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Abstract. The need to get confidence in binary programs without access to
their source code has pushed efforts forward to directly analyze executable pro-
grams. However, low-level programs lack high-level structures (such as types,
control-flow graph, etc.), preventing the straightforward application of source-
code analysis techniques. Especially, conditional jumps rely on low-level flag
predicates, whereas they often encode high-level "natural" conditions on program
variables. Most static analyzers are unable to infer any interesting information
from these low-level conditions, leading to serious precision loss compared with
source-level analysis. In this paper, we propose template-based recovery, an au-
tomatic approach for retrieving high-level predicates from their low-level flag
versions. Especially, the technique is sound, efficient, platform-independent and it
achieves very high ratio of recovery. This method allows more precise analyses
and helps to understand machine encoding of conditionals rather than relying on
error-prone human interpretation or (syntactic) pattern-based reasoning.

1 Introduction

Context. Static analysis [28] offers techniques for computing safe approximations of
the set of values or behaviors arising at run-time when executing a program. Since the
early 2000’s, many successful source-code analysis techniques and tools have been
proposed to check safety and security properties of industrial software [17,23,2].

Yet, there are many important situations where the program must be analyzed directly
at the level of executable code, for example mobile code, off-the-shelf components,
malware, etc. [13,2]. Such binary-level static analysis is highly challenging. Even on
managed code (executable coming from standard high-level language such as C and
compiled in a standard way), it is very hard to match the precision of an analysis
performed at source-level mainly due to the lack of high-level information, such as types,
variables, control-flow information or high-level conditions. The last decade has seen
significant progress in binary-level static analysis, including precise control-flow graph
recovery [7,24,22,14], formal intermediate representations (IR) [6,18,32,8], type and
variables identification [26,5], or dedicated abstract domains [12,32,29,9,10]. Yet, the
field remains highly challenging.
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Problem and challenges. We focus in this paper on high-level condition recovery from
low-level flag conditions. Indeed, on most modern architectures, high-level conditions
from the original program are translated at binary-level into low-level predicates oper-
ating on flags, i.e. boolean registers recording either high-level relationships between
registers (==, ≤) or low-level facts such as occurrences of signed / unsigned overflows.
High-level constructs such as if, while, for, etc. are no longer available. Hence,
unless tracking relational information between program instructions, guard transfer
functions of simple static analyzers will fail to refine propagated abstract states, because
conditional jumps depend on flag values and not directly on registers and/or memory
locations that set the corresponding flags.

Several solutions have been proposed in [11,13,32,25] to address low-level condition
issues, yet they are either unsound and/or architecture dependent (patterns [13]), or
intermediate-representation dependent (virtual flags [32]), or not generic enough (logic-
based recovery [25,32,11,27]). We are looking for a solution which is both sound, generic
(i.e. achieve a high recovery ratio in practice) and independent from a given architecture
or IR-encoding.

Contributions. Our main contributions are the followings
– We present template-based condition recovery (Section 4), a new approach to high-

level predicate recovery enjoying all the above desired properties: automatic, sound,
architecture- / IR- independent, efficient and achieving a high recovery ratio in
practice. The approach extends the logic-based method [25,32,11,27] and yields
to significantly better recovery ratio. Compared to pattern-based methods [13],
the technique is architecture independent and can infer high-level conditions from
“non-regular” patterns – for example, optimized patterns introduced by compilers,
cf. Section 7. Moreover, both template-based and pattern-based recovery can be
fruitfully combined.

– We also address two questions closely related to the problem of high-level condition
recovery and precise static analysis: the issue of ubiquitous data transfer between
registers and memory, and the detection and positioning of widening points. We de-
scribe in Section 5 the two problems and present our solutions, namely a lightweight
domain dedicated to equality propagation (on arbitrary lhs of the program) and a
smart widening point positioning heuristic.

– The approach has been implemented in the new BINSEC/VA static analysis module
of the BINSEC platform [19]. We detail the implementation (Section 6), and we
describe several experimental evaluations (Section 7) assessing the recovery ability,
efficiency and practical utility of our technique. Especially, template-based recovery
yields only a small overhead and achieves a very high ratio of high-level condition
recovery (between 89% to 95% in average). We also sketch potential applications to
value analysis and deobfuscation.

Impact. Template-based recovery can help to adapt any formal analysis from source-
level analysis to binary-level analysis, as illustrated in Section 7. It can also be useful
for example for computer-aided reverse engineering, where it may help the reverser to
quickly understand the real semantic of unusual flag manipulations, introduced either for
optimization or obfuscation purposes (Section 7).
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2 Motivation

2.1 The issue of low-level conditions in binary-level program analysis

The following example illustrates the problem of (low-level) flag encoding.

Example 1. Let us consider the following x86 instructions: cmp x 100; je addr encoding
the high level condition if (x = 100) then .... According to Intel documentation [21],
this sequence reads as follows: instruction cmp x 100 evaluates if equality x = 100 holds
and stores the (boolean) result into the specific flag ZF (other flags are updated, but they
are not relevant here), then instruction je branches to address addr if ZF contains 1, to the
next address otherwise. This can be expressed in the more abstract formalism of DBA
(cf. Section 3) as follows (right column), where ZF is a 1-bit variable:

1: ZF := (x = 100); // x 7→ >

2: if (ZF) then goto addr; // x, ZF 7→ >, [0, 1]

... ...

addr: ... // x, ZF 7→ >, [1, 1]

Let us now consider a standard interval analysis starting from x ∈ > at address
1. The analysis will derive ZF ∈ [0, 1] after the first instruction, then ZF ∈ [1, 1] if
the true branch is taken. However, nothing is derived for x (i.e. x ∈ >) while it is
straightforward that x ∈ [100, 100]. �

Note that while this sort of low-level encoding can be found in C code, the situation
is much problematic on binary code where low-level condition encoding is the norm.

