Obfuscation: Where Are We in Anti-DSE Protections?
(a first attempt)

Mathilde Ollivier
CEA, LIST,
Paris-Saclay, France
mathilde.ollivier2@cea.fr

Richard Bonichon
CEA, LIST,
Paris-Saclay, France
richard.bonichon@cea.fr

ABSTRACT

Obfuscation is widely used to protect software against man-at-the-
end attacks. Recent attacks based on semantic methods, especially
dynamic symbolic execution (DSE), have proven extremely powerful
against standard obfuscation techniques, leading several teams to
investigate anti-DSE protections. Yet, the domain is in its infancy,
and the current state of research on the topic is quite unclear. We
propose a systematic review of anti-DSE techniques. In particular,
we propose a classification and identify strengths and weaknesses of
the current lines of research, as well as promising future directions.

ACM Reference Format:

Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Mar-
ion. 2019. Obfuscation: Where Are We in Anti-DSE Protections? (a first
attempt). In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Context. Man-at-the-end attack (MATE) designs a general attack
scenario where the attacker has access to the program’s executable
code as well as to the entire execution environment. The attacker
typically looks for stealing sensitive data (e.g., credential, private
keys) or sensitive code (secret algorithms), or for directly tamper-
ing with the code (e.g., bypass security checks or licence). Reverse-
engineering an unprotected program may not be difficult for sea-
soned experts, thus making it important to protect the code, i.e., make
it hard to understand. Obfuscation [18, 19] precisely aims at pro-
tecting software against such MATE attacks.

While standard static and dynamic disassembly techniques can-
not cope with current obfuscation methods, recent attacks based
on advanced code analysis methods have proven very powerful
against standard obfuscation methods [13, 21, 29, 30, 45], leading
Schrittwieser et al. to ask whether “Obfuscation can keep pace with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Sébastien Bardin
CEA, LIST,
Paris-Saclay, France
sebastien.bardin@cea.fr

Jean-Yves Marion
Université de Lorraine, CNRS, LORIA
Nancy, France
Jean-Yves.Marion@loria.fr

progress in code analysis” [34]. In particular, attacks based on Dy-
namic Symbolic Execution [15, 35] (DSE), collectively coined as
Symbolic Deobfuscation [4, 8, 13, 32, 40, 45], have been particulary
successful, as they benefit from both the robustness of dynamic
analysis and the inference ability of (semantic) static analysis.

Problem and goal. New protections are clearly needed, especially
against DSE-based attacks. However the current state of anti-DSE
protections is pretty unclear. Several techniques have been proposed
[31, 36, 39, 46], but there is no clear classification nor comparison.
In particular, Schrittwieser et al’s survey [34] does not apply well
to DSE, as it separates static methods from dynamic ones — while
the power of DSE exactly comes from a tight combination of both
of them - and the discussion is too generic to understand precisely
the issues inherent to DSE.

We thus aim to propose a systematic survey of anti-DSE protec-
tions as well as elements of classification and comparison. We also
want to offer a clear vision of the available implementations as well
as their — theoretical or practical — performance and robustness.

Contributions. We investigate currently proposed protections and
identify their practical weaknesses and strengths. In more details,

e We summarize the state of knowledge and classify existing
protections hindering dynamic symbolic execution,

e We compare these protections using several key parameters
— strength, cost, stealth, availability of implementation, etc.;

e Finally, we conclude by pointing out some deficiencies in the
current state-of-the-art, and propose a short-term call for
action and longer term research directions to remedy them.

The aim of this paper is thus to set the ground for further systematic
studies of anti-DSE protections. Moreover, as code protections is
a vast topic, we believe some of the deficiencies pointed out here,
and some of the proposed solutions, may be of general interest for
other classes of software protections.

2 BACKGROUND
2.1 Obfuscation

Obfuscation [19] aims at hiding a program’s behavior or protecting
proprietary information such as algorithms or cryptographic keys
by transforming the program to protect # into a program #’ such
that (1) #’ and P are semantically equivalent, (2) £’ is roughly
as efficient as P, and (3) P’ is harder to understand. While it is

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

still unknown whether applicable theoretical criteria of obfuscation
exist [6, 7], practical obfuscation techniques and tools do exist [18].
Let us present briefly a few such important techniques.

Virtualization and Flattening [42] transform the control flow
into an interpreter loop dispatching every instruction. Virtu-
alization even adds a virtual machine interpreter for a custom
bytecode program encoding the semantics of the original
program. Consequently, the visible control flow of the pro-
tected program is very far from the original control flow.
Virtualization can be nested, encoding the virtual machine
itself into another virtual machine. While highly expensive
in terms of runtime and code size overhead, the technique is
very powerful against human attackers.

Packing and Self-modification insert new instructions or mod-
ify existing ones at runtime. These techniques seriously dam-
age static analyses by hiding the real instructions. However,
extracting the hidden code can be done dynamically [24, 28].

