→ 0x0 ∗S &l1 7→ α2 ∗S list(α2) and assume that t] is defined as in
Example 2. Then, (h], t]) defines a valid context summary for append (Figure 1).

Example 4 (Role of the pre-condition approximation in context summaries). We
consider the function below and assume it is always called in a state where l0 is a
valid pointer and l1 points to a well-formed, but possibly empty, singly-linked list:

1 void getnext ( list ∗∗l0 , list ∗l1 ){ ∗l0 = l1−>n ; }

Obviously, this function will crash when the list is empty, i.e., when l0 is the null
pointer. However, the pair (h]f, t

]
f) below defines a valid transformation summary
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for this procedure:

h]f = &l0 7→ α0 ∗S α0 7→ α1 ∗S &l1 7→ α2 ∗S list(α2)

t]f = Id(&l0 7→ α0 ∗S &l1 7→ α2 ∗S α2 · n 7→ α3 ∗S list(α3))

∗T [α0 7→ α1 99K α0 7→ α3]

We observe that the h]f component describes not only states for which the procedure
returns but also states for which it crashes since the list pointer cl1 is null. The
former are not part of the concretization of the transformation component h]f.

The above example shows the importance of the first component of the transfor-
mation summary: it conveys the fact that a set of states have been considered by
the analysis as a pre-condition for a program fragment, even when the program
fragment may not produce any post-condition for these states hereby they can be
omitted from the transformation part.

5 Intraprocedural analysis

The analysis performs a forward abstract interpretation [9] over abstract transfor-
mations (rather than on abstract states). More precisely, the abstract semantics
JCK]T of a command C inputs a transformation describing the entire computation so
far, before executing C, and outputs a new transformation that reflects the effect of
C on top of that computation. Intuitively, the input of JCK]T may be viewed the dual
of a continuation. Formally, the analysis is designed so as to meet the following
soundness statement, for any transformation t]:

∀(σ0, σ1, ν) ∈ γT(t
]), σ2 ∈ M, (σ1, σ2) ∈ JCKT =⇒ (σ0, σ2, ν) ∈ γT(JCK

]
T(t

])) (1)

The analysis of assignments and loops follows from [17]. It may require finite
disjunctions of transformations although we do not formalize this aspect since it is
orthogonal to the goal of this paper. We recall the main aspects of their algorithms
in this section and refer the reader to [17] for a full description.

Post-conditions for assignment. We consider an assignment command x -> n = y
(the analysis of other kinds of commands is similar), and a pre-transformation
t], and we discuss the computation of Jx -> n = yK]T(t

]). To do this, the analysis
should first localize both x -> n and y in the post-state of t], by rewriting t] into an
expression of the form Id(&x 7→ α0 ∗S &y 7→ α1) ∗T t]0 or [(. . .) 99K (&x 7→ α0 ∗S
&y 7→ α1)] ∗T t]0, and searching for α0 in t]0. Two main cases may arise:

– if t]0 contains a term of the form Id(α0 · n 7→ α2) or [(. . .) 99K (α0 · n 7→ α2)],
the post-transformation is derived by a mutation over the pointer cell, which
produces a term of the form [(. . .) 99K (α0 · n 7→ α1)];

– if t]0 contains a term Id(h]0) or [(. . .) 99K h
]
0] where h

]
0 is either list(α0) or

lseg(α0, . . .), the summary should be unfolded so that the modified cell can be
resolved as in the previous case; this step relies on relation→U (Section 3).
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It is also possible that the localization of x -> n fails, which typically indicates
that the program being analyzed may dereference an invalid pointer. Besides
assignment, the analysis also supports other such operations; for instance, we write
newVT

][x0, . . . , xn] (resp., delVT
][x0, . . . , xn]) for the operation that adds (resp.,

removes) variables x0, . . . , xn to the output state of the current transformation.
They over-approximate concrete operations noted newV and delV.

Weakening. The analysis of loop statements proceeds by abstract iteration over
the loop body with widening. Intuitively, the widening t]0 OT t]1 of transformations
t]0, t

]
1 returns a new transformation t], such that γT(t

]
i) ⊆ γT(t

]) for all i ∈ {0, 1}. In
the state level, widening replaces basic blocks with summaries (effectively inversing
→U). In the transformation level, widening commutes with Id and∗T whenever their
arguments can be widened as above, and weakens them into [99K] transformations
otherwise. Furthermore, this transformation introduces summary predicates so as to
ensure termination of all widening sequences [17]. Similarly, t]0 vT t]1 conservatively
decides inclusion test (if t]0 vT t]1 holds, then γT(t

]
0) ⊆ γT(t

]
1)).