Our goal is precisely to obtain source-level like propagation on binary code thanks
to the recovery of high-level conditions.

2.2 Standard solutions and drawbacks

Logic-based solution. Several authors have independently proposed a similar solution
to high-level condition recovery [25,32,11], that we call here logic-based recovery. The
basic idea is to record relations into flag variables, to propagate these relations (taking
operand updates into account) and to use them for refining the current state of the analysis
once the flag value becomes 1 or 0. On the above example, flag propagation infers that
ZF 7→ [x == 100] at line addr. Since ZF 7→ [1, 1], predicate x==100 is also inferred, refining
the abstract domain with x 7→ [100, 100], which is exactly the result we are looking for.

Yet, logic-based recovery is not always sufficient. The following example illustrates
another conditional jump in x86 architecture where logic-based recovery fails.

Example 2. Let us consider the following x86 code sequence cmp x y; jg addr, encoding
if (x > y) then goto addr. Internally, jg checks a combination of three flags updated by
cmp, namely ZF, OF (overflow) and SF (sign).
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OF := (x{31,31}=y{31,31})& (x{31,31}=(x-y){31,31});

SF := (x - y < 0);

ZF := (x - y = 0);

if (¬ZF ∧ (OF = SF)) then goto addr;

Here, relation propagation does not help, as the recovered low-level condition (below)
is far from the natural high-level condition x > y. Logic-based recovery is not able to
identify most of high-level conditions coming from x86 flag encodings.

if

(
¬(x-y = 0) ∧

(
(x{31,31}=y{31,31}) & (x{31,31}=(x-y){31,31})

)
= (x-y<0)

)
then goto addr;

Pattern based solution. Balakrishnan et al. [13] suggests to pattern match the succes-
sions of comparisons and conditional jumps for deducing the corresponding high-level
comparison. Standard x86 patterns are depicted in Table 1. While precise on common
cases, this approach is very architecture-specific. Hence, supporting several architec-
tures is time-consuming. Moreover, it is very fragile w.r.t. non standard uses of flags and
conditional branches, as found in optimization or obfuscation (cf. Section 7). Note that
ensuring soundness requires some care, e.g. taking properly into account flag / operand
updates between the comparison and the conditional branch.

Table 1. High-level predicates for x86 conditional jumps [13]

cmp x y / sub x y cmp x y sub x y test x y
flag predicate1 predicate2 predicate2 flag predicate3 predicate2

ja, jnbe ¬CF ∧ ¬ZF x >u y x′ 6= 0 ¬ZF x&y 6= 0
jae, jnb, jnc ¬CF x ≥u y true true true
jb, jnae, jc CF x <u y x′ 6= 0 false false

jbe, jna CF ∨ ZF x ≤u y true ZF x&y = 0

je, jz ZF x = y x′ = 0 ZF x&y = 0
jne, jnz ¬ZF x 6= y x′ 6= 0 ¬ZF x&y 6= 0

jg, jnle ¬ZF ∧ (OF = SF ) x > y x′ > 0 ¬ZF ∧ ¬SF (x&y 6= 0)∧
(x > 0 ∨ y > 0)

jge, jnl (OF = SF ) x ≥ y true ¬SF (x ≥ 0 ∨ y ≥ 0)
jl, jnge (OF 6= SF ) x < y x′ < 0 SF (x < 0 ∧ y < 0)
jle, jng ZF ∨ (OF 6= SF ) x ≤ y true ZF ∨ SF (x&y = 0)∨

(x < 0 ∧ y < 0)

1: flag-level condition checked by the instruction. 2: expected corresponding high-level condition
3: the same as 1, taking into account that test sets OF and CF to 0. (x′ is defined by x− y)

Virtual flags. Sepp et al. [32] proposed to tackle the problem while translating machine
instructions into their own Intermediate Representation RREIL. Flag calculations are
translated, if possible, into arithmetic instructions. Typically a comparison between
operands is assigned into a virtual flag. If a virtual flag is used later on, relational
information between operands may be recovered and conveyed to numeric domains.
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Example 3. .
The succession of the two x86 instructions
cmp x y; jg addr; seen in previous exam-
ple is translated in RREIL as depicted on
the right, with virtual flags CForZF, SFxorOF
and SFxorOForZF representing combinations
of concrete flags. At conditional branch, the
test matching the flag is applied. Yet, the
approach requires to add many virtual flags
(updated at each instruction) dedicated to
the targeted architecture and to ensure their
consistency with the concrete flags, which
can be tricky.

sub t0:32, y:32, x:32

cmpltu CF:1, y:32, x:32

cmpleu CForZF:1, y:32, x:32

cmplts SFxorOF:1, y:32, x:32

cmples SFxorOForZF:1, y:32, x:32

cmpeq ZF:1, y:32, x:32

cmplts SF:1, t0:32, 0:32

xor OF:1, SFxorOF:1, SF:1

brc SFxorOF:1, addr:32

Summary. State of the art solutions are summarized in Fig 1, together with the template-
based recovery method described latter in Section 4. Our approach extends the logic-
based method with more powerful recovery ability, while still being architecture and
IR-encoding independent. Moreover, virtual flags and patterns, if available and soundly
implemented, can complement template-based recovery in a fruitful way.