Opaque predicates [20] are branching conditions whose predi-
cates either always evaluate to true or always evaluate to
false. Hence, while the real program behaviors always fol-
low the same side of the condition, analyzers (human or
tools) may be lured into considering spurious dead code as
legitimate, wasting time and efforts trying to understand it.
Two-way opaque predicates are a variant where both sides
of the condition lead to functionally equivalent code.

2.2 Dynamic Symbolic Execution

Symbolic execution [15] simulates the execution of a program along
its paths, systematically generating inputs for each new discovered
branch condition. This exploration process consider inputs as sym-
bolic variables whose value is not fixed. SE follows a path and each
time a conditional statement involving the input is encountered,
it adds a constraint to the symbolic value related to this input.
Solving these path constraints (a.k.a. path predicates) automatically
- typically with off-the-shelf SMT solvers [41] — then allows to
generate new input values leading to new paths, progressively
crawling the set of paths of the program — up to a user-defined
bound. Since covering all paths is in general infeasible, SE usually
tries to cover all branches and instructions. The technique has seen
a strong renewed interest in the last decade to become a prominent
bug finding technique [15, 16, 26].

When the symbolic engine cannot perfectly handle some con-
structs of the underlying programming language — like system
calls or self-modification — the symbolic reasoning is interleaved
with a dynamic analysis allowing meaningful (and fruitful) approx-
imations — Dynamic Symbolic Execution [26]. Typically, (concrete)
runtime values are used to complete missing parts of path con-
straints that are then fed to the solver through concretization [22].
This feature allows the approach to be especially robust against
complicated constructs found in obfuscated binary codes, typically
packing or self-modification, making DSE a strong candidate for
automated deobfuscation: it is as robust as dynamic analysis, with
the additional ability to infer trigger-based conditions.

KLEE [14] is a popular source-level DSE tool. Binary-level DSE
tools include ANGR [37], BiNsgc [23], Fuzzball [3], S2E [17] and
TRITON [33].

Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion

3 SYMBOLIC DEOBFUSCATION

Deobfuscation is a specific case of reverse engineering where the
attacker seeks to simplify or remove the protections embedded in
the program in order to achieve one of the following goals [34]:

(1) Locate code or data;

(2) Retrieve the CFG;

(3) Explore code to understand behavior;
(

Retrieve the original code.

3
4

T T = —

Symbolic deobfuscation. The term Symbolic deobfuscation refers
to deobfuscation methods based on Dynamic Symbolic Execution.
They are especially powerful as they combine both the reasoning
ability of (static) semantic methods with the robustness of dynamic
approaches, enabling them both to survive protections such as
packing or self-modification and to infer input triggers.

Typical DSE-based attacks include finding rare behaviors [13,
23, 45] (triggers, secret, etc.) of the whole program as well as local
exhaustive exploration (for precise CFG recovery [9], local proofs
[8, 40] or simplifications [32]). In the case of simplifications, DSE
can be complemented by standard static simplification techniques,
such as forward tainting [35], backward slicing [38] or compiler-like
rewriting rules [32, 45].

Attacks. Recent attacks based on DSE include the following publi-
cations:

e Brumley et al. [13] is probably the first work to leverage DSE
for deobfuscation, actually malware comprehension. They
point out the ability of DSE to bypass complex standard pro-
tections such as packing or self-modification, and to recover
trigger-based behaviors;

e Yadegari et al. [45] proposes a generic approach to deobfus-
cation, independent from the exact protection mechanism,
based on dynamic analysis, symbolic reasoning, tainting,
slicing and local simplifications. The technique is able to
greatly simplify simple programs protected by well-known
commercial protection tools — Themida, CodeVirtualizer,
Execrytpor and VMProtect;

e Salwan et al. [32] presents an approach based on DSE, taint-
ing and compiler optimizations for simplifying protected
codes. The technique succeeds in automatically solving the
Tigress challenge [1], managing to recover unprotected code
functionally equivalent to the original one with similar (or
even smaller) size. The technique has also been demonstrated
to be useful over a large range of virtualization techniques;

e Bardin et al. [8] proposes a so-called backward-bounded vari-
ant of DSE in order to identify several classes of protections,
including opaque predicates and call stack tampering. The
technique has been successfully applied over a few benign
packed programs and an APT-class malware. Doser [40]
employs similar techniques for identifying and simplifying
duplicate codes and two-way opaque predicates.

While not directly providing new attacks, Banescu et al. [4] shows
that standard obfuscation methods are very weak against DSE-
based attacks. Finally, other attacks based on DSE or close concepts
have been developped by other authors [27, 29].

Obfuscation: Where Are We in Anti-DSE Protections?
(a first attempt)

Versus standard protections. Most standard obfuscation tech-
niques are ineffective against DSE-based attacks. Packing and self-
modification are handled by the dynamic part of DSE [13, 45],
opaque predicates can be efficiently identified and removed [8], vir-
tualization can be completely simplified away [32, 45], and trigger-
based behaviors can be inferred [13]. Actually, the systematic stud-
ies by Banescu et al. [4] and Salwan et al. [32] (focused on virtual-
ization) demonstrate that DSE is mostly not affected by standard
protections. The only exception is nested virtualization (3 layers),
but in that case the defender must be ready to pay a high price in
term of runtime overhead (up to X100).