Example 5 (Analysis of the loop of append). In this example, we consider the
loop at line 4 in the append function (Figure 1) and only present the part of the
memory reachable from c. The analysis of the loop starts with the transformation
Id(&l0 7→ α ∗S &c 7→ α ∗S list(α)) ∧ α 6= 0. The analysis of the assignment
inside the loop body forces the unfolding of list, and produces Id(&l0 7→ α ∗S
α · n 7→ α′ ∗S list(α′)) ∗T [(&c 7→ α) 99K (&c 7→ α′)] ∧ α 6= 0. The widening of
these two transformations produces Id(&l0 7→ α ∗S lseg(α, α′) ∗S list(α′)) ∗T
[(&c 7→ α) 99K (&c 7→ α′)] ∧ α 6= 0, which also turns out to be the loop invariant.

6 Abstract composition

In this section, we set up the abstract operations that are required to rely on
transformations for modular analysis. In Section 2, we mentioned application and
composition. We remark that the application of a transformation t] to an abstract
state h] boils down to the abstract composition of t] with Id(h]), since the latter
represents exactly the set of pairs (σ, σ) where σ is described by h]. Moreover,
we observed in Section 2 that composition requires to reason over intersection of
abstract states. Thus, we only define intersection and composition in this section.

Abstract intersection. In this paragraph, we set up an abstract operator inter],
which inputs two abstract states and returns a disjunctive abstract state that over-
approximates their intersection. The computation over abstract heaps is guided by
a set of rewriting rules that are shown in Figure 5. The predicate h]0 u h]1  u H

means that the computation of the intersection of h]0 and h]1 may produce the
disjunction of abstract heapsH (there may exist several solutions for a given pair of
arguments). We remark that the definition of γH lets symbolic variables be existen-
tially quantified, thus they may be renamed without changing the concretization,
following usual α-equivalence. Therefore, the rules of Figure 5 assume that both
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h]0,0 u h]1,0  u H0 h]0,1 u h]1,1  u H1

(h]0,0 ∗S h]0,1) u (h]1,0 ∗S h]1,1) u {h]0 ∗S h]1 | h]0 ∈ H0 ∧ h]1 ∈ H1}
u∗S

h] is either emp, or n · f 7→ n′, or list(α), or lseg(α, α′)

h] u h]  u {h]}
u=

list(α1) u h]1  u H

list(α0) u (lseg(α0, α1) ∗S h]1) u {lseg(α0, α1) ∗S h] | h] ∈ H}
u[l, s]

lseg(α1, α2) u h]1  u H α2 6= α1

lseg(α0, α2) u (lseg(α0, α1) ∗S h]1) u {lseg(α0, α1) ∗S h] | h] ∈ H}
u[s, s]

h]0 contains a list(α0) or lseg(α0, α1) term α0 carries no summary in h]1

h]0 u h]1  u {h] | ∃h]0,u, H, (h
]
0 →U[α0] h

]
0,u) ∧ (h]0,u u h]1  u H) ∧ h] ∈ H}

uu

Fig. 5. Abstract intersection rewriting rules.

arguments follow a consistent naming, although the implementation should per-
form α-equivalence whenever needed and maintain a correspondence of symbolic
variables [5]. Rule u∗S states that intersection can be computed locally. Rule u=
expresses that intersection behaves like identity when both of its arguments are
the same basic term. Rules u[l, s] and u[s, s] implement structural reasoning over
summaries. Finally, rule uu unfolds one argument so as to consider all subsequent
cases. The result may differ depending on the order of application or even on
the way each rule is applied. As an example, u∗S may produce different results
depending on the way both arguments are split into h]i,0 and h]i,1, which may affect
precision. Therefore, our implementation follows a carefully designed application
strategy that attempts to maximize the use of u=. We omit the numerical predicate
intersection (handled by a numerical domain intersection operator). Given two
abstract heaps h]0, h

]
1, the computation of inter](h]0, h

]
1) proceeds by proof search

following the rules of Figure 5 up-to commutativity (standard rule, not shown).
In case this system fails to infer a solution, returning either argument provides a
sound result.

Definition 3 (Abstract intersection algorithm). The operator inter] is a
partial function that inputs two abstract heaps h]0, h

]
1 and returns a disjunction of

abstract heaps H such that h]0 u h]1  u H following Figure 5.

Theorem 1 (Soundness of abstract intersection). Abstract intersection is
sound in the sense that, for all h]0,h

]
1, γH(h

]
0) ∩ γH(h

]
1) ⊆ γH(inter

](h]0,h
]
1)).