Approach archi. IR encoding Sound Complete enough 1

independent independent standard 1 non-standard 1

Patterns × X X/×2 X ×
Virtual flags X × X/×3 X ×
Logic-based X X X × ×
Template-based X X X X X

1: does the technique achieve a large ratio of condition recovery in practice? We distinguish
between standard flag encodings and non-standard ones (cf Section 7).
2: need to ensure that no flag / operand update happens between comparison and branching
3: need to ensure at each program step the coherence between virtual flags and concrete flags

Fig. 1. comparison of high-level predicate recovery approaches

3 Background

Our approach is based on abstract interpretation [15,16], a theory explaining how to
link a very precise (but generally uncomputable) concrete semantics to its sound ap-
proximation, referred to as abstract semantics. This section first defines the syntax and
concrete semantics of our Intermediate Representation, then a few notations of abstract
interpretation.
DBA and concrete semantics. Automatic analysis of executables requires tools to
abstract from the instruction set of each individual architecture by using an intermediate
representation (IR). We rely on Dynamic Bit-vector Automata (DBA) [6], a generic, side-
effect free and concise formal model for low-level programs, whose syntax is presented
in Figure 2. DBA program manipulates a finite set of global variables ranging over
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fixed-size bit-vectors (registers) and an array of bit-vectors of size 8 (memory). All bit-
vector sizes are statically known. Conditions are bit-vectors of size 1. Instructions mostly
include assignments and (static/conditional/dynamic) jumps, while expressions are built
on standard bit-vector operators (bit-wise logical operations, shift, size restriction e{i..j}

and extension ext(e,n), concatenation ::, (un-)signed machine arithmetic – unsigned
operators are denoted with _u) and memory accesses @(e). A DBA program is a map from
(code) addresses (i.e. bit-vectors of size addr_size) to DBA instructions, together
with an initial address. In the following, the set of variables (resp. expressions) is denoted
Var (resp. Expr).

DBA are given a standard imperative semantic. A concrete state (or environment)
of a program is a map ρ ∈ BVvar

+

assigning a bit-vector value from the set BV to each
variable and memory location (denoted var+). Expressions evaluate over bit-vectors.
The semantics of an expression e in the concrete state ρ is denoted by eval(e)ρ. In case
an expression has no variable nor memory access, its semantic is given by eval(e)∅,
simply denoted eval(e). Assignments and conditions are given the standard semantic.
A static jump goto addr branches to (the instruction at) address addr, while a dynamic
jump goto e branches to address eval(e)ρ.

From a modeling point of view, a single machine instruction is decoded into a block
of DBA instructions - including intermediate computations and temporary variables.
Floating-point arithmetic, multi-thread and self-modification are currently out of scope
of DBA.

Instructions

– lhs := rhs, goto addr
– goto addr
– goto e
– ite(cond)? goto addr : goto addr’
– stop

Expressions

– e{i .. j}, extu,s(e,n), e :: e
– @(e)
– e {+,−,×, /u,s,%u,s} e
– e {<u,s,≤u,s,=, 6=,≥u,s, >u,s} e
– e {∧,∨,⊕, <<,>>u,s} e, !e

Fig. 2. DBA instructions

Abstract interpretation. Abstract interpretation-based analyses [15,16] rely on an
abstract domain D, whose computable elements model a set of concrete states at a
given program point. Such abstract domains must provide the abstract counterparts
of the concrete (set) operations over (P(BVvar

+

))N: a partial order vD over abstract
states; a monotone concretization function γD from D to P(BVvar

+

); greatest and
smallest elements >D and ⊥D, s.t. γD(>D) = BVvar

+

and γD(⊥D) = ∅; sound
over-approximations join tD and meet uD of the union and intersection of concrete
states, i.e. γD(d1) ∪ γD(d1) ⊆ γD(d1 tD d2) and γD(d1) ∩ γD(d1) ⊆ γD(d1 uD d2);
sound abstract transfer functions JiK#D from D to D that over-approximate the concrete
semantics, i.e. JiK(γD(d)) ⊆ γD(JiK#D(d)). The key property in abstract interpretation-
based software verification is soundness, which ensures that each step in the abstract
overapproximates all corresponding possible concrete steps.
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4 Template-based recovery

4.1 Principles

We start from the idea of logic-based recovery and flag propagation. The issue here is
that the high-level conditional expression may be too complex to be dealt with by basic
non relational abstract domains, and that brute substitution of predicates in a non-trivial
flag predicate often results in a complex low-level predicate, possibly hiding a simple
predicate (cf. Example 2). Template-based recovery complements logic-based recovery
with a normalization step for simplifying the current flag expression into a high-level
form. It relies on two key ideas:

– first, there is only a finite set of high-level condition patterns we are interested in
– built on >u, >,<u, <,≥u,≥,≤u,≤,=, 6=, with only two operands – since we
consider on three-address instruction sets;

– second, equivalence between a high-level condition candidate and a given low-level
condition can be checked by a SMT solver (in the theory of bit-vectors and arrays) –
the check should be very efficient as the formula is expected to be very small.

Our approach works as follows. We first retrieve a set of potential operands from the
low-level condition under analysis. A potential operand x must be either a variable, a
memory access, or a restriction of a variable or memory access, i.e.

x ∈ {v, @[e], v{i,j}, @[e]{i,j}, c | v ∈ Var, e ∈ Expr, c ∈ BV, j>i}

Given a low-level condition cond, once the potential operands x and y are selected,
we try to assert the equivalence of cond with the following high-level candidates:

cond ⇔ x >u y cond ⇔ x <u y cond ⇔ x ≥u y cond ⇔ x ≤u y

cond ⇔ x > y cond ⇔ x < y cond ⇔ x ≥ y cond ⇔ x ≤ y

cond ⇔ x = y cond ⇔ x 6= y s.t. x, y ∈syntax cond

If an equivalence is found with candidate cond’, then cond’ is used instead of
cond during the abstract fixpoint computation. Otherwise, recovery fails and the abstract
computation goes on with cond, following the logic-based approach.