4 CLASSIFICATION OF ANTI-DSE
TECHNIQUES: A RATIONAL

Families of anti-DSE weaknesses. While very successful in prac-
tice, symbolic execution suffers from a few issues and weaknesses
that may make the analysis fail or dramatically slow down. It turns
out that, naturally, anti-DSE protections try to leverage such weak-
nesses in order to prevent symbolic deobfuscation attacks. Anand
et al. [2] proposes to classify the weaknesses of DSE into three main
categories: (1) complex constraints; (2) path divergence and (3) path
explosion. Let us describe more precisely these three categories.

Complex constraints Path constraints can be hard — if not im-
possible — to solve for a SMT solver. For example, specific
non-linear operations such as multiplication or division sub-
stantially increase the complexity of path constraints. This
issue is critical to symbolic deobfuscation because if a path
constraint cannot be solved, then it reduces the subset of
feasible paths that the analysis is able to explore;

Path divergence Computing precise path constraints can be dif-
ficult for certain programs. If path constraints are not com-
puted precisely by the symbolic execution engine it can lead
to path divergence: feasible paths are missed or unfeasible
paths are taken by mistake. Either way, the symbolic analysis
is not able to give a correct set of paths for the program;

Path explosion To symbolically explore the set of paths of a pro-
gram, DSE needs to solve the constraints for each path and
store all pending states in memory. For these two reasons
it rapidly becomes overwhelming to explore a large subset
of paths. Realistically, only a reduced amount of paths can
be explore in a limited amount of time. An attacker thus has
to wisely select the subset of paths he wants to explore to
avoid high analysis duration.

Key characteristics. Now that we have a rational criterion to clas-
sify the different anti-DSE protections, the next step is to identify
a set of relevant characteristics and metrics for evaluating these
protections. We take inspiration from metrics proposed by Coll-
berg et al. [19] for generic obfuscation, namely: potency (improve-
ment of program complexity from a human perspective), resilience
(resistance to automated attack), stealth (ability to remain unde-
tected) and cost (runtime or code size overhead). Yet, we modify
them slightly as we feel that the case of obfuscation techniques
specifically designed to prevent some form of automated analysis
is different from the generic case. We thus propose the following
characteristics:

Conference’17, July 2017, Washington, DC, USA

o Correctness evaluates whether the technique preserves the
semantics of the original program;

Strength is the ability to break or delay DSE-based attacks;
Cost describes the runtime and code size overhead;
Resilience is the ability to resist against automated attacks.

As most anti-DSE protections are proven correct, we will discuss
this point in the remaining part of the paper only when it is an
issue. We present complex constraints in Section 5, path divergence
in Section 6 and path explosion in Section 7. A summary is given
in Section 8.

5 COMPLEX CONSTRAINTS

The first category of obfuscations against DSE consists in complexi-
fying the constraints sent to the SMT solver. The goal is to increase
the time needed by the solver to resolve the constraints such that
analysis is not possible for an attacker with limited ressources
within a restricted amount of time.

5.1 Mixed Boolean Arithmetic

Method. The first protections focusing on complex constraints is
mixed boolean arithmetic expressions [46]. This protection replaces
simple arithmetic expressions throughout the code with more com-
plex expressions that have both arithmetic and boolean operators.
Symbolic analysis generates constraints when it encounters input-
dependent conditional statements which are then sent to a SMT
solver to generate new input values to explore new parts of the
code. The goal is to make these constraints much more difficult to
solve — ideally impossible within a restricted amount of time. Thus
the attacker is unable to access new parts of code: exploration is

hindered.

Strength and Cost. Solving expressions with a SMT solver is al-
ready known to be a NP-hard problem. However, in practice, solvers
do offer good results when solving exploration constraints gener-
ated by a symbolic execution engine [12]. There is, as of now, no
general result indicating that solving MBA expressions is signifi-
cantly harder than solving more standard expressions. Moreover,
experimental results seem to be contradictory: some of them do
not really report any strong protection [4, 31] (Tigress encodig of
MBA), while other do [25]. From our own experience, MBA are very
powerful against simplification queries (when one asks whether two
expressions are equivalent [25]), but they offer a more underwhelm-
ing protection in the case of exploration queries (when one asks for
satisfiability of a path constraint [4, 31]).

The cost of MBA expressions appears to stay minimal in some
recent experiments [31], however in that case the protection offered
is rather weak. It would be interesting to have a systematic study
of cost for large and complex MBA expressions.

Stealth and Mitigation. MBA inserts very typical constructs in
the code, namely deep combinations of bitwise and arithmetic op-
erations. These expressions are easy to spot by an attacker.
Eyrolles et al. [25] propose to counter MBA expressions by sim-
plifying them using arithmetic simplification coupled with a library
of equivalent MBA expressions. The method alternates steps of
substitutions of expressions using the library and arithmetic simpli-
fication until the original MBA cannot be simplified anymore. This

Conference’17, July 2017, Washington, DC, USA

method is able to simplify hard MBA expressions in a few seconds.
However it is not clear whether this method is efficient against
MBA expressions created by unknown patterns.