Example 6 (Abstract intersection). Let us consider:
– h]0 = &x 7→ α0 ∗S &y 7→ α2 ∗S lseg(α0, α2) ∗S α2 · n 7→ α3 ∗S list(α3) and
– h]1 = &x 7→ α0 ∗S &y 7→ α2 ∗S lseg(α0, α1) ∗S α1 · n 7→ α2 ∗S list(α2).

Then, inter](h]0,h
]
1) returns &x 7→ α0 ∗S &y 7→ α2 ∗S lseg(α0, α1) ∗S α1 · n 7→

α2 ∗S α2 · n 7→ α3 ∗S list(α3). Note that the computation involves the structural
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t]0,0 # t
]
1,0  # T0 t]0,1 # t

]
1,1  # T1

(t]0,0 ∗T t]0,1) # (t]1,0 ∗T t]1,1) # {t]0 ∗T t]1 | t]0 ∈ T0 ∧ t]1 ∈ T1}
#∗T

h]0 u h]1  u H

Id(h]0) # Id(h
]
1) # {Id(h]) | h] ∈ H}

#Id

h]0,o u h]1,i  u H H 6= ∅

[h]0,i 99K h
]
0,o] # [h

]
1,i 99K h

]
1,o] # [h

]
0,i 99K h

]
1,o]

#99K

h]0 u h]1,i  u H

Id(h]0) # [h
]
1,i 99K h

]
1,o] # {[h]i 99K h

]
1,o] | h

]
i ∈ H}

#Id,99K,l

[(h]0 ∗S h]0,i) 99K (h]0 ∗S h]0,o)] # t]1  # T

(Id(h]0) ∗T [h]0,i 99K h]0,o]) # t]1  # T
#weak,Id,l

([(h]0,i ∗S h]1,i) 99K (h]0,o ∗S h]1,o)] ∗T t]2) # t]3  # T

([h]0,i 99K h
]
0,o] ∗T [h]1,i 99K h]1,o] ∗T t]2) # t]3  # T

#weak,∗T,l

t]0 contains an list(α0) or lseg(α0, α1) term

t]0 # t
]
1  # {t] | ∃t]0,u, (t

]
0 →U[α0] t

]
0,u) ∧ (t]0,u # t

]
1  # T ) ∧ t] ∈ T}

#unf,l

Fig. 6. Abstract composition rewriting rules (rules #Id,99K,r, #weak,Id,r, #weak,∗T,r, and
#unf,r which are right versions of rules #Id,99K,l, #weak,Id,l, #weak,∗T,l, and #unf,l, can be
systematically derived by symmetry, and are omitted for the sake of brevity).

rule u[s, s] and the unfolding rule to derive this result, where both the segment
between x and y and the list pointed to by y are non-empty. This result is exact
(no precision is lost) and the result is effectively more precise than both arguments.

Composition of abstract transformations. We now study the composition of ab-
stract transformations. Again, the computation is based on a rewriting system,
that gradually processes two input transformations into an abstraction of their
composition. The rules are provided in Figure 6. The predicate t]0 # t

]
1  # T means

that the effect of applying transformation t]0 and then transformation t]1 can be
described by the union of the transformations in T . Rule #∗T enables local reasoning
over composition, at the transformation level. Rules #Id and #99K respectively com-
pose matching identity transformations and matching modifying transformations.
Similarly, #Id,99K,l composes an identity followed by a modifying transformation
with a consistent support (this rule, as the following, has a corresponding right
version that we omit for the sake of brevity). Rule #weak,Id,l implements a weak-
ening based on the inclusion γT(Id(t

])) ⊆ γT([t
] 99K t]]) (the inclusion is proved

in [17]). Similarly, rule #weak,∗T,l weakens [h]0,i 99K h]0,o] ∗T [h]1,i 99K h]1,o] into
[(h]0,i ∗S h]1,i) 99K (h]0,o ∗S h]1,o)]. Finally, rule #unf,l unfolds a summary to enable
composition. The abstract composition operation performs a proof search. Just as
for intersection, the composition operator may produce different results depending
on the application order; our implementation relies on a strategy designed to
improve precision by maximizing the use of #Id.
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Definition 4 (Abstract composition algorithm). The operator comp] is a
partial function that inputs two abstract transformations t]0, t

]
1 and returns a set of

abstract transformations T such that t]0 # t
]
1  # T following Figure 6.