4.2 Formalization

We consider an abstract interpretation framework with an abstract domain F# associating
to each flag an expression (elements f: Flag → Expr), alongside a numerical non-
relational abstract domain A# lifted to program variables and memory locations D#

(elements d: var+ → A#), with its evaluation operator L.M : Expr → D# → A# and
condition propagation assume : D# → Expr → D#.

Our full abstract transfer function is the relation .→# . : (D#×F#×Address)→
(D#×F#×Address), from abstract states to new abstract states, described in Figure 3,
where f∈ F#, d∈ D# and l ∈ Address. The syntax s[· 7→ ·] denotes the state obtained
by updating part of state s with a new abstract value. The flag abstract state (second
component of an abstract state) is updated only at assignments, used at conditional
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jumps and merely propagated through other instructions. If any operand of the flag
expression f(flag) is potentially affected by an assignment, either because one of its
subterm is directly modified or because of potential memory aliasing, then f(flag) is
reset to >. � denotes syntactic subterm, ' denotes potential memory aliasing. Function
normalize : Expr → F# → Expr tries to recover a high-level condition from an
expression e. If high-level condition recovery fails, e is left unchanged. When control
flow recombines after a conditional block or loop, abstract states are joined.

Jflag := e; l′K(
d, f, l

)
→#

(
d[flag 7→ LeM(d)], f[flag 7→ e], l′

)
Jv := e; l′K v � f(flag1) ... v � f(flagn)(

d, f, l
)
→#

(
d[v 7→ LeM(d)], f[flag1, ..., flagn 7→ >, ...,>], l′

)
J@(e1, c) := e2; l

′K @(e1, c) ' f(flag1) ... @(e1, c) ' f(flagn)(
d, f, l

)
→#

(
d[(Le1M(d), c) 7→ Le2M(d)], f[flag1, ..., flagn 7→ >, ...,>], l′

)
Jite(e)? l1 : l2K e′ = normalize(e)(f) γ(Le′M(d)) 6= {0}(

d, f, l
)
→#

(
assume(d)(e′), f, l1

)
Jite(e)? l1 : l2K e′ = normalize(e)(f) 0 ∈ γ(Le′M(d))(

d, f, l
)
→#

(
assume(d)(!e′), f, l2

)

normalize(e)(f) ,


t1 � t2 if φ(t1, t2)⇔ t1 � t2

s.t. φ(t1, t2) = e[f(flag1)/flag1, ...; f(flag2)/flag2],

t1, t2 � e[f(flag1)/flag1, ...; f(flag2)/flag2]
e otherwise

x � e ,


true if e ∈ {x, x{i, j}}
x � e′ if e ∈ {@(e′, c), e′{i, j}, !e′, extu,s(e

′, n)}
x � e1 ∨ x � e2 if e ∈ {e1 � e2 | � is a binary operator}

x ' e ,



Le1 + [0, c1]M(d) u#
d

Le2 + [0, c2]M(d) 6= ⊥d if (x = @(e1, c1) ∧ y = @(e2, c2))

x ' e′ if e ∈ {@(e′, c), e′{i, j}, !e′, extu,s(e
′, n)}

x ' e1 ∨ x ' e2 if e ∈ {e1 � e2 | � is a binary operator}
false otherwise

f1 t#
f f2 = f s.t. foreach flag in f,

{
f(flag) = e if f1(flag) = f2(flag) = e

f(flag) = > if f1(flag) 6= f2(flag)

Fig. 3. Abstract propagation of flags abstract domain

Theorem 1 (soundness). The template based solution is sound i.e. if φ(t1, t2) is a flag
predicate involving at least two terms t1 and t2 at address a, s.t. the template based
solution asserts that φ(t1, t2)⇔ t1 � t2, then for each execution trace of the program
the assertion holds at address a.
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4.3 Optimizations

Repeated calls to the SMT solver may raise efficiency issues. We propose two optimiza-
tions in order to mitigate this problem.

Optimization 1: Normalization cache. Each time a flag conditional is met at address
a, the low-level condition is saved in the cache at address a together with the retrieved
high-level condition. If the same condition at the same address a is met later in the
analysis, then the saved high-level condition can be safely reused.

Optimization 2: Templates filtering. The order in which the templates are checked
directly affects the efficiency of high-level predicate recovery. The problem is all the
more important that the number of checked templates is higher. If the number of potential
templates is reduced to one or two, the issue will be largely mitigated.

The idea behind template filtering is that many templates can be cheaply discarded
by comparing the evaluation of the low-level condition to the template evaluation on a
set of well-chosen values.

We denote by cond[x/t] the condition cond where each occurrence of syntactic
term t is replaced by another syntactic term x. If op1 and op2 are non-constant operands
syntactically appearing in condition cond, we can generate conditions cond1, cond2,
cond3 and cond4:

cond1 , cond[0/op1][0/op2]

cond2 , cond[0/op1][1/op2]

cond3, cond[1/op1][0/op2]

cond4 , cond[0/op1][maxu/op2]

The resulting four conditions will be evaluated in order to discard irrelevant templates.
The intuition behind this set of values is that we need to distinguish between symmetric
and antisymmetric operators ((0, 0)), between the direction for antisymmetric operators
((0, 1)), between signed and unsigned comparisons ((0,maxu)), and finally we have to
distinguish between a strict comparison and a disequality ((1, 0) together with (0, 1)).

Discarding templates according to conditions evaluation is given by the following
consecutive tests. cond3 is a special case requested when eval(cond2) = true. Here: if
eval(cond2) = eval(cond3) then keep only template 6=, else remove 6=.