5.2 Cryptographic Hash Functions

Method. Sharif et al. [36] propose to replace an equality check in
an if statement with the equality over the corresponding values
encoded using a cryptographic hash function. As these functions
are (believed to be) irreversible, it is impossible for the solver to
retrieve the trigger value. Moreover the following block of code is
encrypted using the input value as the key such that attackers are
unable to reverse the executable code.

Strength and Cost. This protection is extremely powerful, as it
relies on strong cryptographic assumptions. DSE engines will not
solve such queries, save for a dramatic breakthrough in cryptanal-
ysis. Moreover, in [36], the relevant part of the code is encrypted
using this input value, the attacker cannot analyze any of the de-
crypted instructions. Hence, this obfuscation does not leak any
information about the program’s original behavior and data.

Encryption is a very expensive transformation. It is thus not real-
istic to protect the entire code with it. Only very specific functions
can be protected using this obfuscation for the overhead induced by
decryption routines would rapidly render the code too inefficient. If
hash functions are used without encryption the cost is significantly
lower. However the protection would thus be effective only for
trigger-based behaviors because otherwise the dynamic aspect of
DSE would be able to retrieve the input value associated with the
hash during any execution.

Stealth and Mitigation. The technique introduces cryptographic
routines and encrypted instructions, it is thus fairly straigthforward
to detect and localize within the executable code.

The major issue with this protection is its somewhat limited
scope, as it is specialized in hidding triggers. While there are some
important applications (malware, remote attestation), many legiti-
mate programs cannot take the intended execution path only under
specific circumstances from the environment or network. Maybe
the technique could be adapted to the generic case by relying on
white-box cryptography [10] - but this is another form of MATE
scenario.

6 PATH DIVERGENCE

Obfuscations exploiting the path divergence weakness aim to take
advantage of a mismatch between the concrete execution of the
program under attack and the semantics of the underlying DSE
engine. The symbolic engine may be tricked into either missing
feasible paths or taking infeasible ones.

6.1 Self-Modifying Code

Method. The first category of protection is self-modifying code.
This transformation inserts instructions at source or assembly level
that will modify the executed code on-the-fly at runtime. A well-
known application of self-modification protections is packers where,

Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion

at runtime, an unpacking routine replaces visible instructions in-
serted by the obfuscation with the original instructions of the pro-
grams. While not a specific anti-DSE technique, we still include it
as it hinders standard semantic static analysis.

Strength and Cost. In principle, self-modification should not be
a problem for DSE: several works [11, 13, 45] have shown how
to take advantage of the dynamic analysis component of DSE to
handle it. Yet, in practice, many DSE tools lag behind state-of-the-art
principles and still do not support self-modification. For example,
only ANGR [37] does have an option to handle self-modification,
while KLEE [14], TrrToN [33] or BiNsec [23] do not. But defenders
must be aware supporting self-modification is not a hard feature to
add for binary-level DSE engines: it is mostly an engineering effort.

Regarding cost, while a few scattered self-modifications are es-
sentially inexpensive, full program (un-)packing may come at a
huge runtime cost, and must be used with care, for example through
partial code packing, or one-time unpacking.

Stealth and Mitigation. Self-modifying code is arguably stealthy
against static analysis. Packed binaries for example do not have a
common structure implying to the analyst that the visible code is
not the original. Yet, a dynamic analysis will easily reveal self-
modification instructions by monitoring the write instructions
within the executable part of memory. Mitigations exist [11, 13, 45]
and are discussed above.

6.2 Symbolic Code

Method. Yadegari et al. [44] propose a specific type of self modifi-
cation called symbolic code. This obfuscation relies on the funda-
mental principals of self-modification, yet it is specifically designed
to hinder dynamic symbolic execution. Indeed, symbolic code adds
an instruction that triggers the self-modification only if a certain
value of an input is entered. As this instruction is not a conditional
statement, the symbolic engine does not see that a different code
could be executed with a different input value. This obfuscation is
used to hide existing trigger-based behaviors in programs.

Strength and Cost. This obfuscation has a trigger-based behavior
that encodes a jmp instruction ahead of the program counter. If
the trigger condition is not met the symbolic analysis will not see
the jmp instruction and thus will not even try to generate an input
for the alternate path. Currently, DSE engines supporting standard
self-modification cannot cope with this protection, even though
Yadegari et al. [44] proposes a solution (again, current implementa-
tions lag behind state of the art principles).

Runtime cost is expected to be low as the protection does not
add many instructions.

Symbolic code needs a trigger-based condition in the original
code which is not always the case in legitimate programs.