Theorem 2 (Soundness of abstract composition). Let t]0, t
]
1 be two trans-

formations, h]0,h
]
1,h

]
2 be abstract heaps and ν be a valuation. We assume that

comp](t]0, t
]
1) evaluates to the set of transformations T . Then:

(σ0, σ1, ν) ∈ γT(t
]
0) ∧ (σ1, σ2, ν) ∈ γT(t

]
1) =⇒ ∃t] ∈ T, (σ0, σ2, ν) ∈ γT(t

])

Example 7 (Abstract composition and analysis compositionality). In this example,
we study the classical case of an in-place list reverse code snippet:

1 // l points to a list
2 list ∗c = l ; list ∗x = 0 ;
3 while ( l != NULL ){ c = l−>n ; l−>n = x ; x = l ; l = c ; }

The effects of c = l−>n and of l−>n = x can be described by the abstract
transformations t]0 and t]1:

t]0 = Id(&l 7→ α0 ∗S α0 · n 7→ α1 ∗S &x 7→ α2 ∗S list(α1) ∗S list(α2))

∗T [(&c 7→ α3) 99K (&c 7→ α1)]

t]1 = Id(&l 7→ α0 ∗S &x 7→ α2 ∗S &c 7→ α1 ∗S list(α1) ∗S list(α2))

∗T [(α0 · n 7→ α1) 99K (α0 · n 7→ α2)]

The composition of these two transformations needs to apply the weakening rules
to match terms that are under the Id constructors. The result is the following
transformation t]0 # t

]
1:

Id(&l 7→ α0 ∗S &x 7→ α2 ∗S list(α1) ∗S list(α2))

∗T [(&c 7→ α3) 99K (&c 7→ α1)] ∗T [(α0 · n 7→ α1) 99K (α0 · n 7→ α2)]

This description is actually a very precise account for the effect of the sequence of
these two assignment commands. This example shows that composition may be
used not only for interprocedural analysis (as we show in the next section), but
also to supersede some operations of the intraprocedural analysis of Section 5.

Example 8 (Abstract application). As observed at the beginning of the section,
composition may also be used as a means to analyze the application of a transfor-
mation to an abstract state. We consider the composition of the transformation
t] corresponding to function append (shown in Example 2 and Figure 1) and the
abstract pre-state h] = &l0 7→ α0 ∗S &l1 7→ α2 ∗S lseg(α0, α1) ∗S α1 · n 7→
α3 ∗S list(α2) ∧ α3 = 0x0. Then, the composition Id(h]) # t] returns:

&l0 7→ α0 ∗S &l1 7→ α2 ∗S lseg(α0, α1) ∗S α1 · n 7→ α2 ∗S list(α2)
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7 Interprocedural analysis based on function summaries

In this section, we study two mutually dependent aspects: the application of
summaries at call-sites and their inference by static analysis in a top down manner.
We first focus on non-recursive calls and discuss recursive calls at the end of the
section. The analysis maintains a context summary (h]f, t

]
f) for each procedure f.

Initially, this context summary is set to (⊥,⊥). When the analysis reaches a call
to procedure f it should attempt to utilize the existing summary (Section 7.1).
When the existing summary does not account for all the states that may reach the
current context, a new summary needs to be computed first (Section 7.2).

7.1 Analysis of a call site using an existing summary

We assume a procedure proc f(p0, . . . , pk){C} and a sound context summary
(h]f, t

]
f). We consider the analysis Jf(x0, . . . , xk)K

]
T of a call to this procedure, with

transformation t]pre as a pre-transformation. To analyze the call, the analysis should
(1) process parameter passing, (2) detect which part of t]pre may be modified by
f, (3) check whether the context summary covers this context, and (4) apply the
summary, if (3) succeeds (the case where it fails is studied in Section 7.2).

Parameter passing. Parameter passing boils down to creating the variables
p0, . . . , pk using transfer function newVT

] and then to analyzing assignment
statements p0 = x0, . . . , pk = xk. These operations can all be done using the
transfer functions defined in Section 5:

t]pars = (Jpk = xkK
]
T ◦ . . . ◦ Jp0 = x0K

]
T ◦ newVT

][p0, . . . , pk])(t
]
pre)

Procedure footprint. To identify the fragment of the abstract heap that f can view
and may modify, the analysis should first extract from t]pars an abstraction of the
set of states that enter the body of f. This is the goal of function O : T→ H:

O(Id(h])) = h] O(t]0 ∗T t]1) = O(t]0) ∗S O(t]1)
O([h]0 99K h

]
1]) = h]1 O(t] ∧ c]) = O(t]) ∧ c]

Intuitively, O projects the “output” part of a transformation. Thus O(t]pars) over-
approximates the set of states that enter C. However, only the fragment of O(t]pars)
that is reachable from the parameters of f is relevant. Given an abstract heap h],
we can compute the set of symbolic names R[h]] that are relevant based on the
following rules:

(&pi) ∈ R[h]]
n ∈ R[h]] h] contains a term n · f 7→ n′ or lseg(n,n′)

n′ ∈ R[h]]