If eval(cond1)= false then templates (op1 {=,≤u,≥u,≤,≥ } op2) are discarded
else templates (op1 { 6=,<u,>u,<,> } op2) are discarded

If eval(cond2)= false then templates (op1 {<,<u,≤,≤u, 6=} op2) are discarded
else templates (op1 {>,>u,≥,≥u,=} op2) are discarded

If eval(cond4)= false then templates (op1 {>,<u,≥,≤u, 6=} op2) are discarded
else templates (op1 {<,>u,≤,≥u,=} op2) are discarded

Whatever the low-level condition is, with only four tests we can eliminate all template
candidates but one, which is then passed to the solver.

Example 4. Let us consider an arbitrary low-level condition cond, with two operands x

and y. We compute cond1 to cond4 as defined before. Let us imagine that: cond1 = 0,
cond2 = 1, cond3 = 0, cond4 = 1. Then the only remaining possible template is x <u y.
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eval(cond1)= false then templates (x {=, ≤u, ≥u, ≤, ≥ } y) are discarded
eval(cond2)= true then templates (x {>,>u} y) are discarded
eval(cond3)= false then template (x {6=} y) is discarded
eval(cond4)= true then template (x {<} y) is discarded

�

Similarly, if op1 is already a constant value c then cond1, cond2, cond3 and
cond4 are defined as follows:

cond1 , cond[c/op2]

cond2 ,

{
cond[maxs/op2] if c<u maxs
cond[maxu/op2] if c>u maxs

cond3 ,

{
cond[0/op2] if 0< c<u maxs
cond[maxs/op2] if c>u maxs

cond4 ,

{
cond[maxu/op2] if c<u maxs
¬cond[maxs/op2] if c>u maxs

5 Other issues related to the precise handling of conditions

We describe two situations closely related to low-level conditions that may yield to
significant precision loss, even in the presence of high-level condition recovery, together
with possible mitigation.

5.1 Ubiquitous data moves between memory and registers

Problem. Architecture-specific constraints may blur the encoding of high-level con-
structs. Typically, like the majority of x86 instructions, the cmp instruction allows at
most one memory operand. So, in order to compare contents of two memory locations,
we need first to load at least one of them into a register, then perform the comparison.
Hence ubiquitous data move from memory (stack) to registers. Example 5 illustrates that
a low-level analysis unable to track relational information through data manipulation
will infer domain reduction on the compared registers (which do not matter), but not on
the memory contents themselves (which matter).

Example 5. This example shows that even when a natural high level condition is avail-
able, a standard analysis may still miss obvious information.

1: eax := @[100]; // @[100] 7→ [0, 130]

2: if (eax < 4) then goto addr; // eax, @[100] 7→ [0,130],[0,130]

... ...

addr: ... // eax, @[100] 7→ [0,3],[0,130]
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Starting from @[100] ∈ [0, 130], a static analysis with non-relation abstract domain
will infer that both eax and @[100] range over the interval [0, 130] after the first instruction.
Yet, at address addr, the computed abstract state will only express that @[100] ∈ [0, 130],
while actually @[100] ∈ [0, 3]. �

Solution. We propose to enrich the propagated abstract state with a lightweight relational
abstract domain keeping track of equalities between arbitrary lhs (expressions of the
form x or @[e]) syntactically present in the program. We propose to use an abstract
domain of the form P# , {C(x) | x ∈ Lhs} that builds a set of equivalence classes
C(x) , {y ∈ Lhs | x = y}. The two key points are (1) the trade-off between efficiency
and precision (actually, we lose information in an aggressive manner, keeping only
obvious equalities), and (2) the ability to refine the non-relational domains of all lhs
of an equivalence class when one is refined by a comparison (here, we attach a domain
to each class, refined each time a variable of the class is refined, and queried when a
variable of the class is evaluated). On Example 5, the technique infers that @[100] == eax

holds at the beginning of line 2, allowing to refine @[100] to [0, 3] at line addr.
Our implementation relies on a combination of union-find structure and maps, allow-

ing efficient join and widening in O(n.ln(n)) time, with n the number of lhs.

5.2 Widening point positioning

Problem. Widening [15] is the standard approach to ensure termination of loop treatment.
Basically, widening is a kind of join operation satisfying the non-ascending chain
property. Termination is ensured if each loop contains a widening point. In high-level
programs, such widening points are easily deduced from the loop structure. However,
binary programs lack such information. While we need to ensure that every cycle in
the program control flow contains at least one widening point, there may have several
positionings, all ensuring termination but with significant difference in precision, as
illustrated in Example 6. Finding an optimal set of widening points is NP-complete [1].

Example 6. This example illustrates the effect of the widening point position on the
precision of the final invariant, with widening points O1 and O2.

Program abstract states (with O1) abstract states (with O2)
0: eax:= 0 0: eax 7→ [0, 0] 0: eax 7→ [0, 0]

1: eax:= eax + 1 1: eax 7→ [min,max] 1: eax 7→ [0, 99]

2: ebx:= @[eax](4) 2: eax 7→ [min,max] 2: eax 7→ [0, 100]

3: if(eax<100) goto 1 3: eax 7→ [min,max] 3: eax 7→ [0,max]

4: 4: eax 7→ [100,max] 4: eax 7→ [100,max]

�
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Solution. We rely on a depth-first numbering of the
CFG nodes for the identification of widening points.
Actually, the set of back edges of the depth-first search
tree is an admissible set of widening points, as it en-
sures that each loop in the CFG features at least one
widening point. Yet, considering precision, it remains
an important decision to make: given a back edge a
→ b, which node should be taken at widening point?
Our solution is that a widening point should be po-
sitioned at the beginning of a conditional jump (O2

here), so that the guarded transfer function can refine
the widened abstract state.