Stealth and Mitigation. Even if symbolic code is a specific type of
self-modification, it is much stealthier because the code is rewritten
only when the trigger condition is met. A standard dynamic analysis
will not detect the self-modification. A mitigation proposed by
Yadergari et al. [44] can defeat it using bit-level taint analysis.

Obfuscation: Where Are We in Anti-DSE Protections?
(a first attempt)

6.3 Covert Channels

Method. Stephens et al. [39] propose an obfuscation using covert
channel to hide information flow and trick the symbolic execution
engine into missing relations between variables in the program.
This obfuscation uses the program’s runtime system or operating
system to reroute visible information flow. For example, it can use
system’s timers to silently pass information (typically, value of a
variable) through a covert channel. Concretely, the primitives uses
slow (resp. fast) threads to transfer the value 0 (respectively 1) of
the n'" bit of the variable. The symbolic analysis is thus not able to
know which variables are symbolic and then misses feasible paths.
Several primitives are proposed by the authors and more could be
imagined.

Strength and Cost. State-of-the-art symbolic engines cannot cope
with this obfuscation. Typically, those relying on tainting will miss
some input dependent variables, and current symbolic engines do
not model precisely physical ressources such as time or cache.

Regarding cost, primitives based on JIT and filing caching are
much more expensive than the other primitives presented, taking
between x10% and x10* more time to execute than the original
code. No code size increase should be observed as the protection
only inserts a few instructions. Yet, it is not clear how this would
impact runtime execution.

Finally, note that this obfuscation is not correct per se, as covert
channels are not perfectly reliable. The authors coin their technique
as probabilistically correct, arguing that the vast majority of the
executions over the protected code will indeed have the expected
correct behavior.

Stealth and Mitigation. This protection is sensitive to covert chan-
nels detection techniques such as clock perturbation and system
call-based anomaly detection. Clock perturbation significantly in-
crease the runtime overhead but is not able to defeat the obfuscation
whereas system call-based anomaly detection would mark a dummy
version of the protection as anomalous. However, some modifica-
tions to the implementation of the primitives would reduce the risk
of the obfuscation to be discovered using this technique.

7 PATH EXPLOSION

These techniques create a path explosin in order to make DSE-based
exploration intractable.

7.1 Path-Oriented Protections

Method. The first category of protections based on path-explosion
is path-oriented protections. A first primitive was proposed by Banescu
et al. [4], before the general principle was formalized by Ollivier et
al. [31], with new primitives. The goal of path-oriented protections
is to introduce input-dependent conditional statement. Three prin-
cipal primitives have been proposed: (1) RANGE D1VIDER [4], which
consists of a conditional if or switch statement with obfuscated
versions of the original code in each conditional branches. (2) For
[31], which replaces an input-dependent assignment with a for
statement containing simple arithmetic operations. (3) WRITE [31]
replaces the same expressions as For but with self-modifying code
thus combining the strengths of self-modification and path-oriented
protections.

Conference’17, July 2017, Washington, DC, USA

Strength and Cost. Ollivier et al. [31] present several results about
the strength and cost of path-oriented protections. A formal analysis
indicates that these methods can offer a strength exponential to the
size in bits of the input space.

Some primitives — RANGE D1VIDER with switch — increase the
size of the code as these conditional statements take up a lot of
space. However, other primitives — such as For or SpLiT— do not
substantially modify the code size nor the execution time for large
real-world programs.

Stealth and Mitigation. Path-oriented protections do not intro-
duce any exotic operators or control-flow structures as conditional
statements are common in genuine code. Some primitives however
— such as RANGE D1viDER with switch — may be easier to spot
within a code as they use jump tables stored in specific sections
of the executable code. The WRITE primitive cannot be detected
statically but will be very easily discovered using dynamic analysis.
Furthermore, the technique may be amenable to pattern attacks,
hence several variants and diversity are required.

Path explosion is a long-standing issue in DSE. Actually, some so-
lutions have been proposed, such as path merging, but experiments
show that state of the art implementation are useless here. It would
be important to evaluate the difficulty needed to customize existing
symbolic execution tools to simplify this type of obfuscations.

7.2 Linear Obfuscation

Method. Linear obuscation, proposed by Wang et al. [43], aims at
concealing a trigger value by inserting a very specific form of input-
dependent conditional loop based on a mathematical conjecture
about a convergent sequence (typically, Syracuse). The conjecture
ensures that the loop always finishes and converges to the same
value, but DSE will have a hard time finding the right path.

Strength and Cost. The strength of linear obfuscation is based
ont the input-dependant loop. The condition of the loop contains
a spurious variable crafted from a real user input. The use of an
unsolved conjecture that always converges to the same value en-
sures the obfuscation will not change the semantics of the program
while symbolic execution engines will not be able to determine
beforehand how many iterations of the loop are needed. Thus, DSE
has to create one new path for each iteration, quickly increasing
the time needed to explore.

This protection can introduce a runtime overhead as the number
of loop iterations at execution may vary depending on the input
value. This number will vary depending on the exact mathematical
conjecture used. Syracuse seems fine, for it converges in less than
1000 iterations for all integers up to 10°8, but what about other
conjectures?