The slice R[p0, . . . , pk](h]) of h] with respect to p0, . . . , pk retains only the terms
of h] that contain only names in R[h]] defined as the least solution of the above
rules. Similarly, we let I[p0, . . . , pk](h]) be the abstract heap made of the remaining
terms. Therefore, we have the equality h] = R[p0, . . . , pk](h]) ∗S I[p0, . . . , pk](h]).
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Context summary coverage test. Based on the above, the set of states that reach
the body of f under the calling context defined by t]pre can be over-approximated
by h]in,f = R[p0, . . . , pk](O(t]pars)). We let h]rem = I[p0, . . . , pk](O(t]pars)) be the
remainder part. The context summary (h]f, t

]
f) covers h

]
in,f if and only if h]in,f vH h]f

holds where vH is a sound abstract state inclusion test as defined in, e.g., [13,6].
When this condition does not hold, the context summary should be re-computed
with a more general pre-condition (this point is discussed in Section 7.2).

Summary application. Given the above notation, the effect of the procedure
(described by t]f) should be applied to h]in,f whereas h]rem should be preserved.
To do this, the following transformation should be composed with the abstract
transformation t]f ∗T Id(h]rem) (note that the identity part is applied to the part
of the pre-transformation that is not relevant to the execution of the body of f).
Thus, the transformation that accounts for the computation from the program
entry point till the return point of f is:

delVT
][p0, . . . pk](comp](t]pars, t

]
f ∗T Id(h]rem)))

Example 9 (Context summary coverage and application). In this example, we
assume the context summary defined in Example 3 for procedure append:
– h] = &l0 7→ α0 ∗S lseg(α0, α1) ∗S α1 · n 7→ 0x0 ∗S &l1 7→ α2 ∗S list(α2);
– t] = Id(&l0 7→ α0 ∗S lseg(α0, α1)) ∗T [(α1 · n 7→ 0x0) 99K (α1 · n 7→ α2)] ∗T

Id(&l1 7→ α2 ∗S list(α2))

Moreover, we consider the call append(a,b) with the abstract transformation below
as a pre-condition (note that variable c is not accessed by append):

Id(&a 7→ α0 ∗S α0 · n 7→ 0x0 ∗S &b 7→ α1 ∗S α1 · n 7→ 0x0 ∗S &c 7→ α3)

After parameter passing, computation of the heap fragment f may view, and
projection of the output, we obtain the abstract state&l0 7→ α0 ∗S α0 ·n 7→ 0x0 ∗S
&l1 7→ α1 ∗S α1 · n 7→ 0x0, which is obviously included in h]. The composition
with the summary of the procedure produces the abstract transformation below:

Id(&a 7→ α0) ∗T [(α0 · n 7→ 0x0) 99K (α0 · n 7→ α1)]

∗T Id(&b 7→ α1 ∗S α1 · n 7→ 0x0 ∗S &c 7→ α3)

The whole algorithm is shown in Figure 7. It implements the steps described above
and in Section 7.2. The case considered in this subsection (when h]in,f vH h]f holds)
corresponds to the case where the if branch at lines 5–6 is not taken.

7.2 Inference of a new context summary

We now discuss the case where the previously existing context summary of f does
not cover the executions corresponding to t]. As mentioned above, this corresponds
to the case where the abstract inclusion h]in,f vH h]f does not hold.
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Data: Existing context summary (h]f, t
]
f) for proc f(p0, . . . , pk){C}

Data: Input transformation t]pre (computation before the call)
Result: Output transformation t]post (computation before the call + body of f)
Result: Update of the context summary if it does not cover the context of t]pre

1 t]pars ← Jpk = xkK]T ◦ . . . ◦ Jp0 = x0K]T ◦ newVT
][p0, . . . , pk](t

]
pre) ;

2 h]in,f = R[p0, . . . , pk](O(t
]
pars)) ;

3 h]rem = I[p0, . . . , pk](O(t
]
pars)) ;

4 if ¬(h]in,f vH h]f) then
5 h]f ← h]f OH h]in,f ;
6 t]f ← JCK]T(Id(h

]
f))

7 end
8 t]post ← delVT

][p0, . . . pk](comp](t]pars, t
]
f ∗T Id(h]rem)))

Fig. 7. Interprocedural analysis: algorithm for the analysis of a procedure call.

Summary computation. The computation of a new context summary should take
into account a context that is general enough to encompass both h]f and h]in,f:
– the new abstract context is h]f OH h]in,f using abstract state widening OH [6];
– the new summary related to this abstract context is derived by analysis of the

body of f, thus by updating t]f with JCK
]
T(Id(h

]
f OT h]in,f)).

Then, the context summary for f is updated with this new context summary.