0 eax := 0

1O1 eax := eax+ 1

2 ebx := @[eax](4)

3 if eax < 100 goto 1O2

4

tree
back

6 Implementation

We have implemented the approaches described so far in BINSEC [19,20]. The platform
is based on DBA [6,19] and is composed of the following main modules: loading
and decoding (ELF and PE, x86 architecture), disassembly and heavy simplification
of the resulting IR [19], DBA simulation, dynamic symbolic execution [20], and an
ongoing static analysis module BINSEC/VA. BINSEC is implemented in OCaml. We
describe here the static analysis module BINSEC/VA. It will be available in open-source
at http://binsec.gforge.inria.fr/tools.html.

BINSEC/VA provides a generic fixpoint computation for abstract domains given as
lattices, allowing one to quickly prototype binary-level analyzers. The main features
are the following. Value domain: Since overflow and wrapping (between signed and
unsigned representations) must be taken into account at binary-level, we keep track of
both signed and unsigned values of each lhs, abstracted as a pair of intervals. Then, each
component is reduced according to the other one. This dual interval representation is
very simple (w.r.t. wrapped intervals [29]), and yet it still prevents the most common
cases of precision loss. Typically, considering the following dual representation d# ,
([254, 255]u, [−2,−1]s), then d#+1 evaluates to ([0, 255]u, [−1, 0]s): here the unsigned
part loses all precision, while the signed part remains precise. Memory domain: Value
domains are lifted to byte-precise memory domains in a standard way, following for
example [23] (in a simpler manner). Other domains: The analysis also provides flag
propagation with template-based recovery and an equality domain as described in
Sections 4 and 5.1.

Trading efficiency for precision. Since binary-level static analysis is very challenging,
we give the user several levers for tuning trade-offs between precision and scalability,
namely: k-callstring context sensitivity, loop unrolling, and different flavors of widening,
such as delayed widening or widening with threshold.

CFG recovery. Precise Control-flow Graph (CFG) recovery is a major issue of binary-
level static analysis [7] in presence of dynamic jumps, i.e. jump statements whose target
is computed at runtime (like jmp eax). In our case, the imprecision due to the use of
intervals may lead to significant loss of precision on dynamic jumps. We combine ideas
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from [3] and [14] in order to get precise dynamic target evaluation: on a jump instruction,
we compute a symbolic representation of the k-predecessors of the instruction, then pass
this information enriched with our own forward abstract computation to a SMT solver
and query all possible jump targets. Experiments on benchmarks from [14] confirm that
the approach is precise and practical.

Precision recovery and degraded mode. In case the address of a load or store
evaluates to >, the user can ask the engine to refine the address value with a mechanism
similar to that of our CFG recovery. In case refinement fails, the analysis can still enter a
degraded mode (inspired from [22]), keeping when possible the former (non->) address
value for propagation. Soundness will be lost, yet the analysis can go forward and
(hopefully) discover interesting information.

7 Experiments
We want to assess the practical merits of the approach described so far. We are interested
in the three following Research Questions: RQ1: What is the ability of template-based re-
covery to effectively recover high-level conditions, especially w.r.t. standard approaches?
RQ2: What is the overhead of template-based recovery? RQ3: Does template-based
recovery yield practical benefits to program analysis?

Practical concerns. We consider 66 programs taken from the JULIET/Samate bench-
mark from NIST [30] and 400 functions taken from 10 standard programs, such as
firefox or coreutils. All programs are 32bit x86 executables for Linux (ELF
format). Analysis have been performed with a limited bound on the calldepth (functions
are stubbed once the bound is reached). Experiments have been performed on a Intel
Core i5 CPU equipped with 8GB of RAM, and we rely on the Z3 SMT solver with a
time-out of 1 second (no time-out was encountered). For the sake of comparison, we
have implemented pattern-based recovery and logic-based recovery in BINSEC/VA.

7.1 Recovery ability (RQ1) and efficiency (RQ2)
We compare the three condition recovery approaches on all our benchmark functions.
Results are presented in Table 2 (template-based approach) and Table 4 (summary).

The template-based approach performs very well (cf. Table 2), successfully recov-
ering 89% of all conditions. A manual check on the 218 cases of failure indicates that
most of them are actually not high-level conditions (columns DF, PF, x&y=0, CF_add
in Table 2 – only column opt truly corresponds to unrecovered high-level conditions).
The approach recovers in average 95% of high-level conditions (min: 92%, max: 100%).

Moreover, template-based recovery performs significantly better than logic-based
and pattern-based approaches, which recover respectively 31% and 68% of the total
number of conditions (Table 4). A more detailed analysis shows that template-based
recovery is strictly better than logic-based recovery (that was expected), but also that
template-based recovery and pattern-based recovery are not comparable, in the sense
that they both recover some conditions not recovered by the other method. This latter
result was unexpected, as patterns of Table 1 should represent all legitimate uses of flags.

Typically, the pattern-based method was able to recover tests to x&y==0, while
template-based recovery typically beats patterns on optimized comparisons introduced
by compilers, such as or eax 0; je ... for checking eax = 0 (cf. Table 3).
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Table 2. Template-based high-level condition recovery

progs # fun #loc† #conds‡ #succ? #fail #smt #cache time timeall

DF PF x&y=0 CFadd opt all (s) (s)
firefox 40 21488 150 (137) 134 | 89% (98%) 2 0 11 0 3 16 234 902 1.40 55.91
cat 40 6490 132 (125) 116 | 88% (92%) 3 0 4 0 9 16 154 508 1.08 259.24
chmod 40 8954 183 (172) 159 | 87% (92%) 3 0 8 0 13 24 203 750 1.44 313.17
cp 40 67199 174 (162) 152 | 87% (94%) 0 0 12 0 10 22 533 4287 4.79 346.84
cut 40 7358 148 (138) 132 | 89% (96%) 3 0 7 0 6 16 176 527 1.16 211.73
dir 40 9732 137 (126) 118 | 86% (94%) 5 0 6 0 8 19 159 967 1.26 201.67
echo 40 8016 190 (182) 168 | 88% (92%) 3 0 5 0 14 22 203 816 1.43 274.60
kill 40 6911 142 (133) 125 | 88% (94%) 5 0 4 0 8 17 163 520 1.17 209.79
ln 40 88837 203 (185) 177 | 87% (96%) 3 0 16 0 7 26 558 6565 4.88 531.58
mkdir 40 6347 125 (117) 109 | 87% (93%) 3 0 5 0 8 16 147 505 1.01 235.80
Verisec 66 11552 394 (370) 370 | 87% (100%) 0 8 0 16 0 24 463 735 3.31 34.48