A last issue, not discussed in the original paper, is that the Syra-
cuse conjecture deals with mathematical integers, while computers
works with machine integers. It is not clear how the conjecture
behaves in that case.

Stealth and Mitigation. The authors argue that the code inserted
by their technique has a common control-flow structures, thus mak-
ing the code hard to spot. Still, Syracuse-like conjectures requires
unusual arithmetic operations (modulo 3 or 5 for some extensions,
possibly arithmetic over arbitrary integers) which are easy to spot.

Conference’17, July 2017, Washington, DC, USA

The main threat to linear obfuscation is pattern attacks, as there
exist only a few mathematical conjectures well suited for this
method. The authors proposed to counter it using diversity. Also,
note that while recovering the exact trigger by DSE only is indeed
difficult, a simple local domain-based reasoning does allow to re-
cover a very good approximation of the range of possible values for
the trigger. In other words, the technique leaks information about
the trigger.

8 SUMMARY

All information discussed in Sections 5 to 7 are summarized in
Table 1. Some information is added: the availability of an imple-
mentation and experimental evaluation. Strength, cost and stealth
are rated with a three-level scale. The value is either decided with
theoretical reasonning or validated by (more or less extensive) ex-
periments when the { or {f symbols are present. When in doubt, we
add the ? symbol.

In general, anti-DSE articles focus mainly on strength, hence
strength is easy to assess — even though some proposal are not
backed with experimental evaluation. The situation is much less
satisfactory regarding cost and stealth: these characteristics are not
always discussed, and only very rarely experimentally evaluated.
Especially, evaluating the cost of complex constraints is hard to
determine beforehand, even though it is likely to be significant for
cryptographic hash functions. Note that we write symbolic code as
stealthier than standard self-modification because it is hidden with
a trigger. Regarding correctness, we point out that covert channels
are probabilistically correct.

Finally, we can note that, unfortunately, most obfuscation tech-
niques lack an available reference implementation.

Overview of experimental evaluations. Table 2 gives an overview
of experimental evaluations done in anti-DSE papers conducting
experimental evaluation. We mainly report the characteristics of the
benchmark programs (number of programs, synthetic or real, size),
as well as whether or not they reuse existing benchmarks, and the
DSE attackers these experiments consider. Experiments for linear
obfuscation only concerns cost (code size increase) and security
concerns. Note that we add the work by Banescu et al. [4] as a base-
line: even though the corresponding experiments are not primarily
about anti-DSE protections, this article clearly contributes to level
up the expectations in terms of benchmarks for DSE-based attacks.

9 DISCUSSION

While several defenses have been proposed — and some of them
clearly shown highly powerful in practice — we can highlight a few
drawbacks common to many of these studies:

e Many protection implementations are not available, causing
issues in terms of reproducibility and comparisons;

e Too many studies do not propose strong enough experimen-
tal evaluation;

e Many studies consider only protection strength, while cost
and stealth are also highly relevant.

Call for action. We propose the following agenda to quickly im-
prove the research on anti-DSE protections:

Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion

e Make the implementation of protections available, or at least
some protected samples;

e Use common benchmarks, or at least try to reuse benchmark
programs from other teams;

o Include discussions and experimental evaluations of cost and
stealth.

Directions for future research. It seems that current anti-DSE
research focuses on general attack scenarios. We feel it is time for
the community to try to tackle more precise attack scenarios, taking
for example into consideration: (1) a precise model of the attacker:
including the precise goal (CFG recovery, data localization, etc.),
the degree of precision that the goal must achieve, the kind(s) of
attack (computing power, off-the-shelf tools or crafted ones, fully
automated or interactive) and (2) a precise model of the defender,
including the constraints in terms of cost, stealth and correctness.

10 CONCLUSION

In the context of obfuscation, we propose a systematic review of
anti-DSE techniques. Especially, we propose a classification and
identify strengths and weaknesses of the current lines of research,
as well as promising future directions. In the light of our study,
it appears that several promising techniques have been proposed,
but only few of them are available in obfuscation tool. Moreover,
many studies focus only on strength of protection, while other
crucial points such as cost and stealth are only rarely taken into
account. Finally, too many papers come with no or weak experi-
mental evaluation. As a call for action, we feel that the community
should investigate some of the following points: availability of the
different protections, standardized benchmarks, a general reflexion
on goals of obfuscation and constraints of attackers and defenders.

REFERENCES

[1] Tigress challenge. http://tigress.cs.arizona.edu/challenges.html.

[2] S.Anand, E.K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,
M. J. Harrold, and P. McMinn. An orchestrated survey of methodologies for
automated software test case generation. journal of Systems and Software, 2013.
Domagoj Babic, Lorenzo Martignoni, Stephen McCamant, and Dawn Song.
Statically-directed dynamic automated test generation. In Proceedings of the 20th
International Symposium on Software Testing and Analysis, ISSTA 2011, Toronto,
ON, Canada, July 17-21, 2011, pages 12-22, 2011.