Application. Once a new summary has been computed, by definition, it satisfies
the inclusion h]in,f vH h]f, thus it can be applied so as to compute an abstract
transformation after the call to f as shown in Section 7.1.

The overall procedure call analysis algorithm is displayed in Figure 7. The case
examined in this subsection corresponds to the case where the if branch at lines 5–6
is taken. We observe that it necessarily occurs whenever a procedure is analyzed
for the first time, as context summaries are initially set to (⊥,⊥). Moreover, we
note that the application of the summary after its update is done as in Section 7.1.

The following result formalizes the soundness of Figure 7, under the assumption
that there is no recursive call.

Theorem 3 (Soundness of the analysis of a procedure call using a con-
text summary).We consider the call to f with the abstract transformation t]pre as
input, and the post-condition t]post returned by the algorithm of Figure 7. We denote
by (h]f, t

]
f) the context summary for f after the analysis of the call.We let (σ0, σ1, ν) ∈

γT(t
]
pre), σ′

1 ∈ Jp0 = x0KT ◦ . . . ◦ Jpk = xkKT ◦ newV[p0, . . . pk]({σ1}), σ′
2 ∈

JCKT ({σ′
1}), and σ2 ∈ delV[p0, . . . , pk]({σ′

2}) (i.e., σ2 ∈ Jf(x0, . . . , xk)KT ({σ1})).
Then, the following property holds:

(σ0, σ2, ν) ∈ γT(t
]
post) ∧ (σ′

1, ν) ∈ γH(h
]
f) ∧ (σ′

1, σ
′
2, ν) ∈ γT(t

]
f)

This result means that not only the transformation t]post over-approximates the
state after the call, but also the new context summary accounts for this call. This
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entails that context summaries account for all the calls that are encountered in
the analysis of a complete interprocedural program. Moreover, Theorem 3 entails
Equation 1 for procedure calls.

Example 10 (Context summary computation). In this example, we consider the
function append again, but assume that the analysis starts with the (⊥,⊥) context
summary for it. We study the code append(a, b); append(a, c); where a, b, and c
are initially lists of length 1. Then:
– the first call results in the update of the summary with a context summary
(h], t]) where h] assumes that the first argument is a single list element, i.e., is
of the form &l0 7→ α0 ∗S α0 · n 7→ 0x0 ∗S &l1 7→ α1 ∗S . . .;

– when the second call is encountered this first summary does not cover the second
context (at this point, the argument ahas length 2), thus a new context summary
needs to be calculated; this new summary (h], t]) is such that h] only assumes
that the first argumentmaybe a list of any length (as derived bywidening), i.e., it
is of the form &l0 7→ α0 ∗S lseg(α0, α1) ∗S α1 · n 7→ 0x0 ∗S &l1 7→ α1 ∗S . . ..

This last summary may still not be as general as the summary shown in Example 9,
and may thus be generalized even more at subsequent call points.

Analysis of recursive calls. So far, we have focused on the case where there are
no recursive calls. Actually, the presence of recursive calls changes relatively little
to the principle of our analysis (although the formalization would be significantly
heavier and is left out). Indeed, it only requires to extend the algorithm of Figure 7
with a fixpoint computation over context summaries, so as to determine an over-
approximation of both components of the procedure context summary.
– when a recursive call is encountered and when the calling context is not

accounted for in the current context summary (Figure 7, condition at line 4
evaluated to false), the h]f component should be widened and the current t]f
should be used directly;

– at the end of the analysis of the procedure body, the t]f component should be
widened with the previously known transformation, and the analysis of the
procedure body iterated until this transformation stabilizes.

Convergence is ensured by widening both on abstract states and transformations.

8 Experimental evaluation

In this section, we report on the evaluation of the interprocedural analysis based
on function summaries, with respect to the following questions:
1. Is it able to infer precise invariants?
2. Does it scale better than a classical call-string-based analysis?
3. How effective are context summaries, i.e., do they often have to be recomputed?
We have implemented the interprocedural analysis based on context summaries
for a large fragment of the C language. Our tool is a plugin for Frama-C [20]. It
supports conventional control flow structures of C and can be parameterized by
the inductive definition of the structure to consider, as in [5]. However, it leaves
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Fig. 8. Per-function comparison of analysis runtime (times in seconds)

out non-recursive structures and data-types that are not immediately related to
the analysis principle (strings, arrays, numeric types). Furthermore, we have also
implemented as another extension of Frama-C an analysis relying on the call-string
approach, i.e., that inlines procedures at call sites.