total 466 242884 1978 (1847) 1760 | 89% (95%) 30 8 78 16 86 218 2993 17082 22.93 2674.81

†: number of analyzed instructions only.
‡: total number of conditions (resp. high-level conditions). DF, PF, CFadd and x&y = 0 are not considered high-level.
?: total number of successfully recovered conditions, ratio w.r.t. total number of conditions (resp. high-level conditions)

#smt: number of calls to the smt solver – #cache: number of calls to the cache

time: time for recovery alone (s) – timeall: time for the whole analysis (s)

DF: check on direction flag – PF: check on parity flag – CFadd: low-level tricks on CF – x&y=0: encoded via test

opt: high-level conditions with operand update

Table 3. High-level conditions recovered by templates, not by patterns

Example Discussion
or eax, 0
je ...

The conditional jump is equivalent to if (eax = 0) then goto ....

cmp eax, 0
jns ...

Because the second operand of cmp is zero, checking the sign flag SF is sufficient to check if eax is greater
that or equals zero i.e. (eax >= 0). Note that the pattern based method may miss this case if it expects a
jge or a jnl instruction instead of jns. Note also that the folklore method may succeed to retrieve the
high-level comparison if SF is encoded in DBA as (eax < 0) instead of eax{31, 31}.

sar ebp, 1
je ...

Although this case seems to be complicated at first glance, the corresponding high-level predicate is merely
equivalent to if (ebp = 0) then goto ..., where ebp holds its shifted value.

dec ecx
jg ...

In addition to tracking assignments to flags as symbolic expressions, the template based solution also tracks
assignments to operands mentioned in expressions of tracked flags. Hence it is able to infer the following
high-level conditional jump if (ecx ≥ 0) then goto ...

We can fruitfully combine patterns and templates in the following way: template
recovery is used only when no pattern is found. This combination is faster, since pat-
terns are significantly cheaper than templates, and it discovers more conditions than
templates or patterns alone (especially, tests to x&y==0 are recovered). Results in Table
4 demonstrate a slight improvement in recovery and a 2x speedup.

Performance. Results in Tables 2 and Table 4 demonstrate that the approach has a low
overhead, 1% in average (column time vs timeall). Hence, while template-based recovery
is indeed much more expensive than the two other methods (Table 4), the extra-cost is
clearly affordable. Finally, optimizations allow to win a factor 3x on average, up to 20x.

Conclusion. The template-based recovery approach is able to recover a large part
of high-level conditions (RQ1), achieving significantly better results than related ap-
proaches. Especially, it can recover optimized comparisons introduced at compile-time,
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Table 4. Summary: high-level condition recovery

method #loc #conds #succ† #fail time timeall

templates 242884 1978 1760 (89%) 218 22.93 2674.81
logic 247894 2260 694 (31%) 1566 0.003 2561.64
patterns 229255 1987 1357 (68%) 630 0.014 2373.33

templates + patterns 242884 1978 1838 (92%) 140 9.17 2659.95

templates w/o cache 242884 1978 1760 (89%) 218 29.76 2697.67
templates w/o filtering 242884 1978 1760 (89%) 218 51.13 2726.45
templates w/o cache, w/o filtering) 242884 1978 1760 (89%) 218 66.52 2752.73

†: ratio computed w.r.t. the total number of conditions

while they are beyond the scope of the pattern approach, and it can also sometimes
synthesizes high-level conditions from low-level conditions with a priori no high-level
counter-part in the source code. Concerning efficiency (RQ2), the method is very cheap,
in the sense that its overhead w.r.t. the whole analysis cost is negligible. Moreover,
templates can be fruitfully combined with patterns.

7.2 Practical impact (RQ3)

We consider two potential applications of this work: precision of static analysis and
deobfuscation.

Application to value analysis. We are interested here in evaluating the gain of precision
brought by better high-level condition recovery to a standard forward value propagation.
We compare several versions of BINSEC/VA, based on templates, patterns and logic.
Results are presented in Table 5. Here, template-based recovery leads to the computation
of abstract memory states which are strictly more precise than those computed with logic-
based recovery (on 41% of analyzed locations, up to 64%) and than those computed
with pattern-based recovery (on 18% of analyzed locations, up to 38%). Moreover,
template-based recovery does allow us to reduce the number of analysis failures in a
tangible way (-18% in average, up to -80% on Verisec and -40% on firefox).