[4] Sebastian Banescu, Christian S. Collberg, Vijay Ganesh, Zack Newsham, and
Alexander Pretschner. Code obfuscation against symbolic execution attacks. In
Annual Conference on Computer Security Applications, ACSAC 2016, 2016.

[5] Sebastian Banescu, Christian S. Collberg, and Alexander Pretschner. Predicting
the resilience of obfuscated code against symbolic execution attacks via machine
learning. In USENIX Security Symposium, 2017.

[6] Boaz Barak. Hopes, fears, and software obfuscation. Commun. ACM, 59(3):88-96,
2016.

[7] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Advances in Cryptology - CRYPTO, 2001.

[8] Sébastien Bardin, Robin David, and Jean-Yves Marion. Backward-bounded DSE:
targeting infeasibility questions on obfuscated codes. In 2017 IEEE Symposium
on Security and Privacy, SP, 2017.

[9] Sébastien Bardin and Philippe Herrmann. OSMOSE: automatic structural testing
of executables. Softw. Test., Verif. Reliab., 21(1), 2011.

[10] M. Beunardeau, A. Connolly, R. GAlraud, and D. Naccache. White-box cryptog-
raphy: Security in an insecure environment. IEEE Security Privacy, 14(5):88-92,
Sep. 2016.

[11] Guillaume Bonfante, José M. Fernandez, Jean-Yves Marion, Benjamin Rouxel,

Fabrice Sabatier, and Aurélien Thierry. Codisasm: Medium scale concatic disas-

sembly of self-modifying binaries with overlapping instructions. In Conference

on Computer and Communications Security, 2015.

Ella Bounimova, Patrice Godefroid, and David A. Molnar. Billions and billions of

constraints: whitebox fuzz testing in production. In 35th International Conference

[3

[12

Obfuscation: Where Are We in Anti-DSE Protections?

(a first attempt)

Conference’17, July 2017, Washington, DC, USA

[13]

[14

[15]

[16

[17]

[18]

=
L

[20]

Protections Strength Cost Correctness Stealth Implementation Mitigation
available known
Complex Constraints
MBA [46] ? v x v [25]
Crypto Hash Functions [36] H ? v x x
Path Divergence
Self-modification v x v [11, 45]
Symbolic Code [44] v x [44]
Covert Channel [39] x v
Path Explosion
Linear Obfuscation [43] t v 1 x
Path-oriented Protections [4, 31] !g v x
x Bad/No ? unknown
Medium { some experimental evaluation
- Good # large experimental evaluation
Table 1: Comparative properties of anti-DSE obfuscations
Protection #programs (size) | #programs (size) | Available Reuse Attack tools
(synthetic) (realistic) benchmarks | benchmarks
Hash [36] [5] 0 7 (NA) No No -
11 (20 loc) Yes! No KLEE [14], ANGR [37]
Covert Channel [39] 1 (10 loc) 0 No No S2E [17], TrrTON [33]
ANGR, Fuzzball 3]
Linear Obfuscation [43] 0 3 (30KBytes) No No -
Path-Oriented Protections [31] 46 (25 loc) 7 (900 loc) Yes? Yes KLEE, ANGR
[4, 32] Binsec [23], TRITON
DSE vs. Standard Protections [4] 48 (25 loc) 0 Yes® No KLEE, ANGR
5000 (100 loc) TRITON

! http://www.partow.net/programming/hashfunctions/
2 https://github.com/binsec/hade
3 https://github.com/tum-i22/obfuscation-benchmarks

Table 2: Summary of experimental evaluations

on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. IEEE
Computer Society, 2013.

David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Xiaodong
Song, and Heng Yin. Automatically identifying trigger-based behavior in malware.
In Wenke Lee, Cliff Wang, and David Dagon, editors, Botnet Detection: Countering
the Largest Security Threat, volume 36 of Advances in Information Security, pages
65-88. Springer, 2008.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
8th USENIX Symposium on Operating Systems Design and Implementation, OSDI,
2008.

Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Commun. ACM, 56(2), 2013.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Un-
leashing mayhem on binary code. In Symposium on Security and Privacy, SP,
2012.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The S2E platform:
Design, implementation, and applications. ACM Trans. Comput. Syst., 30(1):2:1-
2:49, 2012.

Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Addison-Wesley Profes-
sional, 1st edition, 2009.

Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations, 1997.

Christian S. Collberg, Clark D. Thomborson, and Douglas Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In, Symposium on Principles of
Programming Languages, POPL, 1998.

[21

[22

[24

[25

[26

[27

[28

[29

] Kevin Coogan, Gen Lu, and Saumya K. Debray. Deobfuscation of virtualization-
obfuscated software: a semantics-based approach. In Conference on Computer
and Communications Security, CCS, 2011.

] Robin David, Sébastien Bardin, Josselin Feist, Laurent Mounier, Marie-Laure

Potet, Thanh Dinh Ta, and Jean-Yves Marion. Specification of concretization and

symbolization policies in symbolic execution. In International Symposium on

Software Testing and Analysis, ISSTA 2016, 2016.

Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,

Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A dynamic symbolic

execution toolkit for binary-level analysis. In IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering, SANER, 2016.

] Saumya K. Debray and Jay Patel. Reverse engineering self-modifying code:
Unpacker extraction. In Working Conference on Reverse Engineering, WCRE, 2010.

] Ninon Eyrolles, Louis Goubin, and Marion Videau. Defeating mba-based ob-

fuscation. In Proceedings of the 2016 ACM Workshop on Software PROtection,

SPRO@CCS 2016, 2016.

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: whitebox

fuzzing for security testing. Commun. ACM, 55(3), 2012.

] Nguyen Minh Hai, Mizuhito Ogawa, and Quan Thanh Tho. Obfuscation code
localization based on CFG generation of malware. In Foundations and Practice
of Security - 8th International Symposium, FPS 2015, Clermont-Ferrand, France,
October 26-28, 2015, Revised Selected Papers. Springer, 2015.

] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Renovo: a hidden code
extractor for packed executables. In ACM Workshop Recurring Malcode (WORM).
ACM, 2007.

] Johannes Kinder. Towards static analysis of virtualization-obfuscated binaries.
In 19th Working Conference on Reverse Engineering, WCRE, 2012.

http://www.partow.net/programming/hashfunctions/
https://github.com/binsec/hade
https://github.com/tum-i22/obfuscation-benchmarks

Conference’17, July 2017, Washington, DC, USA

[30]

[31

[32

[33

[34

[35

[36]

[37]

Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis
for malware detection. In 23rd Annual Computer Security Applications Conference
(ACSAC 2007), December 10-14, 2007, Miami Beach, Florida, USA. IEEE Computer
Society, 2007.

Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion.
How to kill symbolic deobfuscation for free (or: Unleashing the potential of path-
oriented protections). In Annual Conference on Computer Security Applications,
ACSAC 2019. ACM, 2019.

Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. Symbolic deobfusca-
tion: from virtualized code back to the original. In 5th Conference on Detection of
Intrusions and malware & Vulnerability Assessment (DIMVA), 2018.

Florent Saudel and Jonathan Salwan. Triton : Framework d’exAlcution concolique.
In SSTIC, 2015.

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. Protecting software through obfuscation: Can it keep
pace with progress in code analysis? ACM Comput. Surv., 49(1), 2016.

Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Symposium on Security and Privacy, S&P,
2010.

Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee. Impeding
malware analysis using conditional code obfuscation. In Network and Distributed
System Security Symposium, NDSS, 2008.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kriigel,
and Giovanni Vigna. SOK: (state of) the art of war: Offensive techniques in
binary analysis. In IEEE Symposium on Security and Privacy, SP, 2016.

[38

[39

[40

[41

(42

[43

[44

[45

[46

]

]

]

]
]

]

Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion

Venkatesh Srinivasan and Thomas W. Reps. An improved algorithm for slicing
machine code. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016. ACM.

Jon Stephens, Babak n, Christian S. Collberg, Saumya Debray, and Carlos Schei-
degger. Probabilistic obfuscation through covert channels. In European Sympo-
sium on Security and Privacy, EuroS&P, 2018.

Ramtine Tofighi-Shirazi, Maria Christofi, Philippe Elbaz-Vincent, and Thanh Ha
Le. Dose: Deobfuscation based on semantic equivalence. In Proceedings of the
8th Software Security, Protection, and Reverse Engineering Workshop, San Juan, PR,
USA, December 3-4, 2018. ACM, 2018.

Julien Vanegue and Sean Heelan. SMT solvers in software security. In 6th USENIX
Workshop on Offensive Technologies, WOOT 12, 2012.

Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical report, Char-
lottesville, VA, USA, 2000.

Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. Linear obfuscation to combat
symbolic execution. In European Symposium on Research in Computer Security,
ESORICS, 2011.

Babak Yadegari and Saumya Debray. Symbolic execution of obfuscated code. In
Conference on Computer and Communications Security (CCS), 2015.

Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. A
generic approach to automatic deobfuscation of executable code. In Symposium
on Security and Privacy, SP, 2015.

Yongxin Zhou, Alec Main, Yuan Xiang Gu, and Harold Johnson. Information
hiding in software with mixed boolean-arithmetic transforms. In Information
Security Applications, WISA, 2007.

	Abstract
	1 Introduction
	2 Background
	2.1 Obfuscation
	2.2 Dynamic Symbolic Execution

	3 Symbolic Deobfuscation
	4 Classification of anti-DSE techniques: a rational
	5 Complex Constraints
	5.1 Mixed Boolean Arithmetic
	5.2 Cryptographic Hash Functions

	6 Path Divergence
	6.1 Self-Modifying Code
	6.2 Symbolic Code
	6.3 Covert Channels

	7 Path Explosion
	7.1 Path-Oriented Protections
	7.2 Linear Obfuscation

	8 Summary
	9 Discussion
	10 Conclusion
	References