Experiments and raw data. We did two experiments. First, we ran the two analyses
on a fragment of the GNU Emacs 25.3 editor. This fragment comprises 22 functions
of the Fx_show_tip feature and is implemented in C. It manipulates descriptions
of Lisp objects including lists built as Cons pairs. The analyzed code corresponds to
about 3 kLOC. Analyses were ran on an Intel Core i7 laptop at 2.3 GHz with 16Gb
of RAM. The raw data are provided in Appendix A and the following paragraphs
discuss the main points related to the above questions. Second, we analyzed a set
of basic recursive functions on trees and lists to validate the recursive call analysis.

Precision. We compared the result of the analysis of the body of each procedure.
More precisely, we checked whether the transformation computed for the whole
procedure body for its entry abstract state (the first component of context sum-
maries) is at least as precise as the post-condition produced by the state analysis.
For 15 functions, the body contains nested calls and the result is as precise. The
remaining 7 functions do not contain any call, thus are not relevant to validate the
absence of precision loss at call sites.

Scalability. The total measured analysis time was 14.20s for the transformation-
based analysis against 877.12s for the state analysis, which shows a high overall
speedup. Secondly, we show the average analysis time of the body of each function
in Figure 8 (these values are average analysis times, and not total time spent
analyzing each function, as the effectiveness of summary reuse is the topic of the
next paragraph). We observe that for some functions the speedup is low or even
negative. These functions mostly correspond to low analysis times. Upon inspection,
they all occupy a low position in the call tree: they call few functions, and the
transformation analysis overhead is not compensated by a high gain from many
summary applications to avoid the analysis of down calls. Conversely functions at
the top of the call graph (such as the entry point) show a very high gain.
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Effectiveness. Finally, we assessed the effectiveness of the summary reuse, which
depends not only on the call graph shape (functions that are called at a single
site offer no gain opportunity) but also on the function behavior and the analysis
(depending on the contexts that are encountered, some procedure may need to be
reanalyzed multiple times or not). We observed that only one procedure needed to
be reanalyzed (Fcons was reanalyzed 3 times). All other summaries were computed
only once (i.e., the branch at lines 4–6 in Figure 7 is taken only once). For functions
called at a single point (11 of the total) summaries could not be reused, but for
8 functions, summaries were reused multiple times (3 to 44 times). By contrast,
the state analysis had to reanalyze most functions several times: in particular
11 functions were reanalyzed 15 times or more (up to 296 times). Therefore, the
summary-based analysis provides significant gain even for small functions.

Recursive calls. We ran the analysis on a series of recursive implementations of
classical functions on lists and binary trees, including size, allocation, deallocation,
insertion, search and deep copy, and also list concatenation and filter. For all these
functions, the expected invariants could be inferred in under 5ms (Appendix A).

9 Related works and conclusion

Since Sharir and Pnueli’s seminal paper [35], many works have studied approaches
to interprocedural analyses. The relational approach strives for modularity, which
has been a concern in static analysis even beyond interprocedural code [10,8]. A
major advantage of modular approaches is to avoid the reanalysis of program
fragments that are called repeatedly. However, it is generally difficult to apply as it
requires an accurate and efficient representation for summaries. While relational
numerical abstract domains [11] naturally provide a way to capture numerical
input/output relations [26,27], this is harder to achieve when considering memory
abstractions. The TVLA framework [33] supports such relation using the classical
“primed variables” technique [19,18] where input and output variables are distin-
guished using prime symbols. Some pointer analyses such as [12] rely on specific
classes of procedure summaries to enable modular analysis. However, separation
logic [28] does not naturally support this since formulas describe regions of a given
heap. The classical solution involves the tabulation of pairs of separation logic
formulas [2,15,22], but this approach does not allow to relate the description of heap
regions in a fine manner. To circumvent this, we use transformations introduced
in [17], which are built on connectors inspired by separation logic. The advantage is
twofold: it enables not only a more concise representation of transformations (since
tables of pairs may need to grow large to precisely characterize the effect of proce-
dures) but also a more local description of the relation between procedure input
and output states. Our graph representation of abstract states and transformations
opens the way to a resolution of the frame problem [29,30] using intersection
operation. The results of our top-down, context summary-based analysis confirm
that this approach brings a gain in analysis scalability once the upfront cost of
summaries is amortized.
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Manypointer analyses andweak forms of shape analyses have introduced specific
techniques in order to construct and compute procedure summaries [21,25,23].
These works typically rely on some notion of graph that describes both knowledge
about memory entities and procedure calls, therefore the interprocedural analysis
reduces to graph algorithms. Moreover, context sensitivity information may be
embedded into these graphs. Our approach differs in that it relies on a specific
algebra of summaries, although we may also augment our summaries with context
information. Another difference is that the summary predicates our abstract domain
is based on allow a very high level of precision and that the abstract procedure
call analysis algorithm (with intersection and composition) aims at preserving this
precision. We believe that two interesting avenues for future works would consider
the combination of various levels of context sensitivity and of less less expressive
summaries with our analysis framework.