Application to deobfuscation. Obfuscation techniques aim at tricking reversers (either
humans or tools) for preventing them to understand how a piece of code works. While it is
legitimately used for IP protection, it is also massively used for malware protection, hence
the need for automatic binary-level analysis of obfuscated programs. The code snippet
cmp eax ebx ; cmc ; jae illustrates an obfuscation technique (reported in [33])
aiming at luring the reverser on the real semantic of a conditional jump. The standard cmp
eax ebx ; jae pattern is usually read as branching on eax ≥u ebx. But jae actually
reads the carry flag cf (see Table 1), which is inverted by the cmc instruction. Hence,
here, the true semantic of jae will be to branch on condition eax <u ebx. Template-
based recovery succeeds to recover the true semantic of the jump, while pattern-based
recovery and logic-based recovery fail.
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Table 5. Precision comparison between different condition recovery methods

progs #loc† # fail # fail # fail #loc@ #loc@
templ. logic patterns logic vs templ. pattern vs templ.

firefox 15099 242 433 400 8852 (59%) 5725 (38%)
cat 4192 136 143 145 1171 (28%) 604 (14%)
chmod 5768 188 201 202 1252 (22%) 652 (11%)
cp 5605 152 161 152 3237 (58%) 545 (10%)
cut 4870 148 232 156 1686 (35%) 605 (12%)
dir 5022 144 147 148 1442 (29%) 700 (14%)
echo 5570 176 185 186 2616 (47%) 1009 (18%)
kill 4626 150 157 158 1245 (27%) 625 (14%)
ln 8091 243 248 293 5166 (64%) 815 (10%)
mkdir 4062 134 141 142 1139 (28%) 589 (15%)
Verisec 8334 28 137 153 1474 (18%) 1075 (13%)

total 71239 1741 2185 2135 29280 (41%) 12944 (18%)
†: number of instructions analyzed by all three analyzers (instr. missed by at least one analyzer are discarded).
#fail: number of failures in the analysis due to a load/store index or jump expression evaluating to>
#loc@: number of locations for which the abstract state computed by template-recovery is strictly more precise than the one
computed with logic (resp. pattern) recovery

8 Related works

Logic-based [25,32,11,27], pattern-based [13] and virtual flag [32] solutions have already
been lengthy discussed in Section 2. Basically our approach extends the logic-based
method, and it is orthogonal to pattern in terms of recovery ability (yet, templates recover
significantly more conditions than patterns). Templates can also be fruitfully combined
with virtual flags and patterns, if available. Especially, very specific conditions such
as x&y==0 can be recovered this way. Finally, note that many syntactic disassembly
techniques use patterns in an unsound way, for example not taking operand or flag
updates into account.

Other more general proposed solution consists in tracing the bit-level calculation of
flags. In this case, SAT solving is used to reason about values of variables. However,
using SAT solving to perform static analysis faces scalability problems as soon as non-
trivial loops are analyzed, even when combining SAT solving with abstraction to numeric
ranges [10]. Interestingly, binary-level underapproximated techniques such as DSE [4]
do not face this issue, and can rely on SAT solving and low-level flag encoding w/o any
serious penalty.

9 Conclusion
We have presented template-based recovery, a sound and generic technique for recovering
high-level conditions from binary codes. The method performs significantly better than
state-of-the-art approaches, and it can also be combined with some of them. Template-
based recovery can help to adapt any formal analysis from source-level analysis to
binary-level analysis, and it can also be useful for reverse engineering.
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A More details on recovered/unrecovered conditions

Low-level conditions leading to the failure of template-based recovery.

Pattern Discussion Example
DF DF flag is especially used in string operations that move data from one register to

a memory location pointer to by the EDI register. The EDI register is incremented
or decremented automatically according to the setting of the DF flag

rep stos [edi],eax

PF The parity flag is set if the number of bits set in the data is even and cleared if it is
odd. No high-level condition corresponds to this case.

mov edx, 3
and edx, eax
jp 805b4f6

CF The addition of 0xfefefeff and another operand a sets the carry flag if the High-
order byte is not zero. In addition it decrements each byte of a by one. This idiom
is used in string manipulation to check for null character.

add ecx, 0xfefefeff
jae 80a3620

Bits shifted beyond the destination operand boundary are first shifted into the CF
flag, then discarded. At the end of the shift operation, the CF flag contains the last
bit shifted out of the destination operand.

shr ecx, 1
jae 8061566

x & y Instructions like and, or, xor, not, and the shifts and rotates make it possible to test,
set, clear, invert, and align bit fields within strings of bits. The test instruction can
check to see if one or more bits in a register or memory location are non-zero.

test al, 0x8
jne 808e7a8

opt Compiler optimization may insert a mov instruction between a cmp instruction
and a conditional jump. The mov instruction does not affect flags but may over-
write one operand from those used to set the flags for the following conditional
jump.

cmp [esp+0x64],eax
mov eax, [esp+0x24]
jg 80a3678

High-level conditions recovered by templates, not by patterns. The following com-
piler idioms are not recovered by patterns, but by template-based recovery.

Example Discussion
or eax, 0
je ...

The conditional jump is equivalent to if (eax = 0) then goto ....

cmp eax, 0
jns ...

Because the second operand of cmp is zero, checking the sign flag SF is sufficient to check if eax is greater
that or equals zero i.e. (eax >= 0). Note that the pattern based method may miss this case if it expects a
jge or a jnl instruction instead of jns. Note also that the folklore method may succeed to retrieve the
high-level comparison if SF is encoded in DBA as (eax < 0) instead of eax{31, 31}.

sar ebp, 1
je ...

Although this case seems to be complicated at first glance, the corresponding high-level predicate is merely
equivalent to if (ebp = 0) then goto ..., where ebp holds its shifted value.

dec ecx
jg ...

Note that no pattern matches to this case. Equivalent DBA instructions are:
0: t := ecx - 1;
1: OF := (ecx{31,31}=1{31,31})& (ecx{31,31}=t{31,31});
2: SF := (t < 0);
3: ZF := (t = 0);
4: ecx := t;
5: if (¬ZF ∧ (OF = SF)) then goto ...;
In addition to tracking assignments to flags as symbolic expressions, the template based solution also tracks
assignments to operands mentioned in expressions of tracked flags. Hence it is able to infer the following
high-level conditional jump if (ecx ≥ 0) then goto ...
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