A very wide range of techniques have been developed to better cope with inter-
procedural analysis, many of which could be combined with context summaries.
First, we do not consider tabulation of procedure summaries [10], however, we could
introduce this technique together with some amount of context sensitivity [1]. In-
deed, while relations reduce the need for tables of abstract pre- and post-conditions,
combining context summaries and finer context abstraction may result in increased
precision [7]. Bi-abduction [3] has been proposed as a technique to infer relevant
abstract pre-conditions of procedures. In [3], this process was implemented on a
state abstract domain, but the core principle of the technique is orthogonal to
that choice, thus bi-abduction could also be applied to abstract transformations.
Moreover, while our analysis proceeds top-down, it would be interesting to consider
the combination with a bottom-up inference of summaries for some procedures [4].
Last, many works have considered the abstraction of the stack-frame and of the
relations between the stack frame structure and the heap structures manipulated by
procedures [31,32]. The notion of cut-points has been proposed in [29,30] to describe
structures tightly intertwined with the stack. An advantage of our technique is
that the use of an abstraction based on transformations which can express that a
region of the heap is preserved reduces the need to reason over cutpoints.
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A Raw experimental data

Analysis of Fx_show_tip. The table below lists the per call average analysis times
of each procedure, whether the summary analysis is as precise as the state analysis
(“as precise” means the results are at least as precise; “irrel.” means the measure is
irrelevant as the function body does not contain any call) and the depth in the call
graph.

Function name State time Summary time Precision Depth
(s) (s)

Fcons 0.33 0.34 irrel. 8
list2 0.32 0.32 as precise 7
list4 0.33 0.32 as precise 7
Fassq 2.16 6.46 irrel. 6
Fcar 0.32 0.33 irrel. 3
Fcdr 0.33 0.33 irrel. 2
Fnthcdr 0.33 0.34 irrel. 3
Fnth 0.34 0.34 as precise 2
make_monitor_attribute_list 0.33 0.74 as precise 6
check_x_display_info 0.33 0.33 irrel. 3
Fx_display_monitor_attributes_list 0.41 0.86 as precise 2
x_get_monitor_for_frame 0.40 0.37 irrel. 6
x_make_monitor_attribute_list 0.47 0.87 as precise 5
x_get_monitor_attributes_fallback 0.35 1.01 as precise 4
x_get_monitor_attributes 0.35 1.11 as precise 3
x_get_arg 11.82 8.76 as precise 5
x_frame_get_arg 21.75 8.87 as precise 4
x_default_parameter 23.00 8.91 as precise 3
compute_tip_xy 38.24 16.80 as precise 1
x_default_font_parameter 39.06 7.17 as precise 2
x_create_tip_frame 321.77 6.96 as precise 1
Fx_show_tip 877.12 14.20 as precise 0

The table below lists the number of times the body of a procedure is reanalyzed:

– column #state counts reanalyses by the state analysis;
– column #total counts the number of times a call site to this procedure is

encountered by the summary analysis;
– column #recomp counts the number of times the summary based analysis

needs to reanalyze the body of this procedure to come up with more general
summary;

– column #reuse counts the number of times a summary is reused without
recomputation.
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Function name #state #total #recomp #reuse
Fcons 296 47 3 44
list2 12 2 1 1
list4 24 4 1 3
Fassq 64 16 1 15
Fcar 24 1 1 0
Fcdr 12 4 1 3
Fnthcdr 24 1 1 0
Fnth 24 8 1 7
make_monitor_attribute_list 6 2 1 1
check_x_display_info 3 1 1 0
Fx_display_monitor_attributes_list 3 1 1 0
x_get_monitor_for_frame 6 2 1 1
x_make_monitor_attribute_list 3 1 1 0
x_get_monitor_attributes_fallback 3 1 1 0
x_get_monitor_attributes 3 1 1 0
x_get_arg 19 5 1 4
x_frame_get_arg 15 1 1 0
x_default_parameter 15 15 1 14
compute_tip_xy 3 3 1 2
x_default_font_parameter 1 1 1 0
x_create_tip_frame 1 1 1 0
Fx_show_tip 1 1 1 0

Analysis of recursive list and tree classical algorithms. The table below lists the
analysis times of a series of classical functions over lists and trees.

Structure function time (ms)
List length 1.256
List get_n 2.179
List alloc 1.139
List dealloc 0.842
List concat 1.833
List map 0.904
List deep_copy 1.540
List filter 3.357
Tree visit 1.078
Tree size 1.951
Tree search 3.818
Tree dealloc 1.391
Tree insert 5.083
Tree deep_copy 2.603


